
Traveler Information Kiosk

Model Deployment Initiative

System Design Document
Version 1.0

SwRI Project No. 10-8684
P.O. No. 7-70030

Req. No. 60115-7-70030

February 19, 1998

Prepared For:
Texas Department of Transportation

TransGuide
3500 NW Loop 410

San Antonio, Texas 78229

Prepared by:
Southwest Research Institute

P.O. Drawer 28510
San Antonio, Texas 78228

Traveler Information Kiosk System Design Documenti

Approval Page

________________________________ ______________________

Traveler Information Kiosk Project Manager Date

________________________________ ______________________

SwRI MDI Project Manager Date

________________________________ ______________________

Software Engineering Director Date

Traveler Information Kiosk System Design Documentii

Table of Contents

1. INTRODUCTION ..1

1.1 PURPOSE OF THE SYSTEM ..1
1.2 OPERATIONAL CONCEPT ..1
1.3 GOALS AND OBJECTIVES ..2
1.4 REFERENCED DOCUMENTS ...2

2. EXTERNAL INTERFACES ..3

2.1 TRANSGUIDE PERSONNEL ..4
2.2 PROCESS STATUS GUI ...4
2.3 DATA SERVER ...4
2.4 SUBSYSTEM STATUS LOGGER...4
2.5 GENERAL PUBLIC ..4
2.6 SUBSYSTEM HEARTBEAT MANAGEMENT...4
2.7 SUBSYSTEM PROCESS CONTROL ...4

3. SYSTEM REQUIREMENTS...4

3.1 SYSTEM LEVEL REQUIREMENTS..6
3.1.1 Physical Requirements ...6
3.1.2 Interface Requirements ..8
3.1.3 Functional Requirements ...8

3.2 SUBSYSTEM LEVEL REQUIREMENTS..9
3.2.1 Kiosk Master Computer..9

3.2.1.1 Kiosk Master Computer Interface Requirements ..9
3.2.1.2 Kiosk Master Computer Functional Requirements ...13

3.2.2 Kiosk Field Unit...14
3.2.2.1 Kiosk Field Unit Interface Requirements ...14
3.2.2.2 Kiosk Field Unit Functional Requirements ..14

4. SYSTEM DESIGN..19

4.1 SYSTEM ARCHITECTURE ..19
4.2 SYSTEM LEVEL DESIGN..20

4.2.1 Kiosk Master Computer Subsystem...22
4.2.1.1 Status GUI ..25
4.2.1.2 Detailed Status GUI ..25

4.2.1.2.1 Kiosk teleuse_Main ..27
4.2.1.2.2 kdsg_main ..28
4.2.1.2.3 INITIALLY...30
4.2.1.2.4 BUILD_KIOSK_LIST...32
4.2.1.2.5 count_kiosks...33
4.2.1.2.6 CREATE_KIOSK_INDICATOR...34
4.2.1.2.7 GET_UPDATE_RATE ...35
4.2.1.2.8 periodic_update ..36
4.2.1.2.9 UPDATE_DETAILS...37
4.2.1.2.10 UPDATE_INDICATOR...39
4.2.1.2.11 UPDATE_USAGE...41
4.2.1.2.12 kiosk_download...43
4.2.1.2.13 set_kiosk_in_service ..44
4.2.1.2.14 PERIODIC UPDATE ...46
4.2.1.2.15 set_kiosk_out_of_service ...47
4.2.1.2.16 kiosk_ping ...49
4.2.1.2.17 UPDATE_STATUS ...50

Traveler Information Kiosk System Design Documentiii

4.2.1.2.18 update_status ...51
4.2.1.3 System Maintenance GUI ..52

4.2.1.3.1 ksmg (teleuse_main)...55
4.2.1.3.2 ksmg_main ...56
4.2.1.3.3 kmsg_load_cfg..57
4.2.1.3.4 INITIALLY...58
4.2.1.3.5 ksmg_application_init...60
4.2.1.3.6 DISPLAY_ERROR_MESSAGE ...61
4.2.1.3.7 display_error_message..63
4.2.1.3.8 ksmg_connect_to_dsif...63
4.2.1.3.9 INITIALLY (Kiosk) ..65
4.2.1.3.10 BUILD_KIOSK_CONFIG_ENTRY_STRING..65
4.2.1.3.11 INITIALLY (Parking) ..66
4.2.1.3.12 BUILD_PARKING_CONFIG_ENTRY_STR ...67
4.2.1.3.13 INITIALLY (airline) ..68
4.2.1.3.14 BUILD_AIRLINE_CONFIG_ENTRY_STR ...69
4.2.1.3.15 INITIALLY (rental) ...70
4.2.1.3.16 BUILD_RENTAL_CAR_CONFIG_ENTRY_ST ..71
4.2.1.3.17 INITIALLY (screensaver)...72
4.2.1.3.18 BUILD_SS_CONFIG_ENTRY_STRING ...73
4.2.1.3.19 configure_airlines ..74
4.2.1.3.20 airline_config_init..76
4.2.1.3.21 display_question ..78
4.2.1.3.22 ksmg_read_airline_config_file ...79
4.2.1.3.23 ADD_AIRLINE_LIST_ITEM...81
4.2.1.3.24 ksmg_retrieve_airline_config_file ..83
4.2.1.3.25 config_add_ok (airline) ..84
4.2.1.3.26 VALIDATE_PHONE_STRING..85
4.2.1.3.27 ksmg_create_airline_config_file...86
4.2.1.3.28 config_modify_ok (airline)...87
4.2.1.3.29 save_table (airline) ..89
4.2.1.3.30 ksmg_write_airline_config_file..91
4.2.1.3.31 ksmg_store_airline_config_file ..92
4.2.1.3.32 configure_airport_parking..93
4.2.1.3.33 parking_config_init..94
4.2.1.3.34 ksmg_read_parking_config_file ...96
4.2.1.3.35 ADD_PARKING_LIST_ITEM...98
4.2.1.3.36 ksmg_retrieve_parking_config_file .. 100
4.2.1.3.37 config_add_ok (parking) .. 101
4.2.1.3.38 VALIDATE_DOLLAR_AMOUNT .. 102
4.2.1.3.39 ksmg_create_parking_config_file ... 103
4.2.1.3.40 config_modify_ok (parking) ... 104
4.2.1.3.41 save_table (parking)... 106
4.2.1.3.42 ksmg_write_parking_config_file .. 108
4.2.1.3.43 ksmg_store_parking_config_file... 109
4.2.1.3.44 configure_rental_car .. 110
4.2.1.3.45 rental_car_config_init .. 112
4.2.1.3.46 ksmg_read_rental_car_config_file.. 114
4.2.1.3.47 ADD_RENTAL_CAR_LIST_ITEM ... 116
4.2.1.3.48 ksmg_retrieve_rental_car_config.. 118
4.2.1.3.49 config_add_ok (rental) ... 119
4.2.1.3.50 ksmg_create_rental_car_config_file ... 120
4.2.1.3.51 config_modify_ok (rental) .. 121
4.2.1.3.52 save_table (rental) ... 123
4.2.1.3.53 ksmg_write_rental_car_config_fil .. 125
4.2.1.3.54 ksmg_store_rental_car_config_fil... 126
4.2.1.3.55 configure_screen_saver .. 127
4.2.1.3.56 ss_config_init .. 128
4.2.1.3.57 ksmg_read_ss_config_file .. 130
4.2.1.3.58 ADD_SS_LIST_ITEM ... 132

Traveler Information Kiosk System Design Documentiv

4.2.1.3.59 config_add_ok (ss)... 134
4.2.1.3.60 VALIDATE_DISPLAY_TIME... 135
4.2.1.3.61 VALIDATE_SS_FILE.. 136
4.2.1.3.62 COPY_SS_FILES .. 137
4.2.1.3.63 FILE_BASE_NAME.. 139
4.2.1.3.64 ksmg_create_ss_config_file.. 141
4.2.1.3.65 config_modify_cancel (ss).. 141
4.2.1.3.66 config_modify_ok (ss).. 142
4.2.1.3.67 modify_entry (ss) ... 143
4.2.1.3.68 delete_entry (ss) .. 144
4.2.1.3.69 DELETE_SS_CONFIG_FILE .. 145
4.2.1.3.70 ksmg_delete_ss_config_file ... 147
4.2.1.3.71 save_table (ss) ... 148
4.2.1.3.72 ksmg_write_ss_config_file... 149
4.2.1.3.73 configure_kiosk ... 151
4.2.1.3.74 kiosk_config_init ... 153
4.2.1.3.75 ksmg_read_kiosk_config_file... 155
4.2.1.3.76 ADD_KIOSK_LIST_ITEM.. 157
4.2.1.3.77 config_add_ok (Kiosk)... 159
4.2.1.3.78 VALIDATE_KIOSK_NAME_STRING.. 160
4.2.1.3.79 ksmg_create_kiosk_config_file .. 161
4.2.1.3.80 config_modify_ok (Kiosk).. 162
4.2.1.3.81 save_table (Kiosk) ... 164
4.2.1.3.82 ksmg_write_kiosk_config_file.. 165
4.2.1.3.83 add_entry... 167
4.2.1.3.84 config_add_cancel.. 168
4.2.1.3.85 modify_entry.. 169
4.2.1.3.86 config_modify_cancel .. 170
4.2.1.3.87 delete_entry ... 171
4.2.1.3.88 ksmg_delete_widget .. 172
4.2.1.3.89 ksmg_disconnect_from_dsif ... 173
4.2.1.3.90 exit_application ... 174

4.2.1.4 Status Logger .. 176
4.2.1.5 Data Server Interface ... 176

4.2.1.5.1 kiosk_dsif_main ... 179
4.2.1.5.2 kiosk_dsif_cleanup ... 181
4.2.1.5.3 send_heartbeat_pulse.. 183
4.2.1.5.4 initialize_kiosk_dsif.. 184
4.2.1.5.5 sigalm_handler ... 185
4.2.1.5.6 respond_to_read_sockets .. 186
4.2.1.5.7 receive_dsif_message.. 187
4.2.1.5.8 disconnect_receive_socket .. 188
4.2.1.5.9 send_data_server_message.. 189
4.2.1.5.10 send_heartbeat_message .. 191
4.2.1.5.11 send_write_file_message ... 192
4.2.1.5.12 send_ds_return_status.. 193
4.2.1.5.13 send_ds_return_message.. 194
4.2.1.5.14 send_write_equip_status_message ... 195
4.2.1.5.15 send_delete_file_message .. 197
4.2.1.5.16 send_file_time_message .. 198
4.2.1.5.17 send_get_file_type_time_message.. 199
4.2.1.5.18 send_read_file_message... 201

4.2.1.6 Data Server Interface Library... 202
4.2.1.6.1 kiosk_dsif_connect ... 202
4.2.1.6.2 kiosk_dsif_delete_file... 203
4.2.1.6.3 kiosk_dsif_disconnect ... 205
4.2.1.6.4 kiosk_dsif_get_file_time... 205
4.2.1.6.5 kiosk_dsif_get_file_type_time .. 207
4.2.1.6.6 kiosk_dsif_read_file ... 208
4.2.1.6.7 kiosk_dsif_read_file_list... 210

Traveler Information Kiosk System Design Documentv

4.2.1.6.8 kiosk_dsif_read_status.. 211
4.2.1.6.9 kiosk_dsif_read_timestamp... 212
4.2.1.6.10 kiosk_dsif_send_heartbeat ... 212
4.2.1.6.11 kiosk_dsif_write_equip_status ... 213
4.2.1.6.12 kiosk_dsif_write_file ... 215

4.2.1.7 Kiosk MC Main .. 216
4.2.1.7.1 Kiosk MC Main.. 217
4.2.1.7.2 catch signal... 220
4.2.1.7.3 signal setup... 221
4.2.1.7.4 initialize field unit data... 221
4.2.1.7.5 log error.. 223
4.2.1.7.6 load directory data server .. 224
4.2.1.7.7 load directory filesystem ... 224
4.2.1.7.8 init kiosk connection... 225
4.2.1.7.9 update files pending.. 226
4.2.1.7.10 update filecount ... 227
4.2.1.7.11 load kiosk cfgs ... 227
4.2.1.7.12 download files ... 228
4.2.1.7.13 send file... 229
4.2.1.7.14 request heartbeat.. 231
4.2.1.7.15 update files .. 232
4.2.1.7.16 update directory data server ... 233
4.2.1.7.17 update directory filesystem... 233
4.2.1.7.18 process heartbeat ... 235
4.2.1.7.19 close kiosk connection.. 235
4.2.1.7.20 update paper disk stats... 236
4.2.1.7.21 check for ping .. 237
4.2.1.7.22 init kiosk connection .. 238
4.2.1.7.23 close kiosk connection.. 239
4.2.1.7.24 save kiosk cfgs... 239
4.2.1.7.25 initialize field unit status.. 240
4.2.1.7.26 send field unit status .. 241

4.2.1.8 Transfer Data Files.. 242
4.2.1.8.1 Transfer Data File Main.. 243
4.2.1.8.2 signal setup... 245
4.2.1.8.3 save timestamps.. 246
4.2.1.8.4 update files ... 247
4.2.1.8.5 update directory filesystem.. 247
4.2.1.8.6 update directory dataserver ... 249
4.2.1.8.7 initialize read timestamps ... 250
4.2.1.8.8 send heartbeat... 250

4.2.2 Kiosk Field Unit...251
4.2.2.1 Startup/Error Server Process.. 253

4.2.2.1.1 Form Load .. 256
4.2.2.1.2 Data Arrival.. 258
4.2.2.1.3 Check for New Data.. 259

4.2.2.1.3.1 VIA Data File Formats.. 261
4.2.2.1.3.2 Weather Data File Formats ... 264
4.2.2.1.3.3 Airport Data File Formats... 264
4.2.2.1.3.4 Screensaver Files.. 265

4.2.2.1.4 Perform Heartbeat Check.. 266
4.2.2.1.5 Build HB Stats File... 268
4.2.2.1.6 Midnight Processing ... 270

4.2.2.2 Graphical User Interface.. 271
4.2.2.2.1 Main Menu Screen ... 274
4.2.2.2.2 San Antonio Area Map.. 274
4.2.2.2.3 Find Address .. 282
4.2.2.2.4 Points of Interest List .. 284
4.2.2.2.5 Find Point of Interest .. 285

Traveler Information Kiosk System Design Documentvi

4.2.2.2.6 Identify GUI.. 287
4.2.2.2.7 Current Traffic GUI .. 288
4.2.2.2.8 Airport Data Screen .. 289
4.2.2.2.9 Airline Carriers... 291
4.2.2.2.10 Rental Car Agency GUI.. 293
4.2.2.2.11 Airport Parking Fee GUI.. 295
4.2.2.2.12 San Antonio Weather Screen.. 297
4.2.2.2.13 Current Conditions GUI ... 299
4.2.2.2.14 Five-Day Forecast GUI... 301
4.2.2.2.15 VIA Transit Screen .. 302
4.2.2.2.16 VIA Bus Stop GUI ... 304
4.2.2.2.17 VIA Select Route GUI.. 307
4.2.2.2.18 VIA Display Route Schedule.. 309
4.2.2.2.19 VIA Generic Information GUI .. 310
4.2.2.2.20 Screen Saver .. 312

4.2.2.3 Real Time Data Application .. 313
4.2.2.3.1 Real Time Form Load ... 315
4.2.2.3.2 MakeCrcTable .. 316
4.2.2.3.3 Serial OnComm .. 317
4.2.2.3.4 ProcessRTData ... 318
4.2.2.3.5 ProcessSTM ... 318
4.2.2.3.6 SendIncList... 319
4.2.2.3.7 ProcessTIM .. 320
4.2.2.3.8 ProcessLinkTIM ... 321
4.2.2.3.9 ProcessIncTIM.. 322
4.2.2.3.10 AddIncToList... 323
4.2.2.3.11 ProcessLR.. 324
4.2.2.3.12 ProcessLRGlobPoint .. 324
4.2.2.3.13 ProcessLRGlobLink ... 325
4.2.2.3.14 ProcessLRLclPoint... 326

4.2.2.4 Modem Communications Application .. 327
4.2.2.4.1 Modem Comm Form Load .. 330
4.2.2.4.2 Heartbeat Timer.. 332

4.2.3 Build Translation Table (MapMatch) ...332
4.2.3.1 MapMatch... 333
4.2.3.2 DrawScrn .. 335
4.2.3.3 RightClk ... 337
4.2.3.4 Oldlnks ... 338
4.2.3.5 Drawdots... 338
4.2.3.6 LoadLeft.. 339
4.2.3.7 Loadmap ... 340
4.2.3.8 LoadRght .. 341
4.2.3.9 Loadall.. 342
4.2.3.10 MakeTab... 343
4.2.3.11 Loadtab ... 344
4.2.3.12 Drawname... 345
4.2.3.13 MergeMap .. 345
4.2.3.14 Optimize ... 346

5. TRACEABILITY MATRIX...347

Traveler Information Kiosk System Design Documentvii

List of Figures

Figure 1 - General Kiosk System Data Flow...2

Figure 2 - Kiosk External Interfaces...3

Figure 3 - System Architecture...20

Figure 4 - Kiosk Subsystems and Assoicated Data Flows ...21

Figure 5 - Kiosk Master Computer Application Identification ...22

Figure 6 - Kiosk Master Computer Resident Applications and Data Flows..................................23

Figure 7 - Detailed Status GUI Data Flow..26

Figure 8 - Kiosk teleuse_main Structure Chart ...28

Figure 9 - kdsg_main Structure Chart ..29

Figure 10 - INITIALLY Structure Chart ..30

Figure 11 - BUILD_KIOSK_LIST Structure Chart..32

Figure 12 - count_kiosks Structure Chart ...33

Figure 13 - CREATE_KIOSK_INDICATOR Structure Chart ...34

Figure 14 – GET_UPDATE_RATE Structure Chart..35

Figure 15 – periodic update Structure Chart ...36

Figure 16 - UPDATE_DETAILS Structure Chart ..38

Figure 17 – UPDATE_INDICATOR Structure Chart ..40

Figure 18 - UPDATE_USAGE Structure Chart ...42

Figure 19 - kiosk_download Structure Chart ..43

Figure 20 - set_kiosk_in_service Structure Chart..45

Figure 21 – PERIODIC UPDATE Structure Chart...46

Figure 22 - set_kiosk_out_of_service Structure Chart...48

Figure 23 - kiosk_ping Structure Chart ..49

Figure 24 - UPDATE_STATUS Structure Chart ...50

Traveler Information Kiosk System Design Documentviii

Figure 25 - update_status Structure Chart ..52

Figure 26 – Kiosk System Maintenance GUI Data Flow...53

Figure 27 - ksmg (teleuse_main) Structure Chart..55

Figure 28 – ksmg_main Structure Chart...57

Figure 29 - kmsg_load_cfg Structure Chart..58

Figure 30 - INITIALLY Structure Chart ..59

Figure 31 - ksmg_application_init Structure Chart ...60

Figure 32 - DISPLAY_ERROR_MESSAGE Structure Chart ..62

Figure 33 - display_error_message Structure Chart ..63

Figure 34 - ksmg_connect_to_dsif Structure Chart ...64

Figure 35 - INITIALLY (Kiosk) Structure Chart..65

Figure 36 - BUILD_KIOSK_CONFIG_ENTRY_STRING Structure Chart66

Figure 37 - INITIALLY (Parking) Structure Chart...67

Figure 38 - BUILD_PARKING_CONFIG_ENTRY_STR Structure Chart.................................68

Figure 39 - INITIALLY (airline) Structure Chart ...69

Figure 40 - BUILD_AIRLINE_CONFIG_ENTRY_STR Structure Chart70

Figure 41 - INITIALLY (rental) Structure Chart..71

Figure 42 - BUILD_RENTAL_CAR_CONFIG_ENTRY_ST Structure Chart72

Figure 43 - INITIALLY (screensaver) Structure Chart ...73

Figure 44 - BUILD_SS_CONFIG_ENTRY_STRING Structure Chart74

Figure 45 - configure_airlines Structure Chart..75

Figure 46 - airline_config_init Structure Chart ...77

Figure 47 - display_question Structure Chart..79

Figure 48 - ksmg_read_airline_config_file Structure Chart ...80

Figure 49 - ADD_AIRLINE_LIST_ITEM Structure Chart ..82

Figure 50 - ksmg_retrieve_airline_config_file Structure Chart ..83

Traveler Information Kiosk System Design Documentix

Figure 51 - conifg_add_ok (airline) Structure Chart..84

Figure 52 - VALIDATE_PHONE_STRING Structure Chart ...86

Figure 53 - ksmg_create_airline_config_file Structure Chart ..87

Figure 54 - config_modify_ok (airline) Structure Chart ..88

Figure 55 - save_table (airline) Structure Chart ..90

Figure 56 - ksmg_write_airline_config_file Structure Chart..91

Figure 57 - ksmg_store_airline_config_file Structure Chart ..92

Figure 58 - configure_airport_parking Structure Chart ...93

Figure 59 - parking_config_init Structure Chart ...95

Figure 60 - ksmg_read_parking_config_file Structure Chart ...97

Figure 61 - ADD_PARKING_LIST_ITEM Structure Chart ..99

Figure 62 - ksmg_retrieve_parking_config_file Structure Chart ..100

Figure 63 - config_add_ok (parking) Structure Chart..101

Figure 64 - VALIDATE_DOLLAR_AMOUNT Structure Chart..103

Figure 65 - ksmg_create_parking_config_file Structure Chart ..104

Figure 66 - config_modify_ok (parking) Structure Chart ..105

Figure 67 - save_table (parking) Structure Chart ..107

Figure 68 - ksmg_write_parking_config_file Structure Chart..108

Figure 69 - ksmg_store_parking_config_file Structure Chart ..110

Figure 70 - configure_rental_car Structure Chart ...111

Figure 71 - rental_car_config_init Structure Chart ...113

Figure 72 - ksmg_read_rental_car_config_file Structure Chart ...115

Figure 73 - ADD_RENTAL_CAR_LIST_ITEM Structure Chart...117

Figure 74 - ksmg_retrieve_rental_car_config Structure Chart ...118

Figure 75 - config_add_ok (rental) Structure Chart ..119

Figure 76 - ksmg_create_rental_car_config_file Structure Chart...121

Traveler Information Kiosk System Design Documentx

Figure 77 - config_modify_ok (rental) Structure Chart ...122

Figure 78 - save_table (rental) Structure Chart...124

Figure 79 - ksmg_write_rental_car_config_fil Structure Chart..125

Figure 80 - ksmg_store_rental_car_config_fil Structure Chart ..126

Figure 81 - configure_screen_saver Structure Chart ...127

Figure 82 - ss_config_init Structure Chart..129

Figure 83 - ksmg_read_ss_config_file Structure Chart ...131

Figure 84 - ADD_SS_LIST_ITEM Structure Chart ...133

Figure 85 - config_add_ok (ss) Structure Chart ..134

Figure 86 - VALIDATE_DISPLAY_TIME Structure Chart...136

Figure 87 - VALIDATE_SS_FILE Structure Chart..137

Figure 88 - COPY_SS_FILES Structure Chart ..138

Figure 89 - FILE_BASE_NAME Structure Chart ..140

Figure 90 - ksmg_create_ss_config_file Structure Chart ...141

Figure 91 - config_modify_cancel (ss) Structure Chart ...142

Figure 92 - config_modify_ok (ss) Structure Chart...143

Figure 93 - modify_entry (ss) Structure Chart ..144

Figure 94 - delete_entry (ss) Structure Chart ..145

Figure 95 - DELETE_SS_CONFIG_FILE Structure Chart ..146

Figure 96 - ksmg_delete_ss_config_file Structure Chart ...147

Figure 97 - save_table (ss) Structure Chart ..148

Figure 98 - ksmg_write_ss_config_file Structure Chart ..150

Figure 99 - configure_kiosk Structure Chart...152

Figure 100 - kiosk_config_init Structure Chart...154

Figure 101 - ksmg_read_kiosk_config_file Structure Chart...156

Figure 102 - ADD_KIOSK_LIST_ITEM Structure Chart..158

Traveler Information Kiosk System Design Documentxi

Figure 103 - config_add_ok (Kiosk) Structure Chart ..159

Figure 104 - VALIDATE_KIOSK_NAME_STRING Structure Chart161

Figure 105 ksmg_create_kiosk_config_file Structure Chart ..162

Figure 106 - config_modify_ok (Kiosk) Structure Chart ...163

Figure 107 - save_table (Kiosk) Structure Chart...164

Figure 108 - ksmg_write_kiosk_config_file Structure Chart ...166

Figure 109 - add_entry Structure Chart ..168

Figure 110 - config_add_cancel Structure Chart...169

Figure 111 - modify_entry Structure Chart...170

Figure 112 - config_modify_cancel Structure Chart..171

Figure 113 - delete_entry Structure Chart...172

Figure 114 - ksmg_delete_widget Structure Chart ..173

Figure 115 - ksmg_disconnect_from_dsif Structure Chart...174

Figure 116 - exit_application Structure Chart...175

Figure 117 - DSIF Data Flows...177

Figure 118 - kiosk_dsif_main Structure Chart ..180

Figure 119 - kiosk_dsif_cleanup Structure Chart..182

Figure 120 - send_heartbeat_pulse Structure Chart...183

Figure 121 - initialize_kiosk_dsif Structure Chart...184

Figure 122 - sigalm_handler Structure Chart ..185

Figure 123 - respond_to_read_sockets Structure Chart ...186

Figure 124 - receive_dsif_message Structure Chart ..188

Figure 125 - disconnect_receive_socket Structure Chart ...189

Figure 126 - send_data_server_message Structure Chart ..190

Figure 127 - send_heartbeat_message Structure Chart..192

Figure 128 - send_write_file_message Structure Chart ...193

Traveler Information Kiosk System Design Documentxii

Figure 129 - send_ds_return_status Structure Chart ...194

Figure 130 - send_ds_return_message Structure Chart ...195

Figure 131 - send_write_equip_status_message Structure Chart ...196

Figure 132 - send_delete_file_message Structure Chart ..197

Figure 133 - send_file_time_message Structure Chart...198

Figure 134 - send_get_file_type_time_message Structure Chart..200

Figure 135 - send_read_file_message Structure Chart...201

Figure 136 - kiosk_dsif_connect Structure Chart ..203

Figure 137 - kiosk_dsif_delete_file Structure Chart ..204

Figure 138 - kiosk_dsif_disconnect Structure Chart..205

Figure 139 - kiosk_dsif_get_file_time Structure Chart..206

Figure 140 - kiosk_dsif_get_file_type_time Structure Chart..207

Figure 141 - kiosk_dsif_read_file Structure Chart ..209

Figure 142 - kiosk_dsif_read_file_list Structure Chart..210

Figure 143 - kiosk_dsif_read_status Structure Chart ..211

Figure 144 - kiosk_dsif_read_timestamp Structure Chart..212

Figure 145 - kiosk_dsif_send_heartbeat Structure Chart ...213

Figure 146 - kiosk_dsif_write_equip_status Structure Chart ...214

Figure 147 - kiosk_dsif_write_file Structure Chart ...215

Figure 148 – Kiosk MC Main Data Flows..216

Figure 149 - Kiosk MC Main Structure Chart ..218

Figure 150 - catch signal Structure Chart ...220

Figure 151 - signal setup Structure Chart ...221

Figure 152 - initialize field unit data Structure Chart ..222

Figure 153 - log error Structure Chart..223

Figure 154 - load directory data server Structure Chart ..224

Traveler Information Kiosk System Design Documentxiii

Figure 155 - load directory filesystem Structure Chart..225

Figure 156 - init kiosk connection Structure Chart..226

Figure 157 - update files pending Structure Chart...226

Figure 158 - update filecount Structure Chart...227

Figure 159 - load kiosk cfgs Structure Chart ..228

Figure 160 - download files Structure Chart ...229

Figure 161 - send file Structure Chart ..230

Figure 162 - request heartbeat Structure Chart ...231

Figure 163 - update files Structure Chart..232

Figure 164 - update directory data server structure chart ..233

Figure 165 - update directory filesystem Structure Chart ..234

Figure 166 - process heartbeat Structure Chart...235

Figure 167 - close kiosk connection Structure Chart ...236

Figure 168 - update paper disk stats Structure Chart ..236

Figure 169 - check for ping Structure Chart ...237

Figure 170 - init kiosk connection Structure Chart..238

Figure 171 - close kiosk connection Structure Chart ...239

Figure 172 - save kiosk cfgs Structure Chart ..240

Figure 173 - initialize field unit status Structure Chart..241

Figure 174 - send field unit status Structure Chart..242

Figure 175 – Transfer Data Files Data Flows...243

Figure 176 - Transfer Data File Main Structure Chart..244

Figure 177 - signal setup Structure Chart ...246

Figure 178 - save timestamps Structure Chart ..246

Figure 179 - update files Structure Chart..247

Figure 180 - update directory filesystem Structure Chart ..248

Traveler Information Kiosk System Design Documentxiv

Figure 181 - update directory dataserver Structure Chart..249

Figure 182 - initialize read timestamps Structure Chart ..250

Figure 183 - send heartbeat Structure Chart ...251

Figure 184. Kiosk Field Unit High Level Design and Data Flows...252

Figure 185 – Startup/Error Events and Event Triggers Structure Chart.....................................253

Figure 186 – Startup/Error Server Timer Events ..255

Figure 187 - Form Load Structure Chart ..257

Figure 188 - Data Arrival Structure Chart..258

Figure 189 - Check for New Data Structure Chart..260

Figure 190 - Perform Heartbeat Check Structure Chart ..267

Figure 191 - Build HB Stats File Structure Chart ...269

Figure 192 - Midnight Processing Structure Chart..270

Figure 193 - GUI Events and Event Triggers Structure Chart ...272

Figure 194 - Main Menu Screen Structure Chart ...274

Figure 195 - San Antonio Area Map Structure Chart 1 of 3..276

Figure 196 - San Antonio Area Map Structure Chart 2 of 3..277

Figure 197 - San Antonio Area Map Structure Chart 3 of 3..277

Figure 198 - Find Address Structure Chart...282

Figure 199 - Points of Interest List Structure Chart ..284

Figure 200 - Find Point of Interest Structure Chart...286

Figure 201 - Identify GUI Structure Chart..287

Figure 202 - Current Traffic GUI Structure Chart ..289

Figure 203 - Airport Data Screen Structure Chart ..290

Figure 204 - Airline Carriers Structure Chart ...292

Figure 205 - Rental Car Agency GUI Structure Chart ..294

Figure 206 - Airport Parking Fee GUI Structure Chart ...296

Traveler Information Kiosk System Design Documentxv

Figure 207 - San Antonio Weather Screen Structure Chart ...298

Figure 208 - Current Conditions GUI Structure Chart ..300

Figure 209 - Five Day Forecast GUI Structure Chart ...301

Figure 210 - VIA Transit Screen Structure Chart ...303

Figure 211 - VIA Bus Stop GUI Structure Chart..305

Figure 212 - VIA Select Route GUI Structure Chart...308

Figure 213 - VIA Display Route Schedule Structure Chart ...309

Figure 214 - VIA Information GUIs Structure Chart ..310

Figure 215 - Screen Saver Structure Chart ...312

Figure 216 –Real Time Data Process Events and Event Triggers ..314

Figure 217 - Real Time Form Load Structure Chart ...315

Figure 218 - MakeCrcTable Structure Chart ..317

Figure 219 - Serial OnComm Structure Chart ..317

Figure 220 - ProcessRTData Structure Chart ...318

Figure 221 - ProcessSTM Structure Chart ...319

Figure 222 - SendIncList Structure Chart...320

Figure 223 - ProcessTIM Structure Chart ..320

Figure 224 - ProcessLinkTIM Structure Chart ...321

Figure 225 - ProcessIncTIM Structure Chart..322

Figure 226 - AddIncToList Structure Chart..323

Figure 227 - ProcessLR Structure Chart ..324

Figure 228 - ProcessLRGlobPoint Structure Chart ...325

Figure 229 - ProcessLRGlobLink Structure Chart ..325

Figure 230 - ProcessLRLclPoint Structure Chart..326

Figure 231 – Modem Communications Events and Event Triggers..327

Figure 232 - Modem Comm Form Load Structure Chart ..331

Traveler Information Kiosk System Design Documentxvi

Figure 233 - Heartbeat Timer Structure Chart ..332

Figure 234 - MapMatch Structure Chart ..334

Figure 235 - DrawScrn Structure Chart ...336

Figure 236 - RightClk Structure Chart ...337

Figure 237 - Oldlnks Structure Chart ...338

Figure 238 - Drawdots Structure Chart ..339

Figure 239 - LoadLeft Structure Chart ...340

Figure 240 - Loadmap Structure Chart...341

Figure 241 - LoadRght Structure Chart..342

Figure 242 - Loadall Structure Chart ...343

Figure 243 - MakeTab Structure Chart ..343

Figure 244 - Loadtab Structure Chart ..344

Figure 245 - Drawname Structure Chart ..345

Figure 246 - MergeMap Structure Chart ..345

Figure 247 - Optimize Structure Chart ...346

Traveler Information Kiosk System Design Documentxvii

List of Tables

Table 1. - Physical Requirements ...7

Table 2. - Interface Requirements...8

Table 3. - Functional Requirements..9

Table 4. - Master Computer Interface Requirements...12

Table 5. - Master Computer Functional Requirements ..14

Table 6. - Kiosk Field Unit Interface Requirements...14

Table 7. - Kiosk Field Unit Functional Requirements..18

Table 8 - Kiosk Subsystems and Data Flows Description ...21

Table 9 - Kiosk Master Computer Resident Application and Data Flow Descriptions..................25

Table 10 - Detailed Status GUI Data Flow Descriptions ...27

Table 11 - Routines called by Kiosk teleuse_main ..28

Table 12 - Routines called by kdsg_main ...29

Table 13 - Routines called by INITIALLY...31

Table 14 - Routines called by BUILD_KIOSK_LIST...32

Table 15 - Routines called by count_kiosks ..33

Table 16 - Routines called by CREATE_KIOSK_INDICATOR ..35

Table 17 - Routines called by GET_UPDATE_RATE ...36

Table 18 - Routines called by periodic update...37

Table 19 - Routines called by UPDATE DETAILS..39

Table 20 - Routines called by UPDATE_INDICATOR..41

Table 21 - Routines called by UPDATE_USAGE ..42

Table 22 - Routines called by kiosk_download ...44

Table 23 - Routines called by set_kiosk_in_service...45

Traveler Information Kiosk System Design Documentxviii

Table 24 - Routines called by PERIODIC UPDATE ..47

Table 25 - Routines called by set_kiosk_out_of_service..48

Table 26 - Routines called by kiosk_ping ...49

Table 27 - Routines called by UPDATE_STATUS ..51

Table 28 - Routines called by update_status ...52

Table 29 – Kiosk System Maintenance GUI Data Flows...54

Table 30 - Routines called by ksmg (teleuse_main)...56

Table 31 - Routines called by ksmg_main ..57

Table 32 - Routines called by kmsg_load_cfg...58

Table 33 - Routines called by INITIALLY...59

Table 34 - Routines called by ksmg_application_init ..61

Table 35 - Routines called by DISPLAY_ERROR_MESSAGE ...62

Table 36 - Routines called by display_error_message ...63

Table 37 - Routines called by ksmg_connect_to_dsif ..64

Table 38 - Routines called by INITIALLY (Kiosk) ..65

Table 39 - Routines called by BUILD_KIOSK_CONFIG_ENTRY_STRING66

Table 40 - Routines called by INITIALLY (Parking)..67

Table 41 - Routines called by BUILD_PARKING_CONFIG_ENTRY_STR..............................68

Table 42 - Routines called by INITIALLY (airline)..69

Table 43 - Routines called by BUILD_AIRLINE_CONFIG_ENTRY_STR70

Table 44 - Routines called by INITIALLY (rental)...71

Table 45 - Routines called by BUILD_RENTAL_CAR_CONFIG_ENTRY_ST72

Table 46 - Routines called by INITIALLY (screensaver)..73

Table 47 - Routines called by BUILD_SS_CONFIG_ENTRY_STRING74

Table 48 - Routines called by configure_airlines...76

Table 49 - Routines called by airline_config_init ..78

Traveler Information Kiosk System Design Documentxix

Table 50 - Routines called by display_question ..79

Table 51 - Routines called by ksmg_read_airline_config_file..81

Table 52 - Routines called by ADD_AIRLINE_LIST_ITEM ...82

Table 53 - Routines called by ksmg_retrieve_airline_config_file ...83

Table 54 - Routines called by config_add_ok (airline) ..85

Table 55 - Routines called by VALIDATE_PHONE_STRING ..86

Table 56 - Routines called by ksmg_create_airline_config_file ...87

Table 57 - Routines called by config_modify_ok (airline) ...89

Table 58 - Routines called by save_table (airline)...90

Table 59 - Routines called by ksmg_write_airline_config_file...92

Table 60 - Routines called by ksmg_store_airline_config_file ...93

Table 61 - Routines called by configure_airport_parking..94

Table 62 - Routines called by parking_config_init ..96

Table 63 - Routines called by ksmg_read_parking_config_file..98

Table 64 - Routines called by ADD_PARKING_LIST_ITEM ...99

Table 65 - Routines called by ksmg_retrieve_parking_config_file ...100

Table 66 - Routines called by config_add_ok (parking) ..102

Table 67 - Routines called by VALIDATE_DOLLAR_AMOUNT...103

Table 68 - Routines called by ksmg_create_parking_config_file ...104

Table 69 - Routines called by config_modify_ok (parking) ...106

Table 70 - Routines called by save_table (parking)...107

Table 71 - Routines called by ksmg_write_parking_config_file...109

Table 72 - Routines called by ksmg_store_parking_config_file ...110

Table 73 - Routines called by configure_rental_car ..111

Table 74 - Routines called by rental_car_config_init ..114

Table 75 - Routines called by ksmg_read_rental_car_config_file ..116

Traveler Information Kiosk System Design Documentxx

Table 76 - Routines called by ADD_RENTAL_CAR_LIST_ITEM ...117

Table 77 - Routines called by ksmg_retrieve_rental_car_config ..118

Table 78 - Routines called by config_add_ok (rental) ...120

Table 79 - Routines called by ksmg_create_rental_car_config_file..121

Table 80 - Routines called by config_modify_ok (rental) ..123

Table 81 - Routines called by save_table (rental)..124

Table 82 - Routines called by ksmg_write_rental_car_config_fil...126

Table 83 - Routines called by ksmg_store_rental_car_config_fil...127

Table 84 - Routines called by configure_screen_saver ..128

Table 85 - Routines called by ss_config_init...130

Table 86 - Routines called by ksmg_read_ss_config_file ..132

Table 87 - Routines called by ADD_SS_LIST_ITEM..133

Table 88 - Routines called by config_add_ok (ss) ...135

Table 89 - Routines called by VALIDATE_DISPLAY_TIME ...136

Table 90 - Routines called by VALIDATE_SS_FILE ..137

Table 91 - Routines called by COPY_SS_FILES ...139

Table 92 - Routines called by FILE_BASE_NAME ...140

Table 93 - Routines called by ksmg_create_ss_config_file..141

Table 94 - Routines called by config_modify_cancel (ss) ..142

Table 95 - Routines called by config_modify_ok (ss)..143

Table 96 - Routines called by modify_entry (ss) ...144

Table 97 - Routines called by delete_entry (ss) ...145

Table 98 - Routines called by DELETE_SS_CONFIG_FILE...146

Table 99 - Routines called by ksmg_delete_ss_config_file ..148

Table 100 - Routines called by save_table (ss) ...149

Table 101 - Routines called by ksmg_write_ss_config_file ...151

Traveler Information Kiosk System Design Documentxxi

Table 102 - Routines called by configure_kiosk..152

Table 103 - Routines called by kiosk_config_init..155

Table 104 - Routines called by ksmg_read_kiosk_config_file ...157

Table 105 - Routines called by ADD_KIOSK_LIST_ITEM...158

Table 106 - Routines called by config_add_ok (Kiosk) ...160

Table 107 - Routines called by VALIDATE_KIOSK_NAME_STRING161

Table 108 - Routines called by ksmg_create_kiosk_config_file ...162

Table 109 - Routines called by config_modify_ok (Kiosk) ..164

Table 110 - Routines called by save_table (Kiosk)..165

Table 111 - Routines called by ksmg_write_kiosk_config_file ..167

Table 112 - Routines called by add_entry...168

Table 113 - Routines called by config_add_cancel..169

Table 114 - Routines called by modify_entry..170

Table 115 - Routines called by config_modify_cancel...171

Table 116 - Routines called by delete_entry..172

Table 117 - Routines called by ksmg_delete_widget ...173

Table 118 - Routines called by ksmg_disconnect_from_dsif ...174

Table 119 - Routines called by exit_application..175

Table 120 – DSIF Data Flow Descriptions...178

Table 121 - Routines called by kiosk_dsif_main ...181

Table 122 - Routines called by kiosk_dsif_cleanup...183

Table 123 - Routines called by send_heartbeat_pulse ...184

Table 124 - Routines called by initialize_kiosk_dsif..185

Table 125 - Routines called by sigalm_handler...185

Table 126 - Routines called by respond_to_read_sockets..187

Table 127 - Routines called by receive_dsif_message ...188

Traveler Information Kiosk System Design Documentxxii

Table 128 - Routines called by disconnect_receive_socket ..189

Table 129 - Routines called by send_data_server_message ...191

Table 130 - Routines called by send_heartbeat_message...192

Table 131 - Routines called by send_write_file_message ..193

Table 132 - Routines called by send_ds_return_status ..194

Table 133 - Routines called by send_ds_return_message ..195

Table 134 - Routines called by send_write_equip_status_message ..197

Table 135 - Routines called by send_delete_file_message ...198

Table 136 - Routines called by send_file_time_message ...199

Table 137 - Routines called by send_get_file_type_time_message...201

Table 138 - Routines called by send_read_file_message ...202

Table 139 - Routines called by kiosk_dsif_connect ...203

Table 140 - Routines called by kiosk_dsif_delete_file ...204

Table 141 - Routines called by kiosk_dsif_disconnect...205

Table 142 - Routines called by kiosk_dsif_get_file_time...206

Table 143 - Routines called by kiosk_dsif_get_file_type_time ..208

Table 144 - Routines called by kiosk_dsif_read_file ...210

Table 145 - Routines called by kiosk_dsif_read_file_list...211

Table 146 - Routines called by kiosk_dsif_read_status ...211

Table 147 - Routines called by kiosk_dsif_read_timestamp ..212

Table 148 - Routines called by kiosk_dsif_send_heartbeat..213

Table 149 - Routines called by kiosk_dsif_write_equip_status..214

Table 150 - Routines called by kiosk_dsif_write_file ..216

Table 151 - Routines called by Kiosk MC Main...220

Table 152 - Routines Called by catch signal ...221

Table 153 - Routines called by signal setup..221

Traveler Information Kiosk System Design Documentxxiii

Table 154 - Routines called by initialize field unit data ...223

Table 155 - Routines called by log error...223

Table 156 - Routines Called by load directory data server ..224

Table 157 - Routines Called by load directory filesystem..225

Table 158 - Routines called by init kiosk connection...226

Table 159 - Routines called by update files pending..227

Table 160 - Routines called by update filecount..227

Table 161 - Routines called by load kiosk cfgs ...228

Table 162 - Routines called by download files ..229

Table 163 - Routines called by send file ...231

Table 164 - Routines called by request heartbeat ..232

Table 165 - Routines called by update files ..232

Table 166 - Routines Called by update directory dataserver..233

Table 167 - Routines Called by update directory filesystem ..234

Table 168 - Routines called by process heartbeat..235

Table 169 - Routines called by close kiosk connection ..236

Table 170 - Routines called by update paper disk stats ...237

Table 171 - Routines called by check for ping ..238

Table 172 - Routines called by init kiosk connection...238

Table 173 - Routines called by close kiosk connection ..239

Table 174 - Routines called by save kiosk cfgs ...240

Table 175 - Routines Called by initialize field unit status..241

Table 176 - Routines Called by send field unit status..242

Table 177 - Routines called by Transfer Data File Main...245

Table 178 - Routines called by signal setup..246

Table 179 - Routines called by save timestamps ...247

Traveler Information Kiosk System Design Documentxxiv

Table 180 - Routines called by update files ..247

Table 181 - Routines called by update directory filesystem ...248

Table 182 - Routines called by update directory dataserver...249

Table 183 - Routines called by initialize read timestamps ...250

Table 184 - Routines called by send heartbeat ..251

Table 185 - Startup/Error Events and Event Triggers Descriptions ...254

Table 186 - Startup/Error Server Timer Event Descriptions..256

Table 187 - Routines called by Form Load...258

Table 188 - Routines called by Data Arrival...259

Table 189 - Routines called by Check for New Data...261

Table 190. Airline Data Fields ..265

Table 191. Rental Car Agency Data Fields..265

Table 192. Airport Parking Fee Data Fields ..265

Table 193 – Screensaver Control File Data Fields ..266

Table 194 - Routines called by Perform Heartbeat Check ...268

Table 195 - Routines called by Build HB Stats File ..270

Table 196 - Routines called by Midnight Processing...271

Table 197 - GUI Events and Event Triggers Descriptions ...273

Table 198 - Routines called by Main Menu Screen...274

Table 199 - Routines called by San Antonio Area Map...281

Table 200 - Routines called by Find Address..284

Table 201 - Routines called by Points of Interest List ...285

Table 202 - Routines called by Find Point of Interest..286

Table 203 - Routines called by Identify GUI...288

Table 204 - Routines called by Current Traffic GUI...289

Table 205 - Routines called by Airport Data Screen ...291

Traveler Information Kiosk System Design Documentxxv

Table 206 - Routines called by Airline Carriers ..293

Table 207 - Routines called by Rental Car Agency GUI ...295

Table 208 - Routines called by Airport Parking Fee GUI..297

Table 209 - Routines called by San Antonio Weather Screen ..299

Table 210 - Routines called by Current Conditions GUI ...301

Table 211 - Routines called by Five Day Forecast GUI ..302

Table 212 - Routines called by VIA Transit Screen ..304

Table 213 - Routines called by VIA Bus Stop GUI...307

Table 214 - Routines called by VIA Select Route GUI..308

Table 215 - Routines called by VIA Display Route Schedule ..309

Table 216 - Routines called by VIA Generic Information GUI ..312

Table 217 - Routines called by Screen Saver ..313

Table 218 – Real Time Data Process Event and Event Triggers Description315

Table 219 - Routines called by Real Time Form Load ..316

Table 220 - Routines called by MakeCrcTable ...317

Table 221 - Routines called by Serial OnComm ...318

Table 222 - Routines called by ProcessRTData ..318

Table 223 - Routines called by ProcessSTM ..319

Table 224 - Routines called by SendIncList..320

Table 225 - Routines called by ProcessTIM ...321

Table 226 - Routines called by ProcessLinkTIM ..322

Table 227 - Routines called by ProcessIncTIM ..323

Table 228 - Routines called by AddIncToList...323

Table 229 - Routines called by ProcessLR ...324

Table 230 - Routines called by ProcessLRGlobPoint ..325

Table 231 - Routines called by ProcessLRGlobLink...326

Traveler Information Kiosk System Design Documentxxvi

Table 232 - Routines called by ProcessLRLclPoint ..326

Table 233 - Modem Communications Events and Event Triggers Descriptions..........................330

Table 234 - Routines called by Modem Comm Form Load ...331

Table 235 - Routines called by Heartbeat Timer...332

Table 236 - Routines called by MapMatch ...335

Table 237 - Routines called by DrawScrn ..337

Table 238 - Routines called by RightClk ..337

Table 239 - Routines called by Oldlnks ..338

Table 240 - Routines called by Drawdots ...339

Table 241 - Routines called by LoadLeft..340

Table 242 - Routines called by Loadmap..341

Table 243 - Routines called by LoadRght...342

Table 244 - Routines called by Loadall ..343

Table 245 - Routines called by MakeTab ...344

Table 246 - Routines called by Loadtab ...344

Table 247 - Routines called by Drawname ...345

Table 248 - Routines called by MergeMap ...346

Table 249 - Routines called by Optimize ..346

Traveler Information Kiosk System Design Documentxxvii

Acronym List
ASCII American Standard Code for Information Interchange
ATM Automated Teller Machine
ATMS Advanced Traffic Management System
BMP Bit Map Picture
CD-ROM Compact Disk-Read Only Memory
CPU Central Processing Unit
CRC Cyclic Redundancy Check
DSIF Data Server Interface
ECR Engineering Change Request
EMI Electromagnetic Interference
ESRI Environmental Systems Research Institute
FCC Federal Communications Commission
FM Frequency Modulation
FMSTIC FM Subcarrier Traffic Information Channel
FU Field Unit
GB Gigabyte
GIF Graphics Interchange Format
GIS Geographic Information System
GUI Graphical User Interface
ITS Intelligent Transportation Systems
IVN In-Vehicle Navigation
JPEG Joint Photographic Experts Group
KFU Kiosk Field Unit
KMC Kiosk Master Computer
LAN Local Area Network
LR Location Reference
MB Megabyte
MC Master Computer
MDI Model Deployment Initiative
MHz MegaHertz
MO MapObjects
NavTech Navigation Technologies
NT New Technology
RAM Random Access Memory
RFO Request For Offer
RISC Reduced Instruction Set Computer
SCSI Small Computer Systems Interface
STM Size Transmission Message
SwRI Southwest Research Institute
TBD To Be Determined
TCP Transmission Control Protocol
TCP/IP Transmission Control Protocol/Internet Protocol
TDD Telecommunications Device for the Deaf
TIFF Tagged Image File Format
TIM Traffic Information Message
TxDOT Texas Department of Transportation
UL Underwriters Laboratories

Traveler Information Kiosk System Design Document1

Kiosk Traveler Information System

System Design Document

1. Introduction

The Traveler Information Kiosk Project involves the development and deployment of interactive traveler
information Kiosk Field Units throughout the City of San Antonio. The principal function of these field
units is to provide multi-modal traffic information to assist users who travel in San Antonio. Individual
field units are composed of a computer, touch-screen monitor, and printer, enclosed in a protective housing.
A Kiosk Field Unit will be located in areas such as a shopping mall, tourist attraction, or business.

1.1 Purpose of the System

The main purpose of the Kiosk System is to provide the public with readily accessible, useful and timely
travel information that has been obtained from a variety of sources. Users of the Kiosk System are able to
request area maps, route guidance information, real-time travel conditions, weather updates, VIA transit
information, and information relating to the San Antonio International Airport.

1.2 Operational Concept

The operational concept that motivates the development of the Traveler Information Kiosk System is a need
to disseminate information from a wide variety of data sources to the traveling public. The Kiosk System
provides a focal point for the acquisition of this information and a convenient and easily used medium for
its distribution. Users interact with the Kiosk System using touch-screen monitors and are able to request
informative computer generated displays as well printed hardcopies of the requested information. Figure 1
shows the basic flow of information from the individual data sources to users of the Kiosk system.

Traveler Information Kiosk System Design Document2

Kiosk User

Kiosk Field Unit
Touch Screen Monitor

CPU

Memory

Printer

Modem

FM Receiver

FM STIC

Modem

ModemModem
Kiosk Master Computer

Data Server

VIA Airport Weather Real-Time

Figure 1 - General Kiosk System Data Flow

1.3 Goals and Objectives

The goal of the Kiosk system is to provide the traveling public with computer generated displays or printed
hardcopies of the following types of information:

• San Antonio street map
• route guidance
• real-time traffic conditions
• weather
• VIA
• airport

1.4 Referenced Documents

Southwest Research Institute, Proposal for the Model Deployment Initiative System Integration, SwRI
Proposal No. 10-20342, November 1996.

Texas Department of Transportation, Request for Offer (RFO) for the Model Deployment Initiative
System Integration, 60115-7-70030, Specification No. TxDOT 795-SAT-01, October 1996.

Southwest Research Institute, Traveler Information Kiosk Model Deployment Initiative Preliminary
Design Document Version 1.0, February 14, 1997.

Southwest Research Institute, In-vehicle Navigation System Model Deployment Initiative Design
Document, January 1998.

Traveler Information Kiosk System Design Document3

Southwest Research Institute, Data Server Model Deployment Initiative Software Design Document
Version 1.0, December 1997.

Southwest Research Institute, Common Code Model Deployment Initiative Design Document Version 1.0,
January 1998.

2. External Interfaces

The Kiosk system has seven External Interfaces as depicted in Figure 2. These interfaces are described
below.

0

KIOSK

Process
Status
GUI

Data
Server

Subsystem
Status
Logger

TransGuide
Personnel

Subsystem
Process
Control

Subsystem
Heartbeat
Management

General
Public

Display Detailed
Status

Data Files

Most Severe
Process Status

Subsystem
Heartbeat

GUIs

User Commands

Equipment
Status

Status Log
Message

Start Process

Stop Process

Process
Heartbeat

File Times

Field Unit
GUIs

Figure 2 - Kiosk External Interfaces

Traveler Information Kiosk System Design Document4

2.1 TransGuide Personnel

TransGuide Personnel represent the operations and system administration personnel assigned to the
TransGuide ATMS. These are the end-users of the Kiosk Master Computer subsystem and will interact
with the Kiosk Master Computer subsystem via graphical user interfaces associated with the Detailed
Status and System Maintenance GUIs.

2.2 Process Status GUI

Process Status GUI is the graphical user interface providing the visual description of each of the processes
within the subsystem. The user has the ability to stop and start processes as configured by the status GUI.
The user can also invoke the detailed status GUI of the subsystem from the Process Status GUI. The
detailed status GUI can provide information about field equipment associated with the subsystem or other
information of importance.

2.3 Data Server

Data Server is the central repository of information generated and maintained by the MDI subsystems. The
Kiosk Master Computer subsystem sends weather and transit (VIA) data to the Data Server. The Data
Server also receives the subsystem-level heartbeat which includes the overall status of the Kiosk Master
Computer subsystem.

2.4 Subsystem Status Logger

Subsystem Status Logger is the process responsible for logging status information to a log file. A log file
for each day of the week is maintained. These log files are kept only for the current week.

2.5 General Public

The end users of the Kiosk Field Units.

2.6 Subsystem Heartbeat Management

Subsystem Heartbeat Management receives all the process-level heartbeat messages and maintains the
current status information for the subsystem. The most severe process-level status is sent periodically to
the Data Server through the subsystem's Data Server Interface.

2.7 Subsystem Process Control

Subsystem Process Control is responsible for starting and automatically restarting the processes associated
with the Kiosk Master Computer subsystem.

3. System Requirements

The following sections contain the system requirements for the Traveler Information Kiosk System. The
requirements are organized by level and category. The levels that are defined in this document are general,
system, subsystem, and component. General requirements are non-technical requirements that apply to the
program in general. System requirements apply to the system level of the Traveler Information Kiosk
System. Subsystem requirements apply to the subsystem design elements that are documented in the
Subsystem Level Design section of this document.

Traveler Information Kiosk System Design Document5

The categories of requirements that are defined are general, interface, functional, performance, physical,
and miscellaneous. If there are no requirements of a particular category at a particular level, there is no
reference to that category at that level. Each of these categories are described below.

• Interface requirements describe the interface between the system and external systems (e.g., the
user interface).

• Functional requirements describe the operations which the system must perform (e.g.,
initialize, acquire data).

• Physical characteristic requirements describe physical constraints of the system (e.g.,
maximum size, minimum weight).

In addition to the categories described above, there are three types of requirements presented in these
sections: MDI RFO requirements, SwRI MDI proposal requirements, and derived requirements. Where a
conflict exists, the SwRI MDI Proposal requirements supersede the MDI RFO requirements. In these
cases, only the SwRI MDI Proposal requirements are documented. Derived requirements are generated by
analysis of the existing requirements.

Several notations are used in the following tables. The requirement number is a three-part number that is
used to uniquely identify each requirement. The number consists of the following fields:

<System Mnemonic>-<Requirement Category Mnemonic>-<Requirement Number>

System Mnemonic

The system mnemonic uniquely identifies the Traveler Information Kiosk System to distinguish its
requirements from the requirements of the other MDI systems. The system mnemonic for the
Traveler Information Kiosk System is KSK.

Requirement Category Mnemonic

A mnemonic has been created for each of the requirement categories. They are GN - general, IF -
interface, FN - functional, PF - performance, PY - physical, and MS - miscellaneous.

Requirement Number

The requirements are numbered sequentially within a given category. The requirements at the
system level each have a single requirement number. As requirements are derived at the subsystem
and component levels, additional numbers are added to show the relationship between
requirements. For example, requirement KSK-IF-1 at the system level may have two children at
the subsystem level, KSK-IF-1.1 and KSK-IF-1.2. With this numbering scheme it is easy to
determine a requirement’s parent and the level of the requirement.

Each of these requirements are further documented in Section 5 in the traceability matrix. For each
requirement, the matrix contains traceability information to show the relationship between the requirement
and other requirements, design elements, and the Acceptance Test Plan (ATP).

Traveler Information Kiosk System Design Document6

3.1 System Level Requirements

The requirements listed below are the system level requirements for the MDI Kiosk System.

3.1.1 Physical Requirements

The physical requirements for the Kiosk System are listed below in Table 1.

Number Requirement

KSK-PY-1 The Kiosk Master Computer shall be a Sun Microsystems Ultra SPARCStation with the
following configuration:

• 167 MHZ SPARC (RISC) CPU,
• 4.2 Gigabyte hard disk,
• 128 Megabytes RAM,
• Floppy Disk,
• CD-ROM,
• Turbo GX+ Graphics,
• 20 Inch color monitor,
• 8 port modem server (SCSI) attached,
• Dual Ethernet Interface, and
• Dual SCSI Channels.

 KSK-PY-2 The Indoor and Outdoor Kiosk Field Unit computers shall have, at a minimum, the
following configuration:

• Windows 95,
• 120 MHz processor clock speed,
• 32 MB RAM,
• 1.6 GB hard disk drive,
• 3.5 inch 1.44 MB floppy drive,
• 8X CD-ROM drive,
• 1 RS-232 asynchronous communication port,
• 1 bi-directional parallel port,
• 101 key enhanced keyboard,
• 2 button mouse, and
• an internal modem.

Traveler Information Kiosk System Design Document7

Number Requirement

 KSK-PY-4 The Indoor Kiosk shall include the following:

• Antenna/receiver assembly,
• Processor with keyboard,
• Touch-screen monitor,
• Speakers,
• Printer,
• Power strip,
• Cooling fan,
• UL & FCC certification,
• Rated to operate at an ambient temperature range from 60 to 85 degrees

Fahrenheit,
• Rated to operate at a non-condensing humidity range from 35 to 80 percent

relative humidity.

 KSK-PY-5 The Outdoor Kiosk shall include the following:

• Antenna/receiver assembly,
• Processor with keyboard,
• Touch-screen monitor,
• Speakers,
• Printer,
• Modem,
• Heating/cooling system,
• UL & FCC certification,
• Rated to operate at an ambient temperature range from -10 to 115 degrees

Fahrenheit,
• Rated to operate at a non-condensing humidity range from 20 to 100 percent

relative humidity.

 KSK-PY-6 The Indoor Kiosk enclosure shall be rated at the following environment specifications:

• Ambient temperature range of 60 to 85 degrees Fahrenheit.
• Non-condensing humidity range from 35 to 80 percent relative humidity.

 KSK-PY-7 The Outdoor Kiosk enclosure shall be rated at the following environment specifications:

• Ambient temperature range of –10 to 115 degrees Fahrenheit.
• Non-condensing humidity range from 20 to 100 percent relative humidity.

Table 1. - Physical Requirements

Traveler Information Kiosk System Design Document8

3.1.2 Interface Requirements

The Interface Requirements for the Kiosk System are listed in Table 2.

Number Requirement

KSK-IF-1 The Kiosk System shall interface with the Data Server.

KSK-IF-2 The Kiosk System shall interface with the In-Vehicle Navigation system data stream
being transmitted utilizing the STIC communication system for real-time traffic
conditions data.

KSK-IF-3 The Kiosk System shall interface with the weather data source.

KSK-IF-4 The Kiosk System shall interface with the airport data source.

KSK-IF-5 The Kiosk System shall interface with the VIA data source.

KSK-IF-6 The Kiosk System shall interface with screen saver data source(s).

KSK-IF-7 The Kiosk System shall interface with the Kiosk Field Units.

KSK-IF-8 The Kiosk System shall interface with the general public through a touchscreen, using a
Graphical User Interface.

Table 2. - Interface Requirements

3.1.3 Functional Requirements

The functional requirements for the Kiosk System are listed in Table 3.

Number Requirement

KSK-FN-1 The Kiosk System shall display the real-time traffic conditions of the
highways/roadways monitored by TransGuide.

KSK-FN-2 The Kiosk System shall display weather data.

KSK-FN-3 The Kiosk System shall display airport data.

KSK-FN-4 The Kiosk System shall display VIA data.

KSK-FN-5 The Kiosk System shall display screen saver (advertisements) files when the Kiosk is
not being accessed by a user.

KSK-FN-6 The Kiosk System shall provide system diagnostics.

KSK-FN-7 The Kiosk System shall provide route guidance.

Traveler Information Kiosk System Design Document9

Number Requirement

KSK-FN-8 The Kiosk System shall be capable of printing user selected items.

KSK-FN-9 The Kiosk System shall provide help to assist the user in the operation of the Kiosk
application.

KSK-FN-10 Kiosk System Startup.

Table 3. - Functional Requirements

3.2 Subsystem Level Requirements

The following sections describe the subsystem requirements for the Kiosk System. These requirements are
divided into two areas, Kiosk Master Computer and Kiosk Field Units.

3.2.1 Kiosk Master Computer

The following sections describe the Kiosk Master Computer interface and functional requirements.

3.2.1.1 Kiosk Master Computer Interface Requirements

The Kiosk Master Computer interface requirements are listed in Table 4.

Number Requirement

KSK-IF-1.1a The Kiosk System shall be capable of submitting the San Antonio area weather
conditions to the Data Server.

KSK-IF-1.1b The Kiosk System shall be capable of submitting the San Antonio area weather
forecast to the Data Server.

KSK-IF-1.1c The Kiosk System shall be capable of submitting the current San Antonio area radar
map to the Data Server.

KSK-IF-1.1d The Kiosk System shall be capable of retrieving the San Antonio area weather
conditions from the Data Server.

KSK-IF-1.1e The Kiosk System shall be capable of retrieving the San Antonio area weather
forecast from the Data Server.

KSK-IF-1.1f The Kiosk System shall be capable of retrieving the current San Antonio area radar
map from the Data Server.

KSK-IF-1.2a The Kiosk System shall be capable of submitting airline and airport terminal
information to the Data Server.

KSK-IF-1.2b The Kiosk System shall be capable of submitting airport rental agency information to
the Data Server.

Traveler Information Kiosk System Design Document10

Number Requirement

KSK-IF-1.2c The Kiosk System shall be capable of submitting airport parking lot information to
the Data Server.

KSK-IF-1.2d The Kiosk System shall be capable of retrieving airline and airport terminal
information from the Data Server.

KSK-IF-1.2e The Kiosk System shall be capable of retrieving airport rental agency information
from the Data Server.

KSK-IF-1.2f The Kiosk System shall be capable of retrieving airport parking lot information from
the Data Server.

KSK-IF-1.3a The Kiosk System shall be capable of submitting route schedules to the Data Server.

KSK-IF-1.3b The Kiosk System shall be capable of submitting standard and special fares to the
Data Server.

KSK-IF-1.3c The Kiosk System shall be capable of submitting park & ride locations to the Data
Server.

KSK-IF-1.3d The Kiosk System shall be capable of submitting special bus events and the
associated schedules to the Data Server.

KSK-IF-1.3e The Kiosk System shall be capable of submitting VIA handicapped bus dispatch
(VIATrans) services to the Data Server.

KSK-IF-1.3f The Kiosk System shall be capable of submitting general VIA information to the Data
Server.

KSK-IF-1.3g The Kiosk System shall be capable of submitting graphical displays of selected bus
routes data to the Data Server.

KSK-IF-1.3h The Kiosk System shall be capable of retrieving route schedules from the Data
Server.

KSK-IF-1.3i The Kiosk System shall be capable of retrieving standard and special fares from the
Data Server.

KSK-IF-1.3j The Kiosk System shall be capable of retrieving park & ride locations from the Data
Server.

KSK-IF-1.3k The Kiosk System shall be capable of retrieving special bus events and the associated
schedules from the Data Server.

KSK-IF-1.3l The Kiosk System shall be capable of retrieving VIA handicapped bus dispatch
(VIATrans) services from the Data Server.

Traveler Information Kiosk System Design Document11

Number Requirement

KSK-IF-1.3m The Kiosk System shall be capable of retrieving general VIA information from the
Data Server.

KSK-IF-1.3n The Kiosk System shall be capable of retrieving displays of selected bus routes data
from the Data Server.

KSK-IF-3.1a The Kiosk System shall be capable of retrieving the San Antonio area weather
conditions from the weather data source.

KSK-IF-3.1b The Kiosk System shall be capable of retrieving the San Antonio area weather
forecast from the weather data source.

KSK-IF-3.1c The Kiosk System shall be capable of retrieving the current San Antonio area radar
map data from the weather data source.

KSK-IF-4.1 The Kiosk Master Computer shall be capable of receiving airport terminal, airport
rental agency, and airport parking lot data from the airport data source.

KSK-IF-5.1a The Kiosk Master Computer shall be capable of receiving route schedules from the
VIA data source.

KSK-IF-5.1b The Kiosk Master Computer shall be capable of receiving standard and special fares
from the VIA data source.

KSK-IF-5.1c The Kiosk Master Computer shall be capable of receiving park & ride locations from
the VIA data source.

KSK-IF-5.1d The Kiosk Master Computer shall be capable of receiving special bus events and the
associated schedules from the VIA data source.

KSK-IF-5.1e The Kiosk Master Computer shall be capable of receiving VIA handicapped bus
dispatch (VIATrans) services from the VIA data source.

KSK-IF-5.1f The Kiosk Master Computer shall be capable of receiving general VIA information
from the VIA data source.

KSK-IF-5.1g The Kiosk Master Computer shall be capable of receiving graphical displays of
selected bus routes from the VIA data source.

KSK-IF-6.1 The Kiosk Master Computer shall be capable of receiving screen saver files.

KSK-IF-7.1a The Kiosk Master Computer shall be capable of transmitting the San Antonio area
weather conditions to the Kiosk Field Units.

KSK-IF-7.1b The Kiosk Master Computer shall be capable of transmitting the San Antonio area
weather forecast to the Kiosk Field Units.

Traveler Information Kiosk System Design Document12

Number Requirement

KSK-IF-7.1c The Kiosk Master Computer shall be capable of transmitting the current San Antonio
area radar map data to the Kiosk Field Units.

KSK-IF-7.2a The Kiosk Master Computer shall be capable of transmitting airport terminal data to
the Kiosk Field Units.

KSK-IF-7.2b The Kiosk Master Computer shall be capable of transmitting airport rental agency
data to the Kiosk Field Units.

KSK-IF-7.2c The Kiosk Master Computer shall be capable of transmitting airport parking lot data
to the Kiosk Field Units.

KSK-IF-7.3a The Kiosk Master Computer shall be capable of transmitting route schedules to the
Kiosk Field Units.

KSK-IF-7.3b The Kiosk Master Computer shall be capable of transmitting standard and special
fares, park & ride locations to the Kiosk Field Units.

KSK-IF-7.3c The Kiosk Master Computer shall be capable of transmitting special bus events and
the associated schedules to the Kiosk Field Units.

KSK-IF-7.3d The Kiosk Master Computer shall be capable of transmitting VIA handicapped bus
dispatch (VIATrans) services to the Kiosk Field Units.

KSK-IF-7.3e The Kiosk Master Computer shall be capable of transmitting general VIA information
to the Kiosk Field Units.

KSK-IF-7.3f The Kiosk Master Computer shall be capable of transmitting graphical displays of
selected bus routes data to the Kiosk Field Units.

KSK-IF-7.3g The Kiosk Master Computer shall be capable of transmitting park & ride locations to
the Kiosk Field Units.

KSK-IF-7.4 The Kiosk Master Computer shall be capable of transmitting screen saver files to the
Kiosk Field Units.

Table 4. - Master Computer Interface Requirements

Traveler Information Kiosk System Design Document13

3.2.1.2 Kiosk Master Computer Functional Requirements

The Kiosk Master Computer functional requirements are listed in Table 5.

Number Requirement

KSK-FN-5.1a The Kiosk Master Computer shall accept bitmap (.bmp) files for the displaying
of graphical displays on the Kiosk Field Unit.

KSK-FN-5.1b The Kiosk Master Computer shall accept wave (.wav) files for the playing of
audio files on the Kiosk Field Unit.

KSK-FN-5.1c The Kiosk Master Computer shall accept audio video interleaved (.avi) files for
playing video clips on the Kiosk Field Unit.

KSK-FN-6.1 A Kiosk Master Computer Diagnostic Status GUI shall be implemented that
displays the last known status of the Kiosk Field Units.

KSK-FN-6.2 The Kiosk Master Computer shall automatically interrogate the Kiosk Field
Units.

KSK-FN-6.3 The Kiosk Master Computer shall provide the capability to manually interrogate
individual Kiosk Field Units.

KSK-FN-6.4 The Kiosk Master Computer shall store the interrogation status results.

KSK-FN-6.6 The Kiosk Master Computer shall have the capability to download data and
screen saver files.

KSK-FN-6.7 The Kiosk Master Computer shall upload Kiosk Field Unit usage statistics.

KSK-FN-6.7a The Kiosk Master Computer shall upload Kiosk Field Unit statistics on the
number of times the Kiosk is used.

KSK-FN-6.7b The Kiosk Master Computer shall upload Kiosk Field Unit statistics on the
number of times the San Antonio Map is accessed.

KSK-FN-6.7c The Kiosk Master Computer shall upload Kiosk Field Unit statistics on the
number of times Airport information is accessed.

KSK-FN-6.7d The Kiosk Master Computer shall upload Kiosk Field Unit statistics on the
number of times Weather information is accessed.

KSK-FN-6.7e The Kiosk Master Computer shall upload Kiosk Field Unit statistics on the
number of times VIA Transit information is accessed.

KSK-FN-6.7f The Kiosk Master Computer shall upload Kiosk Field Unit statistics on the
number of times Route Guidance is accessed.

Traveler Information Kiosk System Design Document14

Number Requirement

KSK-FN-10.2 The Master Computer subsystem shall provide monitoring and restarting of its
applications.

Table 5. - Master Computer Functional Requirements

3.2.2 Kiosk Field Unit

The following sections describe the Kiosk Field Unit interface and functional requirements.

3.2.2.1 Kiosk Field Unit Interface Requirements

The Kiosk Field Unit Interface Requirements are listed in Table 6.

Number Requirement

KSK-IF-2.1 The Kiosk Field Unit shall receive the real-time traffic condition data broadcast from the
STIC communication network.

KSK-IF-8.1 The Kiosk Field Unit shall provide touchscreen interaction for users to interface with the
Map Display.

KSK-IF-8.2 The Kiosk Field Unit shall provide touchscreen interaction for users to interface with the
Transit Display.

KSK-IF-8.3 The Kiosk Field Unit shall provide touchscreen interaction for users to interface with the
Airport Display.

KSK-IF-8.4 The Kiosk Field Unit shall provide touchscreen interaction for users to interface with the
Weather Display.

KSK-IF-8.5 The Kiosk Field Unit shall provide touchscreen interaction for users to interface with the
Route Guidance Display.

Table 6. - Kiosk Field Unit Interface Requirements

3.2.2.2 Kiosk Field Unit Functional Requirements

The Kiosk Field Unit functional requirements are listed in Table 7.

Number Requirement

KSK-FN-1.2 The Kiosk Field Unit shall be capable of displaying real-time traffic data using a San
Antonio Map Display.

KSK-FN-1.3 The Kiosk Field Unit map shall display traffic conditions using color-coding.

KSK-FN-1.4 The Kiosk Field Unit map shall display incidents and lane closures utilizing icons.

Traveler Information Kiosk System Design Document15

Number Requirement

KSK-FN-1.5 The Kiosk Field Unit shall provide additional information about an incident or lane
closure when the respective icon is touched.

KSK-FN-1.7 The Kiosk Field Unit map shall display current airport traffic conditions for
instrumented sections of highway around the San Antonio International Airport.

KSK-FN-1.8 The Kiosk Field Unit map shall identify city streets, residential streets, and highways.

KSK-FN-1.9 The Kiosk Field Unit map shall have the capability to zoom in and out of the San
Antonio Street Map Display utilizing touch screen input.

KSK-FN-1.10 The Kiosk Field Unit map shall have the capability to pan the San Antonio Street Map
Display utilizing touch screen input.

KSK-FN-1.11 The Kiosk Field Unit map shall display icons indicating locations of automated teller
machines (ATMs), shopping centers, restaurants, gas stations, tourist attractions,
hospitals, schools, parks, airports, and bus stops.

KSK-FN-1.12 The Kiosk Field Unit San Antonio Street Map Display software shall integrate data
from the Navigation Technologies San Antonio Region database with real-time data
from the Data Server.

KSK-FN-1.13 The Kiosk Field Unit map real-time traffic conditions shall be updated at least every
five (5) minutes.

KSK-FN-2.1 The Kiosk Field Unit shall display the current San Antonio weather conditions.

KSK-FN-2.2 The Kiosk Field Unit shall display the local San Antonio forecast.

KSK-FN-2.3 The Kiosk Field Unit shall display a San Antonio area radar map.

KSK-FN-2.4 The Kiosk Field Unit current weather conditions shall be updated when updates are
provided by the weather data source.

KSK-FN-2.5 The Kiosk Field Unit San Antonio area radar map shall be updated when updates are
provided by the weather data source.

KSK-FN-2.6 The Kiosk Field Unit local San Antonio forecast shall be updated when updates are
provided by the weather data source.

KSK-FN-3.1 The Kiosk Field Unit shall display the traffic conditions for the sections of instrumented
highway that surround the airport.

KSK-FN-3.2 The Kiosk Field Unit shall display a listing of local airline names, their phone numbers
and the terminal in which they are located.

Traveler Information Kiosk System Design Document16

Number Requirement

KSK-FN-3.3 The Kiosk Field Unit shall display a listing of local rental car agencies and their phone
numbers located at the San Antonio International Airport.

KSK-FN-3.4 The Kiosk Field Unit shall display a listing of the location and cost of airport parking
lots.

KSK-FN-4.1 The Kiosk Field Unit shall display route schedules and graphical displays of the routes
that are available.

KSK-FN-4.2 The Kiosk Field Unit shall provide scheduled times for major bus stops on a selected
route.

KSK-FN-4.3 The Kiosk Field Unit shall display a description of standard and special fares.

KSK-FN-4.4 The Kiosk Field Unit shall display a description of park & ride locations.

KSK-FN-4.5 The Kiosk Field Unit shall display a description of special bus events and the
associated schedules.

KSK-FN-4.6 The Kiosk Field Unit shall display information about VIA handicapped bus dispatch
(VIATrans) services.

KSK-FN-4.7 The Kiosk Field Unit shall display general VIA information.

KSK-FN-5.2 The Kiosk Field Units shall be capable of receiving screen saver files from the Master
Computer and updating the existing screen saver.

KSK-FN-5.3 The Kiosk Field Units shall be capable of executing the screen saver.

KSK-FN-6.9 The Kiosk Field Unit shall be capable of reporting status to the Kiosk Master
Computer.

KSK-FN-6.10 The Kiosk Field Unit diagnostic software shall accept non-real-time file updates from
the Kiosk Master Computer.

KSK-FN-6.12 The Kiosk Field Unit shall keep usage statistics.

KSK-FN-6.12a The Kiosk Field Unit shall keep statistics on the number of times the Kiosk is used.

KSK-FN-6.12b The Kiosk Field Unit shall keep statistics on the number of times the San Antonio Map
is accessed.

KSK-FN-6.12c The Kiosk Field Unit shall keep statistics on the number of times Airport information is
accessed.

Traveler Information Kiosk System Design Document17

Number Requirement

KSK-FN-6.12d The Kiosk Field Unit shall keep statistics on the number of times Weather information
is accessed.

KSK-FN-6.12e The Kiosk Field Unit shall keep statistics on the number of times VIA Transit
information is accessed.

KSK-FN-6.12f The Kiosk Field Unit shall keep statistics on the number of times Route Guidance
information is accessed.

KSK-FN-7.1 The Kiosk Field Units shall convert the real-time traffic condition data stream into data
that can be interpreted by the Navigation Technologies database and the Route
Guidance application.

KSK-FN-7.2 The Kiosk Field Unit shall be capable of displaying route guidance using the
Navigation Technologies database.

KSK-FN-7.3 The Kiosk Field Unit shall provide a graphical display of the route from the kiosk's
location to the selected destination.

KSK-FN-7.4 The Kiosk Field Unit shall allow the user to ask for a route from the Kiosk Field Unit's
location to a selected Point of Interest.

KSK-FN-7.5 The Kiosk Field Unit shall allow the user to select their destination from a list of the
points of interest retrieved from the Navigation Technologies database.

KSK-FN-7.6 The Kiosk Field Unit shall allow the user to enter the address of the destination.

KSK-FN-7.7 The Kiosk Field Unit shall utilize a color-coded line segment on the San Antonio Street
Map to indicate the calculated route.

KSK-FN-7.8 The Kiosk Field Unit shall utilize real-time speed information to calculate travel time to
the selected destination.

KSK-FN-7.9 The Kiosk Field Unit shall display the estimated travel time and speed for the selected
route.

KSK-FN-7.10 The Kiosk Field Unit shall display turn-by-turn instructions for a calculated route.

KSK-FN-8.2 The Kiosk Field Unit shall be capable of printing the route map and instructions.

KSK-FN-8.3 The Kiosk Field Unit shall be capable of printing the transit information.

KSK-FN-8.4 The Kiosk Field Unit shall be capable of printing the airport information.

KSK-FN-8.5 The Kiosk Field Unit shall be capable of printing the local weather conditions, the local
forecast and the radar map.

Traveler Information Kiosk System Design Document18

Number Requirement

KSK-FN-8.6 The Kiosk Field Unit shall be capable of printing the route instructions and map.

KSK-FN-9.1 The Kiosk Field Unit shall provide Help buttons to provide information on how to use
the GUI currently displayed.

KSK-FN-10.3 The Kiosk Field Unit subsystem unattended applications shall automatically startup at
boot-up.

KSK-FN-10.4 The Kiosk Field Unit subsystem shall provide monitoring and restarting of its
applications.

Table 7. - Kiosk Field Unit Functional Requirements

Traveler Information Kiosk System Design Document19

4. System Design

The Kiosk System design is presented in the sections that follow. The design is presented by describing the
Kiosk System Architecture, the System Level Design, and the Kiosk Subsystem Design. The Kiosk design
is intended to describe the implementation of the requirements described earlier.

4.1 System Architecture

Conceptually, the Kiosk System Architecture is composed of the Master Computer and Kiosk Field Units.
Figure 3 depicts the System Architecture. The basic concept of the Kiosk System is that the Kiosk Master
Computer retrieves and distributes the data to the Kiosk Field Units and the Kiosk Field Units utilize the
data to display information to users. Physically, the Kiosk Master Computer is comprised of multiple
applications residing on multiple systems. These applications provide the necessary functions to retrieve
and distribute the data utilized by the Kiosk Field Units. In addition, the IVN Master Computer and the
Kiosk Master Computer physically resided on the same computer but are depicted separately to illustrate
the Kiosk System Architecture conceptually. The Kiosk Field Units application software is the same on
each Kiosk Field Unit. The application software utilizes configuration files located on the Kiosk Field Unit
to identify the specific information unique to each Kiosk.

Traveler Information Kiosk System Design Document20

Figure 3 - System Architecture

4.2 System Level Design

The Kiosk System Design is divided into the Kiosk Master Computer (KMC) Subsystem, the Kiosk Field
Unit (KFU) Subsystem and the MapMatch Application (builds translation table). The MapMatch
Application is an independent application that is used to develop the Translation Table used by the Kiosk
Field Units. The application is executed when a new Navigation Technologies data base is received and
needs to be distributed to the Kiosk Field Units. Since this application is executed infrequently and
provides an input file to the Kiosk system, the design is described in this document, but the application is
not considered part of the Kiosk system.

Traveler Information Kiosk System Design Document21

Figure 4 depicts the Kiosk System Design and the data flows between the KMC Subsystem and the KFU
Subsystem. Table 8 provides a description of the Kiosk subsystems and their associated data flows.

1.1

Master
Computer

1.2

Field
Unit

Via/Weather
Data Files

FM STIC Messages

FU Data Files

FU Statistics
File

Figure 4 - Kiosk Subsystems and Assoicated Data Flows

Function Description

Field Unit The Field Units provides the interface to the general public. The Field Unit provides a San Antonio street map,
route guidance to Points of Interest and specific addresses, airport information, weather information, and VIA
information. The Field Unit subsystem is composed of the Startup/Error Server Process, the Modem
Communications Process, the Real Time Process, and the GUI process.

FM STIC Messages The FM STIC Messages are broadcast by the In-Vehicle Navigation project and the structure of the messages
can be found in the In-Vehicle Navigation Design Document.

FU Data Files These files are received from the Master Computer and placed into the production directories. These files
include Transit files, Weather files, Airport files, and Screen Saver files.

FU Statistics File Contains the current status of the Field Unit and its usage statistics pertaining to user interaction with the Field
Unit.

Master Computer The Master Computer provides the capability to gather weather, VIA, airport, and screensaver data files,
transmit these data files to the Field Units, retrieve status data from the Field Units, interact with the user
through a GUI to view status information, and interact with the user through a GUI to modify airport files and
the screen saver control file.

Via/Weather Data Files These files are received from external sources. The VIA files are retrieved from an NT Server that is
maintained by VIA. The weather files are retrieved from the TxDOT Web Server. The weather files are placed
on the TxDOT Web Server by the weather provider on an hourly basis.

Table 8 - Kiosk Subsystems and Data Flows Description

Traveler Information Kiosk System Design Document22

4.2.1 Kiosk Master Computer Subsystem

The Kiosk Master Computer (KMC) Subsystem is comprised of multiple applications and functions
residing on multiple systems. The applications and functions combined together conceptually form the
KMC Subsystem. The KMC Subsystem consists of the Status GUI, Detailed Status GUI, System
Maintenance GUI, Status Logger, Data Server Interface (DSIF), Transfer Data Files, and Kiosk MC Main.
The Status GUI displays the current status of the Kiosk applications executing on the KMC. The Detailed
Status GUI, which is invoked from the Status GUI, displays the current state and detailed status
information for each Kiosk Field Unit. The System Maintenance GUI provides the capability to modify
airport files and the screensaver control file. The Status Logger logs messages sent to it from the other
kiosk applications executing on the KMC. The Data Server Interface provides the interface between the
Data Server and the kiosk applications executing on the KMC. The Transfer Data Files retrieves weather
and VIA data files from their respective sources and submits the files to the Data Server. This application
is resident on the Data Server Master Computer. The Kiosk MC Main retrieves data files from the Data
Server (through DSIF), transmits the data files to the Field Units, and retrieves status data from the Field
Units.

The KMC Subsystem also includes functions in the In-Vehicle Navigation application which retrieve and
broadcast the real-time traffic conditions to the Field Units. These functions are being implemented by the
In-Vehicle Navigation project. Figure 5 illustrates the conceptual makeup of the Kiosk Master Subsystem
and its applications.

1
Kiosk
Master
Computer

Process
Status
GUI

Subsystem
Heartbeat
Management

Subsystem
Process
Control

Subsystem
Status
Logger

Data
Server
Interface

Transfer
Files

Field
Unit
Interface

System
Maintenance
GUI

Detailed
Status
GUI

Figure 5 - Kiosk Master Computer Application Identification

Traveler Information Kiosk System Design Document23

Figure 6 illustrates the data flows for the applications residing on the KMC. Table 9 describes the
applications and data flows residing on the KMC.

0.1

kiosk_dsif

0.4

Kiosk
Detailed
Status
GUI

Kiosk
Equipment
Status

0.5

Kiosk
MC
Main

0.6

Kiosk
System
Maintenance
GUI

Kiosk
Field
Unit
Configuration

Display Detailed
Status

Most Severe
Process Status

Stop Process

Start Process

User Commands

Equipment
Status

Status Log
Message

Process
Heartbeat

Data Files

GUIs

Subsystem
Heartbeat

File Times
Data Files

Equipment
Status

File Times

Data Files

GUIs

User Commands

Figure 6 - Kiosk Master Computer Resident Applications and Data Flows

Traveler Information Kiosk System Design Document24

Function Description

Data Files Data Files are files that are stored at the Data Server and include files such as weather files, screen
saver files, and airport files.

Display Detailed Status Display Detailed Status is an event used to trigger the display of the subsystem's detailed status GUI.

Equipment Status Equipment Status is used to define the current state of different equipment. For the Kiosk subsystem
the Equipment Status is used to send the Kiosk Field Unit Equipment Status to the Data Server.

File Times File Times are the last update times associated with the Data Files stored at the Data Server.

GUIs GUIs are graphical user interfaces. These interfaces are used to communicate information from the
subsystem to the user and to allow the user to control certain aspects of the execution of the
subsystem.

Kiosk Detailed Status GUI Kiosk Detailed Status GUI is the graphical user interface providing the TransGuide personnel with the
ability to view the current status and data for the Kiosk Field Units being monitored by the Kiosk
subsystem. This GUI also allows the TransGuide personnel to modify the state of the Kiosk Field
Units and to request downloads to be made to the Kiosk Field Units.

Kiosk Equipment Status Kiosk Equipment Status defines the status information for each of the Kiosk Field Units. This
information includes the current state of the field unit, the number of files that need to be downloaded,
the current information about the field unit paper level, disk space, and user accesses as well as the
phone number and location of the field unit.

Kiosk Field Unit Configuration Kiosk Field Unit Configuration contains configuration data for each of the field units being monitored
by the Kiosk Subsystem. This file contains the location of the kiosk, the phone number of the kiosk,
and the name assigned to the kiosk.

Kiosk MC Main The Kiosk Master Computer Main Process is responsible for communicating with the Kiosk Field
Units.

Kiosk System Maintenance GUI Kiosk System Maintenance GUI is the graphical user interface providing the TransGuide personnel
with the ability to modify the data files associated with the Kiosk Field Units being monitored by the
Kiosk subsystem. These data files include the airport information files, the screen saver information
files, and the Kiosk Field Unit configuration files. The airport files and screen saver files are stored at
the Data Server. The Kiosk Field Unit configuration files are maintained locally on the Kiosk Master
Computer.

kiosk_dsif kiosk_dsif receives messages to be sent to the Data Server and sends these messages on to the
Data Server. The results of the interaction with the Data Server are sent back to the originator of the
message. This process represents the subsystem's single interface point to the Data Server. This
process periodically sends a heartbeat message containing the status of the process to the
subsystems heartbeat process.

Most Severe Process Status Most Severe Process Status is the value of the process status being managed by the Subsystem
Heartbeat Management that represents the worst status of all the processes. For example if all
processes indicated an ok status except one process indicated a warning status then the Most Severe
Process Status would be warning.

Process Heartbeat Process Heartbeat is the heartbeat pulse sent from each process within the subsystem. The Process
Heartbeat contains the status information for the process along with the process identifier.

Start Process Start Process is an event used to start the execution of a process.

Traveler Information Kiosk System Design Document25

Function Description

Status Log Message Status Log Message contains information to be logged to the subsystem log file. Typical Status Log
Messages include error messages such as memory allocation errors or data being logged from field
equipment associated with the subsystem.

Stop Process Stop Process is an event used to stop the execution of a process.

Subsystem Heartbeat Subsystem Heartbeat is the heartbeat message containing the overall status of the KIOSK
subsystem. This message is generated by the Subsystem Heartbeat Management process and is
passed on to the Data Server by the subsystem's Data Server Interface process.

User Commands User Commands are the commands selected by the user from the graphical user interfaces. These
commands are generated through push buttons, radio buttons, text boxes, and other user interface
components.

Table 9 - Kiosk Master Computer Resident Application and Data Flow Descriptions

4.2.1.1 Status GUI

The Status GUI was developed as part of the MDI common code. For design information about the Status
GUI consult the Common Code Model Deployment Initiative Design Document.

4.2.1.2 Detailed Status GUI

The Detailed Status GUI provides status information about each of the kiosk field units connected to the
Master Computer. Figure 7 depicts the data flows for the Detailed Status GUI. A description of the data
flows is provided in Table 10.

Traveler Information Kiosk System Design Document26

0.4.2

Update
Detailed
Status

0.4.1

Build
Detailed
Status

0.4.3

Delete
Detailed
Status

Detailed
Status
Update
Rate

0.4.4

Change
Equipment
Status

Kiosk Equipment
Status

Kiosk Equipment
Status

User Commands

Display Detailed
Status

GUIs

GUIs

Display Detailed
Status

GUIs

Kiosk Equipment
Status

User Commands

Display Detailed
Status

Figure 7 - Detailed Status GUI Data Flow

Traveler Information Kiosk System Design Document27

Function Description

Build Detailed Status Build Detailed Status is responsible for generating the initial graphical user interface displaying the
KIOSK subsystem detailed status. The detailed status includes the current status of each of the Kiosk
Field Units. The Kiosk Equipment Status is used to initially fill in the details of the GUI.

Change Equipment Status Change Equipment Status allows the user to modify the current state of a selected kiosk field unit.
This allows the user to take a field unit offline or to initiate a download of the kiosk field unit.

Delete Detailed Status Delete Detailed Status deletes the detailed status GUI from the display. This process is invoked when
the TransGuide personnel issue the "close" command for the detailed status GUI.

Detailed Status Update Rate Detailed Status Update Rate is the configuration item that specifies how often the contents of the
detailed status GUI are updated. This update rate is specified in seconds.

Display Detailed Status Display Detailed Status is an event used to trigger the display of the subsystem's detailed status GUI.

GUIs GUIs are graphical user interfaces. These interfaces are used to communicate information from the
subsystem to the user and to allow the user to control certain aspects of the execution of the
subsystem.

Kiosk Equipment Status Kiosk Equipment Status defines the status information for each of the Kiosk Field Units. This
information includes the current state of the field unit, the number of files that need to be downloaded,
the current information about the field unit paper level, disk space, and user accesses as well as the
phone number and location of the field unit.

Update Detailed Status Update Detailed Status is responsible for periodically updating the status information within the detailed
status GUI. The current Kiosk Equipment Status is read and used to display the status within the GUI.
The Detailed Status Update Rate is used to cause the periodic update of the GUI.

User Commands User Commands are the commands selected by the user from the graphical user interfaces. These
commands are generated through push buttons, radio buttons, text boxes, and other user interface
components.

Table 10 - Detailed Status GUI Data Flow Descriptions

The following subsections provide the detailed design for the Detailed Status GUI. Each subsection
contains a description of the routine, a structure chart of the routine and a table containing descriptions of
the components defined in the structure chart.

4.2.1.2.1 Kiosk teleuse_Main

This is the main routine of the Kiosk Detailed Status GUI. This routine is supplied by the TeleUSE UIMS
tool and is used as the entry point into the process. This routine is responsible for setting up any TeleUSE
specific environment and then invoking the application main routine followed by the INITIALLY events in
the associated D modules. The structure chart Kiosk teleuse_main is depicted in Figure 8. A description of
the routines called by Kiosk teleuse_main is provided in Table 11.

Traveler Information Kiosk System Design Document28

Kios
teleuse_m

ksksg_ma INITIAL

Figure 8 - Kiosk teleuse_main Structure Chart

Function Description

INITIALLY This D event is the first event invoked by the TeleUSE runtime environment. This event creates the top-level shell to
contain the detailed status information, sets the update rate for the GUI, and then starts the update process by
triggering the periodic_update event. Any errors during this event will cause tu_exit to be called to start a graceful
shutdown of the process.

ksksg_main This is the main routine of the Kiosk Detailed Status GUI. This routine is responsible for loading the configuration
information, configuring the shared memory manager library, and attaching to the field equipment shared memory
segments.

Table 11 - Routines called by Kiosk teleuse_main

4.2.1.2.2 kdsg_main

This is the main routine of the Kiosk Detailed Status GUI. This routine is responsible for loading the
configuration information, configuring the shared memory manager library, and attaching to the field
equipment shared memory segments. The structure chart for kdsg_main is depicted in Figure 9. A
description of the routines called by kdsg_main is provided in Table 12.

Traveler Information Kiosk System Design Document29

kdsg_main

cfg_load_configuration_data

cfg_get_value

atoi

attach_to_shared_memory

Figure 9 - kdsg_main Structure Chart

Function Description

atoi C Library Function to convert an ASCII string to an integer value.

attach_to_shared_memory An MDI Shared Memory Common Code function used to attach to a specified shared memory
segment. The segment id and size are used to attach to the segment.

cfg_get_value MDI Configuration File routine used to return the value of the specified configuration name.

cfg_load_configuration_data MDI Configuration File routine used to read the configuration name-value pairs from the specified
configuration file. These name-value pairs are loaded into memory so they can be accessed on
demand by the calling program.

Table 12 - Routines called by kdsg_main

Traveler Information Kiosk System Design Document30

4.2.1.2.3 INITIALLY

This D event is the first event invoked by the TeleUSE runtime environment. This event creates the top-
level shell to contain the detailed status information, sets the update rate for the GUI, and then starts the
update process by triggering the periodic_update event. Any errors during this event will cause tu_exit to
be called to start a graceful shutdown of the process. The structure chart for INITIALLY is depicted in
Figure 10. A description of the routines called by INITIALLY is provided in Table 13.

INITIALLY

create
widget

send tu_exit

GET_UPDATE_RATE

periodic_update

BUILD_KIOSK_LIST

Figure 10 - INITIALLY Structure Chart

Traveler Information Kiosk System Design Document31

Function Description

BUILD_KIOSK_LIST BUILD_KIOSK_LIST is a bridge layer routine used to invoke the application layer routine which builds the kiosk
status indicators.

create widget Create widget is used to create a widget of a particular TeleUSE template allowing for the specification of a
widget name and a parent for the widget.

GET_UPDATE_RATE A bridge layer routine used to obtain the update rate value from the application layer.

periodic_update A GUI layer event used to perform the steps necessary to update the details of the GUI on a periodic basis. If
any errors occur an error message dialog is created which will cause the application to exit.

PERIODIC_UPDATE The bridge layer routine that invokes the application layer routine responsible for handling the periodic update
requests.

send A TeleUSE statement used to trigger events immediately or queue events for later dispatch.

tu_exit A TeleUSE library routine used to exit the application.

Table 13 - Routines called by INITIALLY

Traveler Information Kiosk System Design Document32

4.2.1.2.4 BUILD_KIOSK_LIST

BUILD_KIOSK_LIST is a bridge layer routine used to invoke the application layer routine which builds
the kiosk status indicators. The structure chart for BUILD_KIOSK_LIST is depicted in Figure 11. A
description of the routines called by BUILD_KIOSK_LIST is provided in Table 14.

BUILD_KIOSK_LIST

kdsg_build_kiosk_list

count_kiosks CREATE_KIOSK_INDICATOR

Figure 11 - BUILD_KIOSK_LIST Structure Chart

Function Description

count_kiosks count_kiosks read the kiosk field unit configuration file and counts the number of entries. There will
be one line of configuration information for each kiosk field unit.

CREATE_KIOSK_INDICATOR CREATE_KIOSK_INDICATOR is a bridge layer routine that creates and dispatches the GUI layer
event responsible for creating the status indicator widget for a kiosk.

kdsg_build_kiosk_list kdsg_build_kiosk_list loops through the kiosk shared memory and creates a status indicator for each
kiosk defined in the shared memory segment.

Table 14 - Routines called by BUILD_KIOSK_LIST

Traveler Information Kiosk System Design Document33

4.2.1.2.5 count_kiosks

The count_kiosks routine reads the kiosk field unit configuration file and counts the number of entries.
There will be one line of configuration information for each kiosk field unit. The structure chart for
count_kiosks is depicted in Figure 12. A description of the routines called by count_kiosks is provided in
Table 15.

count_kiosks

sprintf

fopen

fgets

fclose

Figure 12 - count_kiosks Structure Chart

Function Description

fclose C Library Function used to close an open file.

fgets C Library Function used to read a line of text from a file.

fopen C Library Function that opens the specified file using the specified access mode.

sprintf C Library Function that provides printf capabilities to a character string.

Table 15 - Routines called by count_kiosks

Traveler Information Kiosk System Design Document34

4.2.1.2.6 CREATE_KIOSK_INDICATOR

CREATE_KIOSK_INDICATOR is a bridge layer routine that creates and dispatches the GUI layer event
responsible for creating the status indicator widget for a kiosk. The structure chart for
CREATE_KIOSK_INDICATOR is depicted in Figure 13. A description of the routines called by
CREATE_KIOSK_INDICATOR is provided in Table 16.

CREATE_KIOSK_INDICATOR

tu_create_named_event

tu_assign_event_field

tu_dispatch_event

tu_free_event

create_kiosk_indicator

create
widget

Figure 13 - CREATE_KIOSK_INDICATOR Structure Chart

Traveler Information Kiosk System Design Document35

Function Description

create widget create widget is used to create a widget of a particular TeleUSE template allowing for the
specification of a widget name and a parent for the widget.

create_kiosk_indicator create_kiosk_indicator is a GUI layer event that creates a Kiosk Indicator widget and sets the label
string and user data to be the name of the kiosk and the index into shared memory for the kiosk.

tu_assign_event_field TeleUSE Library Function to associate the contents of a C variable with the contents of an event
attribute.

tu_create_named_event TeleUSE Library Function used to create the data structure necessary to interface the C code with
the D event code.

tu_dispatch_event TeleUSE Library Function used to dispatch the created event. This causes the event to be
executed.

tu_free_event TeleUSE Library Function used to free up any memory that was allocated to the event data structure
using tu_create_named_event.

Table 16 - Routines called by CREATE_KIOSK_INDICATOR

4.2.1.2.7 GET_UPDATE_RATE

GET_UPDATE_RATE is a routine that obtains the update rate value from the application layer and
provides the value to the GUI layer. The structure chart for GET_UPDATE_RATE is depicted in Figure
14. A description of the routines called by GET_UPDATE_RATE is provided in Table 17.

GET_UPDATE_RATE

kdsg_get_update_rate

Figure 14 – GET_UPDATE_RATE Structure Chart

Traveler Information Kiosk System Design Document36

Function Description

kdsg_get_update_rate The application layer routine responsible for returning the configured update rate for the detailed status GUI.

Table 17 - Routines called by GET_UPDATE_RATE

4.2.1.2.8 periodic_update

periodic_update is a GUI layer event that performs the steps necessary to update the GUI on a periodic
basis. If any errors occur an error message dialog is created which will cause the application to exit. The
structure chart for periodic_update is depicted in Figure 15. A description of the routines called by
periodic_update is provided in Table 18.

periodic_update

PERIODIC_UPDATE send create
widget tu_exit

Figure 15 – periodic update Structure Chart

Traveler Information Kiosk System Design Document37

Function Description

Create widget create widget is used to create a widget of a particular TeleUSE template allowing for the specification of a
widget name and a parent for the widget.

PERIODIC_UPDATE The bridge layer routine that invokes the application layer routine responsible for handling the periodic
update requests.

send A TeleUSE statement used to trigger events immediately or queue events for later dispatch.

tu_exit A TeleUSE library routine used to exit the application.

Table 18 - Routines called by periodic update

4.2.1.2.9 UPDATE_DETAILS

UPDATE_DETAILS is a bridge layer routine invoked when the application layer wants to modify the
kiosk details information on the detailed status GUI. The structure chart for UPDATE_DETAILS is
depicted in Figure 16. A description of the routines called by UPDATE_DETAILS is provided in Table
19.

Traveler Information Kiosk System Design Document38

UPDATE_DETAILS

tu_create_named_event

tu_assign_event_field tu_dispatch_event

tu_free_event

update_details

send

set_status_string set_status_radio_button

Figure 16 - UPDATE_DETAILS Structure Chart

Traveler Information Kiosk System Design Document39

Function Description

send A TeleUSE statement used to trigger events immediately or queue events for later dispatch.

set_status_radio_button set_status_radio_button is a GUI layer event used to toggle the appropriate status radio button based on the
specified status value. These values are used to indicate whether the kiosk is online, has a problem, is
being pinged, is dialing, etc.

set_status_string set_status_string is a GUI layer event used to update the label string of the specified widget using the
specified status value. This event takes the integer value and converts it into a text string and associated
color for the label.

tu_assign_event_field TeleUSE Library Function used to associate the contents of a C variable with the contents of an event
attribute.

tu_create_named_event TeleUSE Library Function used to create the data structure necessary to interface the C code with the D
event code.

tu_dispatch_event TeleUSE Library Function used to dispatch the created event. This causes the event to be executed.

tu_free_event TeleUSE Library Function used to free up any memory that was allocated to the event data structure using
tu_create_named_event.

update_details update_details is a GUI layer event that updates the detail information for the specified kiosk. This
information includes the phone number, the address, the current status, last time it was contacted, etc.

Table 19 - Routines called by UPDATE DETAILS

4.2.1.2.10 UPDATE_INDICATOR

UPDATE_INDICATOR is a bridge routine invoked when the application layer wants to modify the status
information on the detailed status GUI. The structure chart for UPDATE_INDICATOR is depicted in
Figure 17. A description of the routines called by UPDATE_INDICATOR is provided in Table 20.

Traveler Information Kiosk System Design Document40

UPDATE_INDICATOR

tu_create_named_event

tu_assign_event_field tu_dispatch_event

tu_free_event

update_indicator

Figure 17 – UPDATE_INDICATOR Structure Chart

Traveler Information Kiosk System Design Document41

Function Description

tu_assign_event_field TeleUSE Library Function used to associate the contents of a C variable with the contents of an event
attribute.

tu_create_named_event TeleUSE Library Function used to create the data structure necessary to interface the C code with the D
event code.

tu_dispatch_event TeleUSE Library Function used to dispatch the created event. This causes the event to be executed.

tu_free_event TeleUSE Library Function used to free up any memory that was allocated to the event data structure using
tu_create_named_event.

update_indicator This GUI layer event is invoked to update an indicator using the status value and the kiosk name. The name
of the kiosk is used to create the indicator so the name is used to locate the indicator widget. The Kiosk State
button associated with the indicator is modified based on the state value.

Table 20 - Routines called by UPDATE_INDICATOR

4.2.1.2.11 UPDATE_USAGE

UPDATE_USAGE is a bridge layer routine invoked when the application layer wants to modify the kiosk
usage information on the detailed status GUI. The structure chart for UPDATE_USAGE is depicted in
Figure 18. A description of the routines called by UPDATE_USAGE is provided in Table 21.

Traveler Information Kiosk System Design Document42

UPDATE_USAGE

tu_create_named_event

tu_assign_event_field

tu_dispatch_event

tu_free_event

update_usage

Figure 18 - UPDATE_USAGE Structure Chart

Function Description

tu_assign_event_field TeleUSE Library Function to associate the contents of a C variable with the contents of an event attribute.

tu_create_named_event TeleUSE Library Function used to create the data structure necessary to interface the C code with the D
event code.

tu_dispatch_event TeleUSE Library Function used to dispatch the created event. This causes the event to be executed.

tu_free_event TeleUSE Library Function used to free up any memory that was allocated to the event data structure using
tu_create_named_event.

update_usage update_usage is a GUI layer event that updates the usage section for the specified kiosk. This section
includes the number of restarts, how many times each of the kiosk areas have been accessed, and page and
disk usage information.

Table 21 - Routines called by UPDATE_USAGE

Traveler Information Kiosk System Design Document43

4.2.1.2.12 kiosk_download

kiosk_download is the GUI layer event attached to the download radio button for a kiosk field unit. The
button is selected when the user desires to force a download to occur for a specific kiosk. The structure
chart for kiosk_download is depicted in Figure 19. A description of the routines called by kiosk_download
is provided in Table 22.

kiosk_download

PERIODIC_UPDATEKIOSK_DOWNLOAD
(bridge)

kdsg_kiosk_download

Figure 19 - kiosk_download Structure Chart

Traveler Information Kiosk System Design Document44

Function Description

kdsg_kiosk_download kdsg_kiosk_download is the application layer routine responsible for updating the shared memory
segment for the specified kiosk to indicate the kiosk should be downloaded.

KIOSK_DOWNLOAD (bridge) The bridge layer routine that invokes the application layer routine responsible for handling the kiosk
download.

PERIODIC_UPDATE The bridge layer routine that invokes the application layer routine responsible for handling the periodic
update requests.

Table 22 - Routines called by kiosk_download

4.2.1.2.13 set_kiosk_in_service

set_kiosk_in_service is the GUI layer event attached to the in service radio button for a kiosk field unit.
The button is selected when the user desires to place the associated kiosk field unit in service. The
structure chart for set_kiosk_in_service is depicted in Figure 20. A description of the routines called by
set_kiosk_in_service is provided in Table 23.

Traveler Information Kiosk System Design Document45

set_kiosk_in_service

PERIODIC_UPDATE
SET_KIOSK_IN_SERVICE
(bridge)

kdsg_set_kiosk_in_service

Figure 20 - set_kiosk_in_service Structure Chart

Function Description

kdsg_set_kiosk_in_service kdsg_set_kiosk_in_service is the application layer routine responsible for updating the shared
memory segment for the specified kiosk to indicate the kiosk is active.

PERIODIC_UPDATE The bridge layer routine that invokes the application layer routine responsible for handling the
periodic update requests.

SET_KIOSK_IN_SERVICE (bridge) The bridge layer routine that invokes the application layer routine responsible for handling the
function of setting the kiosk active.

Table 23 - Routines called by set_kiosk_in_service

Traveler Information Kiosk System Design Document46

4.2.1.2.14 PERIODIC UPDATE

The bridge layer routine that invokes the application layer routine responsible for handling the periodic
update requests. The structure chart for PERIODIC UPDATE is depicted in Figure 21. A description of
the routines called by PERIODIC UPDATE is provided in Table 24.

PERIODIC_UPDATE

kdsg_periodic_update

UPDATE_INDICATOR kdsg_update_kiosk_details kdsg_update_kiosk_usage

ctime strncpy UPDATE_DETAILS

UPDATE_USAGE

Figure 21 – PERIODIC UPDATE Structure Chart

Traveler Information Kiosk System Design Document47

Function Description

Ctime C Library Function used to return the specified time_t value as a character string.

kdsg_periodic_update The application layer routine responsible for handling the periodic update requests. This routine attaches
to the kiosk field units shared memory segments if not attached, reads the data from these segments,
and, using the bridge layer, causes the contents of the GUI to be updated based on the contents of the
shared memory segments.

kdsg_update_kiosk_details kdsg_update_kiosk_details is an application layer routine invoked when the details of a single kiosk are
needed. This routine is responsible for updating the graphical user interface components using the
UPDATE_DETAILS bridge function.

kdsg_update_kiosk_usage kdsg_update_kiosk_usage is an application layer routine invoked when the usage stats of a single kiosk
are needed. This routine is responsible for updating the graphical user interface components using the
UPDATE_USAGE bridge function.

Strncpy C Library Function used to copy a specified number of characters from a source string to a destination
string.

UPDATE_DETAILS UPDATE_DETAILS is a bridge layer routine invoked when the application layer wants to modify the kiosk
details information on the detailed status GUI.

UPDATE_INDICATOR UPDATE_INDICATOR is a bridge routine invoked when the application layer wants to modify the status
information on the detailed status GUI.

UPDATE_USAGE UPDATE_USAGE is a bridge layer routine invoked when the application layer wants to modify the kiosk
usage information on the detailed status GUI.

Table 24 - Routines called by PERIODIC UPDATE

4.2.1.2.15 set_kiosk_out_of_service

set_kiosk_out_of_service is the GUI layer event attached to the out of service radio button for a kiosk field
unit. The button is selected when the user desires to place the associated kiosk field unit out of service.
The structure chart for set_kiosk_out_of_service is depicted in Figure 22. A description of the routines
called by set_kiosk_out_of_service is provided in Table 25.

Traveler Information Kiosk System Design Document48

set_kiosk_out_of_service

PERIODIC_UPDATESET_KIOSK_OUT_OF_SERVICE
(bridge)

kdsg_set_kiosk_out_of_service

Figure 22 - set_kiosk_out_of_service Structure Chart

Function Description

kdsg_set_kiosk_out_of_service kdsg_set_kiosk_out_of_service is the application layer routine responsible for
updating the shared memory segment for the specified kiosk to indicate the kiosk is
inactive.

PERIODIC_UPDATE The bridge layer routine that invokes the application layer routine responsible for
handling the periodic update requests.

SET_KIOSK_OUT_OF_SERVICE (bridge) The bridge layer routine that invokes the application layer routine responsible for
handling the function of setting the kiosk inactive.

Table 25 - Routines called by set_kiosk_out_of_service

Traveler Information Kiosk System Design Document49

4.2.1.2.16 kiosk_ping

kiosk_ping is the GUI layer event attached to the ping radio button for a kiosk field unit. The button is
selected when the user desires to force an update of the status information to occur for a specific kiosk.
The structure chart for kiosk_ping is depicted in Figure 23. A description of the routines called by
kiosk_ping is provided in Table 26.

kiosk_ping

PERIODIC_UPDATEKIOSK_PING
(bridge)

kdsg_kiosk_ping

Figure 23 - kiosk_ping Structure Chart

Function Description

kdsg_kiosk_ping kdsg_kiosk_ping is the application layer routine responsible for updating the shared memory segment
for the specified kiosk to indicate the kiosk should be pinged.

KIOSK_PING (bridge) The bridge layer routine that invokes the application layer routine responsible for handling the function
of setting the kiosk state to ping.

PERIODIC_UPDATE The bridge layer routine that invokes the application layer routine responsible for handling the periodic
update requests.

Table 26 - Routines called by kiosk_ping

Traveler Information Kiosk System Design Document50

4.2.1.2.17 UPDATE_STATUS

This is the bridge layer routine that receives the current status information for a particular Kiosk and then
generates the event to update the status information within the detailed status GUI. The structure chart for
UPDATE_STATUS is depicted in Figure 24. A description of the routines called by UPDATE_STATUS
is provided in Table 27.

UPDATE_STATUS

tu_create_named_event

tu_assign_event_field

tu_dispatch_event

tu_free_event

update_status

Figure 24 - UPDATE_STATUS Structure Chart

Traveler Information Kiosk System Design Document51

Function Description

tu_assign_event_field TeleUSE Library Function to associate the contents of a C variable with the contents of an event attribute.

tu_create_named_event TeleUSE Library Function used to create the data structure necessary to interface the C code with the D
event code.

tu_dispatch_event TeleUSE Library Function used to dispatch the created event. This causes the event to be executed.

tu_free_event TeleUSE Library Function used to free up any memory that was allocated to the event data structure using
tu_create_named_event.

Update_status The D event that receives the status information and updates the appropriate GUI components.

Table 27 - Routines called by UPDATE_STATUS

4.2.1.2.18 update_status

The update_status routine receives the status information and updates the appropriate GUI components.
The structure chart for update_status is depicted in Figure 25. A description of the routines called by
update_status is provided in Table 28.

Traveler Information Kiosk System Design Document52

update_status

send

update_indicator

Figure 25 - update_status Structure Chart

Function Description

send A TeleUSE statement used to trigger events immediately or queue events for later dispatch.

update_indicator This GUI layer event is invoked to update an indicator using the status value and the kiosk name. The name
of the kiosk is used to create the indicator so the name is used to locate the indicator widget. The Kiosk State
button associated with the indicator is modified based on the state value.

Table 28 - Routines called by update_status

4.2.1.3 System Maintenance GUI

The Kiosk System Maintenance GUI provides the capability to create, modify, and delete airline, rental car,
airport parking, screensaver, and kiosk configuration files. Figure 26 depicts the data flows for the
Detailed Status GUI. A description of the data flows is provided in Table 29.

Traveler Information Kiosk System Design Document53

0.6.1

Exit
System
Maintenance
GUI

0.6.2

Edit
Airport
Parking
Data

0.6.4

Edit
Rental
Car
Data

0.6.5

Edit
Screen
Saver
Data

0.6.6

Edit
Kiosk
Data

0.6.3

Edit
Airline
Data

Kiosk
Field
Unit
Config.
Data

User Commands

Data Files

GUIs

Airport Parking
Data Edit Cmds

Exit

GUIs

Airline Data
Edit Cmds

GUIs

Data Files

GUIs

Data Files

Rental Car
Data Edit Cmds

GUIs

Data Files

Screen Saver
Data Edit Cmds

GUIs

Kiosk Data
Edit Cmds

Figure 26 – Kiosk System Maintenance GUI Data Flow

Traveler Information Kiosk System Design Document54

Function Description

Airline Data Edit Cmds Airline Data Edit Commands are the Add, Delete, and Modify commands issued by the user when
editing the airline data file.

Airport Parking Data Edit Cmds Airport Parking Data Edit Commands are the Add, Delete, and Modify commands issued by the user
when editing the airport parking data file.

Data Files Data Files are files that are stored at the Data Server and include files such as weather files, screen
saver files, and airport files.

Edit Airline Data Edit Airline Data allows the user to add, delete, and modify entries in the airline data file. This file is
maintained in the Data Server and is brought from the Data Server to the Kiosk Master Computer
when edits are desired.

Edit Airport Parking Data Edit Airport Parking Data allows the user to add, delete, and modify entries in the airport parking data
file. This file is maintained in the Data Server and is brought from the Data Server to the Kiosk
Master Computer when edits are desired.

Edit Kiosk Data Edit Kiosk Data allows the user to add, delete, and modify entries in the Kiosk data file. This file is
maintained at the Kiosk Master Computer and is used during startup of the Kiosk Subsystem.

Edit Rental Car Data Edit Rental Car Data allows the user to add, delete, and modify entries in the rental car data file.
This file is maintained in the Data Server and is brought from the Data Server to the Kiosk Master
Computer when edits are desired.

Edit Screen Saver Data Edit Screen Saver Data allows the user to add, delete, and modify entries in the screen saver data
file. This file is maintained in the Data Server and is brought from the Data Server to the Kiosk
Master Computer when edits are desired.

Exit Exit is the command used to exit an application.

Exit System Maintenance GUI Exit System Maintenance GUI is responsible for the systematic shutdown of the system
maintenance GUI components. This includes allowing the user to save any unsaved files and then
removing any temporary files that may have been created.

GUIs GUIs are graphical user interfaces. These interfaces are used to communicate information from the
subsystem to the user and to allow the user to control certain aspects of the execution of the
subsystem.

Kiosk Data Edit Cmds Kiosk Data Edit Commands are the Add, Delete, and Modify commands issued by the user when
editing the kiosk field unit data file.

Kiosk Field Unit Config. Data Kiosk Field Unit Configuration Data contains information for each field unit. This includes the name,
phone number, and location of the field unit.

Rental Car Data Edit Cmds Rental Car Data Edit Commands are the Add, Delete, and Modify commands issued by the user
when editing the rental car data file.

Screen Saver Data Edit Cmds Screen Saver Data Edit Commands are the Add, Delete, and Modify commands issued by the user
when editing the screen saver data file.

User Commands User Commands are the commands selected by the user from the graphical user interfaces. These
commands are generated through push buttons, radio buttons, text boxes, and other user interface
components.

Table 29 – Kiosk System Maintenance GUI Data Flows

Traveler Information Kiosk System Design Document55

4.2.1.3.1 ksmg (teleuse_main)

This is the main routine of the Kiosk System Maintenance GUI. This routine is supplied by the TeleUSE
UIMS tool and is used as the entry point into the process. This routine is responsible for setting up any
TeleUSE specific environment and then invoking the application main routine followed by the INITIALLY
events in the associated D modules. The structure chart for ksmg (teleuse_main) is depicted in Figure 27.
A description of the routines called by ksmg (teleuse_main) is provided in Table 30.

ksmg(teleuse_main)

ksmg_main

INITIALLY

INITIALLY(kiosk) INITIALLY(airline)

INITIALLY(parking)

INITIALLY(rental)

INITIALLY(screensaver)

Figure 27 - ksmg (teleuse_main) Structure Chart

Traveler Information Kiosk System Design Document56

Function Description

INITIALLY This D event is the first event invoked by the TeleUSE runtime environment. This event creates the top-level
shell to contain the table forms and then sends the event to set the sensitivity of the add menu item so no
additions are allowed.

INITIALLY(airline) INITIALLY(airline) is the INITIALLY event for the airline configuration D module. This event is responsible for
initializing the D module flags and creating the header string to be used for the configuration item list.

INITIALLY(kiosk) INITIALLY(kiosk) is the INITIALLY event for the kiosk configuration D module. This event is responsible for
initializing the D module flags and creating the header string to be used for the configuration item list.

INITIALLY(parking) INITIALLY(parking) is the INITIALLY event for the airport parking lot configuration D module. This event is
responsible for initializing the D module flags and creating the header string to be used for the configuration
item list.

INITIALLY(rental) INITIALLY(rental) is the INITIALLY event for the rental car agency configuration D module. This event is
responsible for initializing the D module flags and creating the header string to be used for the configuration
item list.

INITIALLY(screensaver) INITIALLY(screensaver) is the INITIALLY event for the screen saver configuration D module. This event is
responsible for initializing the D module flags and creating the header string to be used for the configuration
item list.

ksmg_main This is the main routine of the KIOSK Detailed Status GUI. This routine is responsible for loading the
configuration information, configuring the shared memory manager library, and attaching to the field equipment
shared memory segments.

Table 30 - Routines called by ksmg (teleuse_main)

4.2.1.3.2 ksmg_main

This is the main routine of the KIOSK Detailed Status GUI. This routine is responsible for loading the
configuration information, configuring the shared memory manager library, and attaching to the field
equipment shared memory segments. The structure chart for ksmg_main is depicted in Figure 28. A
description of the routines called by ksmg_main is provided in Table 31.

Traveler Information Kiosk System Design Document57

ksmg_main

ksmg_load_cfg cfg_get_value

Figure 28 – ksmg_main Structure Chart

Function Description

cfg_get_value MDI Configuration File routine used to return the value of the specified configuration name.

ksmg_load_cfg ksmg_load_cfg loads the configuration times for the system maintenance GUI and verifies that all required configuration
items are present.

Table 31 - Routines called by ksmg_main

4.2.1.3.3 kmsg_load_cfg

ksmg_load_cfg loads the configuration times for the system maintenance GUI and verifies that all required
configuration items are present. The structure chart for kmsg_load_cfg is depicted in Figure 29. A
description of the routines called by kmsg_load_cfg is provided in Table 32.

Traveler Information Kiosk System Design Document58

ksmg_load_cfg

cfg_load_configuration_data cfg_get_value

Figure 29 - kmsg_load_cfg Structure Chart

Function Description

cfg_get_value MDI Configuration File routine used to return the value of the specified configuration name.

cfg_load_configuration_data MDI Configuration File routine used to read the configuration name-value pairs from the specified
configuration file. These name-value pairs are loaded into memory so they can be accessed on demand
by the calling program.

Table 32 - Routines called by kmsg_load_cfg

4.2.1.3.4 INITIALLY

This D event is the first event invoked by the TeleUSE runtime environment. This event creates the top-
level shell to contain the table forms and then sends the event to set the sensitivity of the add menu item so
no additions are allowed. The structure chart for INITIALLY is depicted in Figure 30. A description of
the routines called by INITIALLY is provided in Table 33.

Traveler Information Kiosk System Design Document59

INITIALLY

create
widget

send

disallow_additions

ksmg_application_init

Figure 30 - INITIALLY Structure Chart

Function Description

create widget create widget is used to create a widget of a particular TeleUSE template allowing for the specification of a widget
name and a parent for the widget.

disallow_additions disallow_additions is the GUI layer routine that sets the sensitivity of the add menu item so that no additions can
be made until a table is selected.

ksmg_application_init ksmg_application_init is responsible for performing signal setup and connecting to the kiosk_dsif process. An
error message is displayed if any errors occur.

send A TeleUSE statement used to trigger events immediately or queue events for later dispatch.

Table 33 - Routines called by INITIALLY

Traveler Information Kiosk System Design Document60

4.2.1.3.5 ksmg_application_init

ksmg_application_init is responsible for performing signal setup and connecting to the kiosk_dsif process.
An error message is displayed if any errors occur. The structure chart for ksmg_application_init is
depicted in Figure 31. A description of the routines called by ksmg_application_init is provided in Table
34.

ksmg_application_init

utl_signal_setup

sigset ksmg_connect_to_dsif

DISPLAY_ERROR_MESSAGE

Figure 31 - ksmg_application_init Structure Chart

Traveler Information Kiosk System Design Document61

Function Description

DISPLAY_ERROR_MESSAGE DISPLAY_ERROR_MESSAGE is a bridge layer routine that creates and dispatches the GUI layer
event responsible for displaying the error dialog box.

ksmg_connect_to_dsif ksmg_connect_to_dsif is responsible for connecting to the Kiosk Data Server Interface Process based
on the configuration parameters. These parameters specify the host name and service name to be
used to connect.

sigset C Library Function used to modify the disposition of a signal. The signal can be caught, ignored, or
returned to the default disposition.

utl_signal_setup MDI Common Utility Library routine used to set up a default signal handler for all catchable signals.

Table 34 - Routines called by ksmg_application_init

4.2.1.3.6 DISPLAY_ERROR_MESSAGE

DISPLAY_ERROR_MESSAGE is a bridge layer routine that creates and dispatches the GUI layer event
responsible for displaying the error dialog box. The structure chart for DISPLAY_ERROR_MESSAGE is
depicted in Figure 32. A description of the routines called by DISPLAY_ERROR_MESSAGE is provided
in Table 35.

Traveler Information Kiosk System Design Document62

DISPLAY_ERROR_MESSAGE

tu_create_named_event

tu_assign_event_field

tu_dispatch_event

tu_free_event

display_error_message

Figure 32 - DISPLAY_ERROR_MESSAGE Structure Chart

Function Description

display_error_message display_error_message is a GUI layer event that creates an error dialog box to display the specified
error message.

tu_assign_event_field TeleUSE Library Function to associate the contents of a C variable with the contents of an event
attribute.

tu_create_named_event TeleUSE Library Function used to create the data structure necessary to interface the C code with
the D event code.

tu_dispatch_event TeleUSE Library Function used to dispatch the created event. This causes the event to be
executed.

tu_free_event TeleUSE Library Function used to free up any memory that was allocated to the event data
structure using tu_create_named_event.

Table 35 - Routines called by DISPLAY_ERROR_MESSAGE

Traveler Information Kiosk System Design Document63

4.2.1.3.7 display_error_message

display_error_message is a GUI layer event that creates an error dialog box to display the specified error
message. The structure chart for display_error_message is depicted in Figure 33. A description of the
routines called by display_error_message is provided in Table 36.

display_error_message

create
widget

Figure 33 - display_error_message Structure Chart

Function Description

create widget create widget is used to create a widget of a particular TeleUSE template allowing for the
specification of a widget name and a parent for the widget.

Table 36 - Routines called by display_error_message

4.2.1.3.8 ksmg_connect_to_dsif

ksmg_connect_to_dsif is responsible for connect to the Kiosk Data Server Interface Process based on the
configuration parameters. These parameters specify the host name and service name to be used to connect.
The structure chart for ksmg_connect_to_dsif is depicted in Figure 34. A description of the routines called
by ksmg_connect_to_dsif is provided in Table 37.

Traveler Information Kiosk System Design Document64

ksmg_connect_to_dsif

cfg_get_value gethostname kiosk_dsif_connect

Figure 34 - ksmg_connect_to_dsif Structure Chart

Function Description

cfg_get_value MDI Configuration File routine used to return the value of the specified configuration name.

gethostname UNIX system call that returns the hostname of the machine on which the function is executing.

kiosk_dsif_connect kiosk_dsif_connect is used to connect to the Kiosk Data Server Interface process. The service name is passed
to this routine and is used to make the connection to the appropriate port.

Table 37 - Routines called by ksmg_connect_to_dsif

Traveler Information Kiosk System Design Document65

4.2.1.3.9 INITIALLY (Kiosk)

INITIALLY (Kiosk) is the INITIALLY event for the kiosk configuration D module. This event is
responsible for initializing the D module flags and creating the header string to be used for the
configuration item list. The structure chart for INITIALLY (Kiosk) is depicted in Figure 35. A
description of the routines called by INITIALLY (Kiosk) is provided in Table 38.

INITIALLY(kiosk)

BUILD_KIOSK_CONFIG_ENTRY_STRING

Figure 35 - INITIALLY (Kiosk) Structure Chart

Function Description

BUILD_KIOSK_CONFIG_ENTRY_STRING BUILD_KIOSK_CONFIG_ENTRY_STRING is used to piece together the
character string to be used as the text for an item in the list. All text strings are
left justified within the appropriate fields of the entry string.

Table 38 - Routines called by INITIALLY (Kiosk)

4.2.1.3.10 BUILD_KIOSK_CONFIG_ENTRY_STRING

BUILD_KIOSK_CONFIG_ENTRY_STRING is used to piece together the character string to be used as
the text for an item in the list. All text strings are left justified within the appropriate fields of the entry
string. The structure chart for BUILD_KIOSK_CONFIG_ENTRY_STRING is depicted in Figure 36. A
description of the routines called by BUILD_KIOSK_CONFIG_ENTRY_STRING is provided in Table
39.

Traveler Information Kiosk System Design Document66

BUILD_KIOSK_CONFIG_ENTRY_STRING

sprintf

Figure 36 - BUILD_KIOSK_CONFIG_ENTRY_STRING Structure Chart

Function Description

sprintf C Library Function that provides printf capabilities to a character string.

Table 39 - Routines called by BUILD_KIOSK_CONFIG_ENTRY_STRING

4.2.1.3.11 INITIALLY (Parking)

INITIALLY (Parking) is the INITIALLY event for the airport parking lot configuration D module. This
event is responsible for initializing the D module flags and creating the header string to be used for the
configuration item list. The structure chart for INITIALLY (Parking) is depicted in Figure 37. A
description of the routines called by INITIALLY (Parking) is provided in Table 40.

Traveler Information Kiosk System Design Document67

INITIALLY(parking)

BUILD_PARKING_CONFIG_ENTRY_ST

Figure 37 - INITIALLY (Parking) Structure Chart

Function Description

BUILD_PARKING_CONFIG_ENTRY_STR BUILD_PARKING_CONFIG_ENTRY_STRING is used to piece together the
character string to be used as the text for an item in the list.

Table 40 - Routines called by INITIALLY (Parking)

4.2.1.3.12 BUILD_PARKING_CONFIG_ENTRY_STR

BUILD_PARKING_CONFIG_ENTRY_STRING is used to piece together the character string to be used
as the text for an item in the list. The structure chart for BUILD_PARKING_CONFIG_ENTRY_STR is
depicted in Figure 38. A description of the routines called by
BUILD_PARKING_CONFIG_ENTRY_STR is provided in Table 41.

Traveler Information Kiosk System Design Document68

BUILD_PARKING_CONFIG_ENTRY_STR

strcpyisdigit sprintf

Figure 38 - BUILD_PARKING_CONFIG_ENTRY_STR Structure Chart

Function Description

isdigit C Library Function that determines if the given value is a number.

sprintf C Library Function that provides printf capabilities to a character string.

strcpy C Library Function used to copy a source string to a destination string.

Table 41 - Routines called by BUILD_PARKING_CONFIG_ENTRY_STR

4.2.1.3.13 INITIALLY (airline)

INITIALLY (airline) is the INITIALLY event for the airline configuration D module. This event is
responsible for initializing the D module flags and creating the header string to be used for the
configuration item list. The structure chart for INITIALLY (airline) is depicted in Figure 39. A
description of the routines called by INITIALLY (airline) is provided in Table 42.

Traveler Information Kiosk System Design Document69

INITIALLY(airline)

BUILD_AIRLINE_CONFIG_ENTRY_STR

Figure 39 - INITIALLY (airline) Structure Chart

Function Description

BUILD_AIRLINE_CONFIG_ENTRY_STR BUILD_AIRLINE_CONFIG_ENTRY_STRING is used to piece together the character
string to be used as the text for an item in the list. All text strings are left justified
within the appropriate fields of the entry string.

Table 42 - Routines called by INITIALLY (airline)

4.2.1.3.14 BUILD_AIRLINE_CONFIG_ENTRY_STR

BUILD_AIRLINE_CONFIG_ENTRY_STRING is used to piece together the character string to be used
as the text for an item in the list. All text strings are left justified within the appropriate fields of the entry
string. The structure chart for BUILD_AIRLINE_CONFIG_ENTRY_STR is depicted in Figure 40. A
description of the routines called by BUILD_AIRLINE_CONFIG_ENTRY_STR is provided in Table 43.

Traveler Information Kiosk System Design Document70

BUILD_AIRLINE_CONFIG_ENTRY_STR

sprintf

Figure 40 - BUILD_AIRLINE_CONFIG_ENTRY_STR Structure Chart

Function Description

sprintf C Library Function that provides printf capabilities to a character string.

Table 43 - Routines called by BUILD_AIRLINE_CONFIG_ENTRY_STR

4.2.1.3.15 INITIALLY (rental)

INITIALLY (rental) is the INITIALLY event for the rental car agency configuration D module. This event
is responsible for initializing the D module flags and creating the header string to be used for the
configuration item list. The structure chart for INITIALLY (rental) is depicted in Figure 41. A description
of the routines called by INITIALLY (rental) is provided in Table 44.

Traveler Information Kiosk System Design Document71

INITIALLY(rental)

BUILD_RENTAL_CAR_CONFIG_ENTRY_ST

Figure 41 - INITIALLY (rental) Structure Chart

Function Description

BUILD_RENTAL_CAR_CONFIG_ENTRY_ST BUILD_RENTAL_CAR_CONFIG_ENTRY_STRING is used to piece
together the character string to be used as the text for an item in the list. All
text strings are left justified within the appropriate fields of the entry string.

Table 44 - Routines called by INITIALLY (rental)

4.2.1.3.16 BUILD_RENTAL_CAR_CONFIG_ENTRY_ST

BUILD_RENTAL_CAR_CONFIG_ENTRY_STRING is used to piece together the character string to be
used as the text for an item in the list. All text strings are left justified within the appropriate fields of the
entry string. The structure chart for BUILD_RENTAL_CAR_CONFIG_ENTRY_ST is depicted in
Figure 42. A description of the routines called by BUILD_RENTAL_CAR_CONFIG_ENTRY_ST is
provided in Table 45.

Traveler Information Kiosk System Design Document72

BUILD_RENTAL_CAR_CONFIG_ENTRY_ST

sprintf

Figure 42 - BUILD_RENTAL_CAR_CONFIG_ENTRY_ST Structure Chart

Function Description

sprintf C Library Function that provides printf capabilities to a character string.

Table 45 - Routines called by BUILD_RENTAL_CAR_CONFIG_ENTRY_ST

4.2.1.3.17 INITIALLY (screensaver)

INITIALLY (screensaver) is the INITIALLY event for the screen saver configuration D module. This
event is responsible for initializing the D module flags and creating the header string to be used for the
configuration item list. The structure chart for INITIALLY (screensaver) is depicted in Figure 43. A
description of the routines called by INITIALLY (screensaver) is provided in Table 46.

Traveler Information Kiosk System Design Document73

INITIALLY(screensaver)

BUILD_SS_CONFIG_ENTRY_STRING

Figure 43 - INITIALLY (screensaver) Structure Chart

Function Description

BUILD_SS_CONFIG_ENTRY_STRING BUILD_SS_CONFIG_ENTRY_STRING is used to piece together the character string to
be used as the text for an item in the list.

Table 46 - Routines called by INITIALLY (screensaver)

4.2.1.3.18 BUILD_SS_CONFIG_ENTRY_STRING

BUILD_SS_CONFIG_ENTRY_STRING is used to piece together the character string to be used as the
text for an item in the list. The structure chart for BUILD_SS_CONFIG_ENTRY_STRING is depicted in
Figure 44. A description of the routines called by BUILD_SS_CONFIG_ENTRY_STRING is provided
in Table 47.

Traveler Information Kiosk System Design Document74

BUILD_SS_CONFIG_ENTRY_STRING

sprintf

Figure 44 - BUILD_SS_CONFIG_ENTRY_STRING Structure Chart

Function Description

sprintf C Library Function that provides printf capabilities to a character string.

Table 47 - Routines called by BUILD_SS_CONFIG_ENTRY_STRING

4.2.1.3.19 configure_airlines

configure_airlines is the GUI layer event attached to the airlines configuration table menu item. The button
is selected when the user desires to modify the contents of the airlines configuration file.The structure chart
for configure_airlines is depicted in Figure 45. A description of the routines called by configure_airlines is
provided in Table 48.

Traveler Information Kiosk System Design Document75

configure_airlines

send

new_table airline_config_init

Figure 45 - configure_airlines Structure Chart

Traveler Information Kiosk System Design Document76

Function Description

airline_config_init airline_config_init is the GUI layer event used to initialize the user interface when a table (data file) is initially selected
for modification. This includes clearing the list of items to be displayed, allowing additions to be made, reading the data
file, and creating the data file if it doesn't exist.

new_table new_table is a GUI layer event triggered when a new table is selected for editing. Each D module contains this event
and if the D module is associated with the table currently being edited a check is make to see if the current table should
be saved. If so, the user is asked whether or not the table should be saved. The sensitivity of the table menu item of
the current table is made sensitive and the form containing the current table is unmanaged.

send A TeleUSE statement used to trigger events immediately or queue events for later dispatch.

Table 48 - Routines called by configure_airlines

4.2.1.3.20 airline_config_init

airline_config_init is the GUI layer event used to initialize the user interface when a table (data file) is
initially selected for modification. This includes clearing the list of items to be displayed, allowing
additions to be made, reading the data file, and creating the data file if it doesn't exist. The structure chart
for airline_config_init is depicted in Figure 46. A description of the routines called by airline_config_init is
provided in Table 49.

Traveler Information Kiosk System Design Document77

airline_config_init

send

XmListDeleteAllItems

allow_additions

XmString

XmListAddItem

XmStringCreateSimple

ksmg_read_airline_config_file

display_question

change_table

disallow_additions

ksmg_retrieve_airline_config_fil

Figure 46 - airline_config_init Structure Chart

Traveler Information Kiosk System Design Document78

Function Description

Allow_additions allow_additions is a GUI layer event in charge of setting the sensitivity for the Add button to true and
desensitizing the delete and modify buttons.

Change_table change_table is a GUI layer event responsible for unmapping the current configuration data form
and sensitizing the table submenu item associated with the current configuration table.

Disallow_additions disallow_additions is the GUI layer routine that sets the sensitivity of the add menu item so that no
additions can be made until a table is selected.

Display_question display_question is a GUI layer event that creates a question dialog box to display the specified
question to the user.

Ksmg_read_airline_config_file ksmg_read_airline_config_file is used to read the contents of the airline data file and create the list of
airlines to be displayed to the user.

Ksmg_retrieve_airline_config_fil ksmg_retrieve_airline_config_file is used to retrieve the airline data file from the data server and
place it on the local file system.

Send A TeleUSE statement used to trigger events immediately or queue events for later dispatch.

XmListAddItem X Library function that will add a character string to a scroll list.

XmListDeleteAllItems X Library function that will delete all items from a scroll list.

XmString X Library function that will create an X string from a character string.

XmStringCreateSimple X Library function that will create a simple X string from a character string.

Table 49 - Routines called by airline_config_init

4.2.1.3.21 display_question

display_question is a GUI layer event that creates a question dialog box to display the specified question to
the user. The structure chart for display_question is depicted in Figure 47. A description of the routines
called by display_question is provided in Table 50.

Traveler Information Kiosk System Design Document79

display_question

create
widget

Figure 47 - display_question Structure Chart

Function Description

create widget create widget is used to create a widget of a particular TeleUSE template allowing for the specification of a widget
name and a parent for the widget.

Table 50 - Routines called by display_question

4.2.1.3.22 ksmg_read_airline_config_file

ksmg_read_airline_config_file is used to read the contents of the airline data file and create the list of
airlines to be displayed to the user. The structure chart for ksmg_read_airline_config_file is depicted in
Figure 48. A description of the routines called by ksmg_read_airline_config_file is provided in Table 51.

Traveler Information Kiosk System Design Document80

ksmg_read_airline_config_file

cfg_get_value

fopen

fgets

sscanf sprintf

ADD_AIRLINE_LIST_ITEM

ferror

fclose

DISPLAY_ERROR_MESSAGE

Figure 48 - ksmg_read_airline_config_file Structure Chart

Traveler Information Kiosk System Design Document81

Function Description

ADD_AIRLINE_LIST_ITEM ADD_AIRLINE_LIST_ITEM is a bridge layer routine that creates and dispatches the GUI layer event
responsible for adding an entry to the airlines list.

cfg_get_value MDI Configuration File routine used to return the value of the specified configuration name.

DISPLAY_ERROR_MESSAGE DISPLAY_ERROR_MESSAGE is a bridge layer routine that creates and dispatches the GUI layer
event responsible for displaying the error dialog box.

fclose C Library Function used to close an open file.

ferror C Library Function that returns any previous errors on the associated stream.

fgets C Library Function used to read a line of text from a file.

fopen C Library Function that opens the specified file using the specified access mode.

sprintf C Library Function that provides printf capabilities to a character string.

sscanf UNIX function call that will allow formatted "input" from a NULL terminated character string.

Table 51 - Routines called by ksmg_read_airline_config_file

4.2.1.3.23 ADD_AIRLINE_LIST_ITEM

ADD_AIRLINE_LIST_ITEM is a bridge layer routine that creates and dispatches the GUI layer event
responsible for adding an entry to the airlines list. The structure chart for ADD_AIRLINE_LIST_ITEM is
depicted in Figure 49. A description of the routines called by ADD_AIRLINE_LIST_ITEM is provided in
Table 52.

Traveler Information Kiosk System Design Document82

ADD_AIRLINE_LIST_ITEM

tu_create_named_event

tu_assign_event_field

tu_dispatch_event

tu_free_event

add_airline_list_item

Figure 49 - ADD_AIRLINE_LIST_ITEM Structure Chart

Function Description

add_airline_list_item add_airline_list_item is a GUI layer event that creates an item in the airline list using the data specified for
the event.

tu_assign_event_field TeleUSE Library Function to associate the contents of a C variable with the contents of an event attribute.

tu_create_named_event TeleUSE Library Function used to create the data structure necessary to interface the C code with the D
event code.

tu_dispatch_event TeleUSE Library Function used to dispatch the created event. This causes the event to be executed.

tu_free_event TeleUSE Library Function used to free up any memory that was allocated to the event data structure
using tu_create_named_event.

Table 52 - Routines called by ADD_AIRLINE_LIST_ITEM

Traveler Information Kiosk System Design Document83

4.2.1.3.24 ksmg_retrieve_airline_config_file

ksmg_retrieve_airline_config_file is used to retrieve the airline data file from the data server and place it on
the local file system. The structure chart for ksmg_retrieve_airline_config_file is depicted in Figure 50. A
description of the routines called by ksmg_retrieve_airline_config_file is provided in Table 53.

ksmg_retrieve_airline_config_fil

cfg_get_value kiosk_dsif_read_file

Figure 50 - ksmg_retrieve_airline_config_file Structure Chart

Function Description

cfg_get_value MDI Configuration File routine used to return the value of the specified configuration name.

kiosk_dsif_read_file kiosk_dsif_read_file packages the read file request into the appropriate kiosk_dsif message and
sends it to the kiosk_dsif process.

Table 53 - Routines called by ksmg_retrieve_airline_config_file

Traveler Information Kiosk System Design Document84

4.2.1.3.25 config_add_ok (airline)

config_add_ok (airline) is a GUI layer event triggered by the user selecting the ok button on the Airline
Configuration Add Entry Dialog. The structure chart for config_add_ok (airline) is depicted in Figure 51.
A description of the routines called by config_add_ok (airline) is provided in Table 54.

config_add_ok
(airline)

allow_additions

DISPLAY_ERROR_MESSAGE

VALIDATE_PHONE_STRING

BUILD_AIRLINE_CONFIG_ENTRY_STR

XmListAddItem destroy

send

utl_strip_trailing_whitespace

Figure 51 - conifg_add_ok (airline) Structure Chart

Traveler Information Kiosk System Design Document85

Function Description

allow_additions allow_additions is a GUI layer event in charge of setting the sensitivity for the Add
button to true and desensitizing the delete and modify buttons.

BUILD_AIRLINE_CONFIG_ENTRY_STR BUILD_AIRLINE_CONFIG_ENTRY_STRING is used to piece together the character
string to be used as the text for an item in the list. All text strings are left justified
within the appropriate fields of the entry string.

destroy Function which will return allocated X resources back to the system.

DISPLAY_ERROR_MESSAGE DISPLAY_ERROR_MESSAGE is a bridge layer routine that creates and dispatches
the GUI layer event responsible for displaying the error dialog box.

send A TeleUSE statement used to trigger events immediately or queue events for later
dispatch.

utl_strip_trailing_whitespace MDI Common Utility Library routine used to remove trailing blanks from a stirng.

VALIDATE_PHONE_STRING VALIDATE_PHONE_STRING is a bridge layer routine used to determine the validity
of a telephone number entered by the user. Accepted strings are in the form of xxx-
xxxx or x-xxx-xxx-xxxx.

XmListAddItem X Library function that will add a character string to a scroll list.

Table 54 - Routines called by config_add_ok (airline)

4.2.1.3.26 VALIDATE_PHONE_STRING

VALIDATE_PHONE_STRING is a bridge layer routine used to determine the validity of a telephone
number entered by the user. Accepted strings are in the form of xxx-xxxx or x-xxx-xxx-xxxx. The
structure chart for VALIDATE_PHONE_STRING is depicted in Figure 52. A description of the routines
called by VALIDATE_PHONE_STRING is provided in Table 55.

Traveler Information Kiosk System Design Document86

VALIDATE_PHONE_STRING

utl_strip_trailing_whitespace

strlen

isdigit

Figure 52 - VALIDATE_PHONE_STRING Structure Chart

Function Description

isdigit C Library Function that determines if the given value is a number.

strlen UNIX system call that computes the number of characters in a NULL terminated string.

utl_strip_trailing_whitespace MDI Common Utility Library routine used to remove trailing blanks from a stirng.

Table 55 - Routines called by VALIDATE_PHONE_STRING

4.2.1.3.27 ksmg_create_airline_config_file

ksmg_create_airline_config_file is used to create a new airline data file and write the blank file to the data
server. The structure chart for ksmg_create_airline_config_file is depicted in Figure 53. A description of
the routines called by ksmg_create_airline_config_file is provided in Table 56.

Traveler Information Kiosk System Design Document87

ksmg_create_airline_config_file

cfg_get_value fopen kiosk_dsif_write_file

Figure 53 - ksmg_create_airline_config_file Structure Chart

Function Description

cfg_get_value MDI Configuration File routine used to return the value of the specified configuration name.

fopen C Library Function that opens the specified file using the specified access mode.

kiosk_dsif_write_file kiosk_dsif_write_file packages the write file data into the appropriate kiosk_dsif message and
sends it to the kiosk_dsif process.

Table 56 - Routines called by ksmg_create_airline_config_file

4.2.1.3.28 config_modify_ok (airline)

config_modify_ok (airline) is a GUI layer event triggered by the user selecting the ok button on the Airline
Configuration Modify Entry Dialog. The structure chart for config_modify_ok (airline) is depicted in
Figure 54. A description of the routines called by config_modify_ok (airline) is provided in Table 57.

Traveler Information Kiosk System Design Document88

config_modify_ok
(airline)

destroy

DISPLAY_ERROR_MESSAGE

VALIDATE_PHONE_STRING

BUILD_AIRLINE_CONFIG_ENTRY_STR

XmListReplaceItemsPos

Figure 54 - config_modify_ok (airline) Structure Chart

Traveler Information Kiosk System Design Document89

Function Description

BUILD_AIRLINE_CONFIG_ENTRY_STR BUILD_AIRLINE_CONFIG_ENTRY_STRING is used to piece together the character
string to be used as the text for an item in the list. All text strings are left justified
within the appropriate fields of the entry string.

destroy Function which will return allocated X resources back to the system.

DISPLAY_ERROR_MESSAGE DISPLAY_ERROR_MESSAGE is a bridge layer routine that creates and dispatches
the GUI layer event responsible for displaying the error dialog box.

VALIDATE_PHONE_STRING VALIDATE_PHONE_STRING is a bridge layer routine used to determine the validity
of a telephone number entered by the user. Accepted strings are in the form of xxx-
xxxx or x-xxx-xxx-xxxx.

XmListReplaceItemsPos X Library function that will replace the instance of one X string with another instance in
a Scroll List.

Table 57 - Routines called by config_modify_ok (airline)

4.2.1.3.29 save_table (airline)

save_table is responsibile for creating the string list object that is used to write the configuration data to the
file. The structure chart for save_table (airline) is depicted in Figure 55. A description of the routines
called by save_table (airline) is provided in Table 58.

Traveler Information Kiosk System Design Document90

save_table
(airline)

create
string_list

ksmg_write_airline_config_file

destroy

DISPLAY_ERROR_MESSAGE

ksmg_store_airline_config_file

Figure 55 - save_table (airline) Structure Chart

Function Description

create string_list Function that creates a C character string from a series of X strings.

destroy Function which will return allocated X resources back to the system.

DISPLAY_ERROR_MESSAGE DISPLAY_ERROR_MESSAGE is a bridge layer routine that creates and dispatches the GUI layer
event responsible for displaying the error dialog box.

ksmg_store_airline_config_file ksmg_store_airline_config_file is used to store the airline data file from the local file system to the
data server.

ksmg_write_airline_config_file ksmg_write_airline_config_file is used to write the list of airline data displayed to the user to the
airline data file.

Table 58 - Routines called by save_table (airline)

Traveler Information Kiosk System Design Document91

4.2.1.3.30 ksmg_write_airline_config_file

ksmg_write_airline_config_file is used to write the list of airline data displayed to the user to the airline
data file. The structure chart for ksmg_write_airline_config_file is depicted in Figure 56. A description of
the routines called by ksmg_write_airline_config_file is provided in Table 59.

ksmg_write_airline_config_file

cfg_get_value

fopen

fprintf

DISPLAY_ERROR_MESSAGE

sprintf

fclose

Figure 56 - ksmg_write_airline_config_file Structure Chart

Traveler Information Kiosk System Design Document92

Function Description

cfg_get_value MDI Configuration File routine used to return the value of the specified configuration name.

DISPLAY_ERROR_MESSAGE DISPLAY_ERROR_MESSAGE is a bridge layer routine that creates and dispatches the GUI layer
event responsible for displaying the error dialog box.

fclose C Library Function used to close an open file.

fopen C Library Function that opens the specified file using the specified access mode.

fprintf UNIX system call to print formatted data to a file stream.

sprintf C Library Function that provides printf capabilities to a character string.

Table 59 - Routines called by ksmg_write_airline_config_file

4.2.1.3.31 ksmg_store_airline_config_file

ksmg_store_airline_config_file is used to store the airline data file from the local file system to the data
server. The structure chart for ksmg_store_airline_config_file is depicted in Figure 57. A description of
the routines called by ksmg_store_airline_config_file is provided in Table 60.

ksmg_store_airline_config_file

cfg_get_value kiosk_dsif_write_file

Figure 57 - ksmg_store_airline_config_file Structure Chart

Traveler Information Kiosk System Design Document93

Function Description

cfg_get_value MDI Configuration File routine used to return the value of the specified configuration name.

kiosk_dsif_write_file kiosk_dsif_write_file packages the write file data into the appropriate kiosk_dsif message and sends it
to the kiosk_dsif process.

Table 60 - Routines called by ksmg_store_airline_config_file

4.2.1.3.32 configure_airport_parking

configure_airport_parking is the GUI layer event attached to the airport parking configuration table menu
item. The button is selected when the user desires to modify the contents of the airport parking
configuration file. The structure chart for configure_airport_parking is depicted in Figure 58. A
description of the routines called by configure_airport_parking is provided in Table 61.

configure_airport_parking

send

new_table parking_config_init

Figure 58 - configure_airport_parking Structure Chart

Traveler Information Kiosk System Design Document94

Function Description

new_table new_table is a GUI layer event triggered when a new table is selected for editing. Each D module contains
this event and if the D module is associated with the table currently being edited a check is make to see if
the current table should be saved. If so, the user is asked whether or not the table should be saved. The
sensitivity of the table menu item of the current table is made sensitive and the form containing the current
table is unmanaged.

parking_config_init parking_config_init is the GUI layer event used to initialize the user interface when a table (data file) is
initially selected for modification. This includes clearing the list of items to be displayed, allowing additions
to be made, reading the data file, and creating the data file if it doesn't exist.

send A TeleUSE statement used to trigger events immediately or queue events for later dispatch.

Table 61 - Routines called by configure_airport_parking

4.2.1.3.33 parking_config_init

parking_config_init is the GUI layer event used to initialize the user interface when a table (data file) is
initially selected for modification. This includes clearing the list of items to be displayed, allowing
additions to be made, reading the data file, and creating the data file if it doesn't exist. The structure chart
for parking_config_init is depicted in Figure 59. A description of the routines called by
parking_config_init is provided in Table 62.

Traveler Information Kiosk System Design Document95

parking_config_init

send

XmListDeleteAllItems

allow_additions

XmString

XmListAddItem

XmStringCreateSimple

ksmg_read_parking_config_file

display_question

change_table

disallow_additions

ksmg_retrieve_parking_config_fil

Figure 59 - parking_config_init Structure Chart

Traveler Information Kiosk System Design Document96

Function Description

allow_additions allow_additions is a GUI layer event in charge of setting the sensitivity for the Add button to true
and desensitizing the delete and modify buttons.

change_table change_table is a GUI layer event responsible for unmapping the current configuration data form
and sensitizing the table submenu item associated with the current configuration table.

disallow_additions disallow_additions is the GUI layer routine that sets the sensitivity of the add menu item so that no
additions can be made until a table is selected.

display_question display_question is a GUI layer event that creates a question dialog box to display the specified
question to the user.

ksmg_read_parking_config_file ksmg_read_parking_config_file is used to read the contents of the airport parking data file and
create the list of airport parking lots to be displayed to the user.

ksmg_retrieve_parking_config_fil ksmg_retrieve_parking_config_file is used to retrieve the airport parking data file from the data
server and place it on the local file system.

Send A TeleUSE statement used to trigger events immediately or queue events for later dispatch.

XmListAddItem X Library function that will add a character string to a scroll list.

XmListDeleteAllItems X Library function that will delete all items from a scroll list.

XmString X Library function that will create an X string from a character string.

XmStringCreateSimple X Library function that will create a simple X string from a character string.

Table 62 - Routines called by parking_config_init

4.2.1.3.34 ksmg_read_parking_config_file

ksmg_read_parking_config_file is used to read the contents of the airport parking data file and create the
list of airport parking lots to be displayed to the user. The structure chart for
ksmg_read_parking_config_file is depicted in Figure 60. A description of the routines called by
ksmg_read_parking_config_file is provided in Table 63.

Traveler Information Kiosk System Design Document97

ksmg_read_parking_config_file

cfg_get_value

fopen

fgets

sscanf sprintf

ADD_PARKING_LIST_ITEM

ferror

fclose

DISPLAY_ERROR_MESSAGE

Figure 60 - ksmg_read_parking_config_file Structure Chart

Traveler Information Kiosk System Design Document98

Function Description

ADD_PARKING_LIST_ITEM ADD_PARKING_LIST_ITEM is a bridge layer routine that creates and dispatches the GUI layer
event responsible for adding an entry to the airport parking lot list.

cfg_get_value MDI Configuration File routine used to return the value of the specified configuration name.

DISPLAY_ERROR_MESSAGE DISPLAY_ERROR_MESSAGE is a bridge layer routine that creates and dispatches the GUI layer
event responsible for displaying the error dialog box.

fclose C Library Function used to close an open file.

ferror C Library Function that returns any previous errors on the associated stream.

fgets C Library Function used to read a line of text from a file.

fopen C Library Function that opens the specified file using the specified access mode.

sprintf C Library Function that provides printf capabilities to a character string.

sscanf UNIX function call that will allow formatted "input" from a NULL terminated character string.

Table 63 - Routines called by ksmg_read_parking_config_file

4.2.1.3.35 ADD_PARKING_LIST_ITEM

ADD_PARKING_LIST_ITEM is a bridge layer routine that creates and dispatches the GUI layer event
responsible for adding an entry to the airport parking lot list. The structure chart for
ADD_PARKING_LIST_ITEM is depicted in Figure 61. A description of the routines called by
ADD_PARKING_LIST_ITEM is provided in Table 64.

Traveler Information Kiosk System Design Document99

ADD_PARKING_LIST_ITEM

tu_create_named_event

tu_assign_event_field

tu_dispatch_event

tu_free_event

add_parking_list_item

Figure 61 - ADD_PARKING_LIST_ITEM Structure Chart

Function Description

add_parking_list_item add_parking_list_item is a GUI layer event that creates an item in the airport parking lot list using the
data specified for the event.

tu_assign_event_field TeleUSE Library Function used to associate the contents of a C variable with the contents of an event
attribute.

tu_create_named_event TeleUSE Library Function used to create the data structure necessary to interface the C code with the
D event code.

tu_dispatch_event TeleUSE Library Function used to dispatch the created event. This causes the event to be executed.

tu_free_event TeleUSE Library Function used to free up any memory that was allocated to the event data structure
using tu_create_named_event.

Table 64 - Routines called by ADD_PARKING_LIST_ITEM

Traveler Information Kiosk System Design Document100

4.2.1.3.36 ksmg_retrieve_parking_config_file

ksmg_retrieve_parking_config_file is used to retrieve the airport parking data file from the data server and
place it on the local file system. The structure chart for ksmg_retrieve_parking_config_file is depicted in
Figure 62. A description of the routines called by ksmg_retrieve_parking_config_file is provided in Table
65.

ksmg_retrieve_parking_config_fil

cfg_get_value kiosk_dsif_read_file

Figure 62 - ksmg_retrieve_parking_config_file Structure Chart

Function Description

cfg_get_value MDI Configuration File routine used to return the value of the specified configuration name.

kiosk_dsif_read_file
kiosk_dsif_read_file packages the read file request into the appropriate kiosk_dsif message and
sends it to the kiosk_dsif process.

Table 65 - Routines called by ksmg_retrieve_parking_config_file

Traveler Information Kiosk System Design Document101

4.2.1.3.37 config_add_ok (parking)

config_add_ok (parking) is a GUI layer event triggered by the user selecting the ok button on the Parking
Configuration Add Entry Dialog. The structure chart for config_add_ok (parking) is depicted in Figure 63.
A description of the routines called by config_add_ok (parking) is provided in Table 66.

config_add_ok
(parking)

allow_additions

DISPLAY_ERROR_MESSAGE

VALIDATE_DOLLAR_AMOUNT

BUILD_PARKING_CONFIG_ENTRY_STR

XmListAddItem destroy

send

utl_strip_trailing_whitespace

Figure 63 - config_add_ok (parking) Structure Chart

Traveler Information Kiosk System Design Document102

Function Description

allow_additions allow_additions is a GUI layer event in charge of setting the sensitivity for the Add
button to true and desensitizing the delete and modify buttons.

BUILD_PARKING_CONFIG_ENTRY_STR BUILD_PARKING_CONFIG_ENTRY_STRING is used to piece together the
character string to be used as the text for an item in the list.

destroy Function which will return allocated X resources back to the system.

DISPLAY_ERROR_MESSAGE DISPLAY_ERROR_MESSAGE is a bridge layer routine that creates and
dispatches the GUI layer event responsible for displaying the error dialog box.

send A TeleUSE statement used to trigger events immediately or queue events for later
dispatch.

utl_strip_trailing_whitespace MDI Common Utility Library routine used to remove trailing blanks from a stirng.

VALIDATE_DOLLAR_AMOUNT VALIDATE_DOLLAR_AMOUNT is a bridge layer routine used to determine the
validity of a dollar amount entered by the user.

XmListAddItem X Library function that will add a character string to a scroll list.

Table 66 - Routines called by config_add_ok (parking)

4.2.1.3.38 VALIDATE_DOLLAR_AMOUNT

VALIDATE_DOLLAR_AMOUNT is a bridge layer routine used to determine the validity of a dollar
amount entered by the user. The structure chart for VALIDATE_DOLLAR_AMOUNT is depicted in
Figure 64. A description of the routines called by VALIDATE_DOLLAR_AMOUNT is provided in Table
67.

Traveler Information Kiosk System Design Document103

VALIDATE_DOLLAR_AMOUNT

utl_strip_trailing_whitespace

strlen

isdigit

Figure 64 - VALIDATE_DOLLAR_AMOUNT Structure Chart

Function Description

Isdigit C Library Function that determines if the given value is a number.

Strlen UNIX system call that computes the number of characters in a NULL terminated string.

utl_strip_trailing_whitespace MDI Common Utility Library routine used to remove trailing blanks from a stirng.

Table 67 - Routines called by VALIDATE_DOLLAR_AMOUNT

4.2.1.3.39 ksmg_create_parking_config_file

ksmg_create_parking_config_file is used to create a new airport parking data file and write the blank file to
the data server. The structure chart for ksmg_create_parking_config_file is depicted in Figure 65. A
description of the routines called by ksmg_create_parking_config_file is provided in Table 68.

Traveler Information Kiosk System Design Document104

ksmg_create_parking_config_file

cfg_get_value fopen kiosk_dsif_write_file

Figure 65 - ksmg_create_parking_config_file Structure Chart

Function Description

cfg_get_value MDI Configuration File routine used to return the value of the specified configuration name.

fopen C Library Function that opens the specified file using the specified access mode.

kiosk_dsif_write_file kiosk_dsif_write_file packages the write file data into the appropriate kiosk_dsif message and
sends it to the kiosk_dsif process.

Table 68 - Routines called by ksmg_create_parking_config_file

4.2.1.3.40 config_modify_ok (parking)

config_modify_ok (parking) is a GUI layer event triggered by the user selecting the ok button on the
Parking Configuration Modify Entry Dialog. The structure chart for config_modify_ok (parking) is
depicted in Figure 66. A description of the routines called by config_modify_ok (parking) is provided in
Table 69.

Traveler Information Kiosk System Design Document105

config_modify_ok
(parking)

strlen DISPLAY_ERROR_MESSAGE

VALIDATE_DOLLAR_AMOUNT

BUILD_PARKING_CONFIG_ENTRY_STR

XmListReplaceItemsPos

destroy

Figure 66 - config_modify_ok (parking) Structure Chart

Traveler Information Kiosk System Design Document106

Function Description

BUILD_PARKING_CONFIG_ENTRY_STR BUILD_PARKING_CONFIG_ENTRY_STRING is used to piece together the
character string to be used as the text for an item in the list.

destroy Function which will return allocated X resources back to the system.

DISPLAY_ERROR_MESSAGE DISPLAY_ERROR_MESSAGE is a bridge layer routine that creates and dispatches
the GUI layer event responsible for displaying the error dialog box.

strlen UNIX system call that computes the number of characters in a NULL terminated
string.

VALIDATE_DOLLAR_AMOUNT VALIDATE_DOLLAR_AMOUNT is a bridge layer routine used to determine the
validity of a dollar amount entered by the user.

XmListReplaceItemsPos X Library function that will replace the instance of one X string with another instance
in a Scroll List.

Table 69 - Routines called by config_modify_ok (parking)

4.2.1.3.41 save_table (parking)

save_table is responsibile for creating the string list object that is used to write the configuration data to the
file. The structure chart for save_table (parking) is depicted in Figure 67. A description of the routines
called by save_table (parking) is provided in Table 70.

Traveler Information Kiosk System Design Document107

save_table
(parking)

create
string_list

ksmg_write_parking_config_file

destroy

DISPLAY_ERROR_MESSAGE

ksmg_store_parking_config_file

Figure 67 - save_table (parking) Structure Chart

Function Description

create string_list Function that creates a C character string from a series of X strings.

destroy Function which will return allocated X resources back to the system.

DISPLAY_ERROR_MESSAGE DISPLAY_ERROR_MESSAGE is a bridge layer routine that creates and dispatches the GUI layer
event responsible for displaying the error dialog box.

ksmg_store_parking_config_file ksmg_store_parking_config_file is used to store the airport parking data file from the local file
system to the data server.

ksmg_write_parking_config_file ksmg_write_parking_config_file is used to write the list of airport parking lots displayed to the user
to the airport parking lot data file.

Table 70 - Routines called by save_table (parking)

Traveler Information Kiosk System Design Document108

4.2.1.3.42 ksmg_write_parking_config_file

ksmg_write_parking_config_file is used to write the list of airport parking lots displayed to the user to the
airport parking lot data file. The structure chart for ksmg_write_parking_config_file is depicted in Figure
68. A description of the routines called by ksmg_write_parking_config_file is provided in Table 71.

ksmg_write_parking_config_file

cfg_get_value

fopen

fprintf

DISPLAY_ERROR_MESSAGE

sprintf

fclose

Figure 68 - ksmg_write_parking_config_file Structure Chart

Traveler Information Kiosk System Design Document109

Function Description

cfg_get_vaue MDI Configuration File routine used to return the value of the specified configuration name.

DISPLAY_ERROR_MESSAGE DISPLAY_ERROR_MESSAGE is a bridge layer routine that creates and dispatches the GUI layer
event responsible for displaying the error dialog box.

fclose C Library Function used to close an open file.

fopen C Library Function that opens the specified file using the specified access mode.

fprintf UNIX system call to print formatted data to a file stream.

sprintf C Library Function that provides printf capabilities to a character string.

Table 71 - Routines called by ksmg_write_parking_config_file

4.2.1.3.43 ksmg_store_parking_config_file

ksmg_store_parking_config_file is used to store the airport parking data file from the local file system to
the data server. The structure chart for ksmg_store_parking_config_file is depicted in Figure 69. A
description of the routines called by ksmg_store_parking_config_file is provided in Table 72.

Traveler Information Kiosk System Design Document110

ksmg_store_parking_config_file

cfg_get_value kiosk_dsif_write_file

Figure 69 - ksmg_store_parking_config_file Structure Chart

Function Description

cfg_get_value MDI Configuration File routine used to return the value of the specified configuration name.

kiosk_dsif_write_file kiosk_dsif_write_file packages the write file data into the appropriate kiosk_dsif message and
sends it to the kiosk_dsif process.

Table 72 - Routines called by ksmg_store_parking_config_file

4.2.1.3.44 configure_rental_car

configure_rental_car is the GUI layer event attached to the rental car configuration table menu item. The
button is selected when the user desires to modify the contents of the rental car agency configuration file.
The structure chart for configure_rental_car is depicted in Figure 70. A description of the routines called
by configure_rental_car is provided in Table 73.

Traveler Information Kiosk System Design Document111

configure_rental_car

send

new_table rental_car_config_init

Figure 70 - configure_rental_car Structure Chart

Function Description

new_table new_table is a GUI layer event triggered when a new table is selected for editing. Each D module contains this
event and if the D module is associated with the table currently being edited a check is make to see if the current
table should be saved. If so, the user is asked whether or not the table should be saved. The sensitivity of the
table menu item of the current table is made sensitive and the form containing the current table is unmanaged.

rental_car_config_init rental_car_config_init is the GUI layer event used to initialize the user interface when a table (data file) is initially
selected for modification. This includes clearing the list of items to be displayed, allowing additions to be made,
reading the data file, and creating the data file if it doesn't exist.

send A TeleUSE statement used to trigger events immediately or queue events for later dispatch.

Table 73 - Routines called by configure_rental_car

Traveler Information Kiosk System Design Document112

4.2.1.3.45 rental_car_config_init

rental_car_config_init is the GUI layer event used to initialize the user interface when a table (data file) is
initially selected for modification. This includes clearing the list of items to be displayed, allowing
additions to be made, reading the data file, and creating the data file if it doesn't exist. The structure chart
for rental_car_config_init is depicted in Figure 71. A description of the routines called by
rental_car_config_init is provided in Table 74.

Traveler Information Kiosk System Design Document113

rental_car_config_init

send

XmListDeleteAllItems

allow_additions

XmStringFree

XmListAddItem

XmStringCreateSimple

ksmg_read_rental_car_config_file

display_question

change_table

disallow_additions

ksmg_retrieve_rental_car_config_

Figure 71 - rental_car_config_init Structure Chart

Traveler Information Kiosk System Design Document114

Function Description

allow_additions allow_additions is a GUI layer event in charge of setting the sensitivity for the Add button to true
and desensitizing the delete and modify buttons.

change_table change_table is a GUI layer event responsible for unmapping the current configuration data
form and sensitizing the table submenu item associated with the current configuration table.

disallow_additions disallow_additions is the GUI layer routine that sets the sensitivity of the add menu item so that
no additions can be made until a table is selected.

display_question display_question is a GUI layer event that creates a question dialog box to display the specified
question to the user.

ksmg_read_rental_car_config_file ksmg_read_rental_car_config_file is used to read the contents of the rental car agency data file
and create the list of rental car agencies to be displayed to the user.

ksmg_retrieve_rental_car_config_ ksmg_retrieve_rental_car_config_file is used to retrieve the rental car agency data file from the
data server and place it on the local file system.

send A TeleUSE statement used to trigger events immediately or queue events for later dispatch.

XmListAddItem X Library function that will add a character string to a scroll list.

XmListDeleteAllItems X Library function that will delete all items from a scroll list.

XmStringCreateSimple X Library function that will create a simple X string from a character string.

XmStringFree X Library function that frees a previously allocated X string.

Table 74 - Routines called by rental_car_config_init

4.2.1.3.46 ksmg_read_rental_car_config_file

ksmg_read_rental_car_config_file is used to read the contents of the rental car agency data file and create
the list of rental car agencies to be displayed to the user. The structure chart for
ksmg_read_rental_car_config_file is depicted in Figure 72. A description of the routines called by
ksmg_read_rental_car_config_file is provided in Table 75.

Traveler Information Kiosk System Design Document115

ksmg_read_rental_car_config_file

cfg_get_value

fopen

fgets

sscanf sprintf

ADD_RENTAL_CAR_LIST_ITEM

ferror

fclose

DISPLAY_ERROR_MESSAGE

Figure 72 - ksmg_read_rental_car_config_file Structure Chart

Traveler Information Kiosk System Design Document116

Function Description

ADD_RENTAL_CAR_LIST_ITEM ADD_RENTAL_CAR_LIST_ITEM is a bridge layer routine that creates and dispatches the GUI
layer event responsible for adding an entry to the rental car agency list.

cfg_get_value MDI Configuration File routine used to return the value of the specified configuration name.

DISPLAY_ERROR_MESSAGE DISPLAY_ERROR_MESSAGE is a bridge layer routine that creates and dispatches the GUI
layer event responsible for displaying the error dialog box.

fclose C Library Function used to close an open file.

ferror C Library Function that returns any previous errors on the associated stream.

fgets C Library Function used to read a line of text from a file.

fopen C Library Function that opens the specified file using the specified access mode.

sprintf C Library Function that provides printf capabilities to a character string.

sscanf UNIX function call that will allow formatted "input" from a NULL terminated character string.

Table 75 - Routines called by ksmg_read_rental_car_config_file

4.2.1.3.47 ADD_RENTAL_CAR_LIST_ITEM

ADD_RENTAL_CAR_LIST_ITEM is a bridge layer routine that creates and dispatches the GUI layer
event responsible for adding an entry to the rental car agency list. The structure chart for
ADD_RENTAL_CAR_LIST_ITEM is depicted in Figure 73. A description of the routines called by
ADD_RENTAL_CAR_LIST_ITEM is provided in Table 76.

Traveler Information Kiosk System Design Document117

ADD_RENTAL_CAR_LIST_ITEM

tu_create_named_event

tu_assign_event_field

tu_dispatch_event

tu_free_event

add_rental_car_list_item

Figure 73 - ADD_RENTAL_CAR_LIST_ITEM Structure Chart

Function Description

add_rental_car_list_item add_rental_car_list_item is a GUI layer event that creates an item in the rental car agency list
using the data specified for the event.

tu_assign_event_field TeleUSE Library Function used to associate the contents of a C variable with the contents of an
event attribute.

tu_create_named_event TeleUSE Library Function used to create the data structure necessary to interface the C code
with the D event code.

tu_dispatch_event TeleUSE Library Function used to dispatch the created event. This causes the event to be
executed.

tu_free_event TeleUSE Library Function used to free up any memory that was allocated to the event data
structure using tu_create_named_event.

Table 76 - Routines called by ADD_RENTAL_CAR_LIST_ITEM

Traveler Information Kiosk System Design Document118

4.2.1.3.48 ksmg_retrieve_rental_car_config

ksmg_retrieve_rental_car_config_file is used to retrieve the rental car agency data file from the data server
and place it on the local file system. The structure chart for ksmg_retrieve_rental_car_config is depicted in
Figure 74. A description of the routines called by ksmg_retrieve_rental_car_config is provided in Table
77.

ksmg_retrieve_rental_car_config_

cfg_get_value kiosk_dsif_read_file

Figure 74 - ksmg_retrieve_rental_car_config Structure Chart

Function Description

cfg_get_value MDI Configuration File routine used to return the value of the specified configuration name.

kiosk_dsif_read_file
kiosk_dsif_read_file packages the read file request into the appropriate kiosk_dsif message
and sends it to the kiosk_dsif process.

Table 77 - Routines called by ksmg_retrieve_rental_car_config

Traveler Information Kiosk System Design Document119

4.2.1.3.49 config_add_ok (rental)

config_add_ok (rental) is a GUI layer event triggered by the user selecting the ok button on the Rental Car
Configuration Add Entry Dialog. The structure chart for config_add_ok (rental) is depicted in Figure 75.
A description of the routines called by config_add_ok (rental) is provided in Table 78.

config_add_ok
(rental)

allow_additions

DISPLAY_ERROR_MESSAGE

VALIDATE_PHONE_STRING

BUILD_RENTAL_CAR_CONFIG_ENTRY_ST

XmListAddItem

destroy

send

utl_strip_trailing_whitespace

Figure 75 - config_add_ok (rental) Structure Chart

Traveler Information Kiosk System Design Document120

Function Description

allow_additions allow_additions is a GUI layer event in charge of setting the sensitivity for the
Add button to true and desensitizing the delete and modify buttons.

BUILD_RENTAL_CAR_CONFIG_ENTRY_ST BUILD_RENTAL_CAR_CONFIG_ENTRY_STRING is used to piece together
the character string to be used as the text for an item in the list. All text strings
are left justified within the appropriate fields of the entry string.

destroy Function which will return allocated X resources back to the system.

DISPLAY_ERROR_MESSAGE DISPLAY_ERROR_MESSAGE is a bridge layer routine that creates and
dispatches the GUI layer event responsible for displaying the error dialog box.

send A TeleUSE statement used to trigger events immediately or queue events for
later dispatch.

utl_strip_trailing_whitespace MDI Common Utility Library routine used to remove trailing blanks from a string.

VALIDATE_PHONE_STRING VALIDATE_PHONE_STRING is a bridge layer routine used to determine the
validity of a telephone number entered by the user. Accepted strings are in the
form of xxx-xxxx or x-xxx-xxx-xxxx.

XmListAddItem X Library function that will add a character string to a scroll list.

Table 78 - Routines called by config_add_ok (rental)

4.2.1.3.50 ksmg_create_rental_car_config_file

ksmg_create_rental_car_config_file is used to create a new rental car agency data file and write the blank
file to the data server. The structure chart for ksmg_create_rental_car_config_file is depicted in Figure 76.
A description of the routines called by ksmg_create_rental_car_config_file is provided in Table 79.

Traveler Information Kiosk System Design Document121

ksmg_create_rental_car_config_file

cfg_get_value fopen kiosk_dsif_write_file

Figure 76 - ksmg_create_rental_car_config_file Structure Chart

Function Description

cfg_get_value MDI Configuration File routine used to return the value of the specified configuration name.

fopen C Library Function that opens the specified file using the specified access mode.

kiosk_dsif_write_file kiosk_dsif_write_file packages the write file data into the appropriate kiosk_dsif message and
sends it to the kiosk_dsif process.

Table 79 - Routines called by ksmg_create_rental_car_config_file

4.2.1.3.51 config_modify_ok (rental)

config_modify_ok (rental) is a GUI layer event triggered by the user selecting the ok button on the Rental
Car Configuration Modify Entry Dialog. The structure chart for config_modify_ok (rental) is depicted in
Figure 77. A description of the routines called by config_modify_ok (rental) is provided in Table 80.

Traveler Information Kiosk System Design Document122

config_modify_ok
(rental)

destroy

DISPLAY_ERROR_MESSAGE

VALIDATE_PHONE_STRING

BUILD_RENTAL_CAR_CONFIG_ENTRY_ST

XmListReplaceItemsPos

Figure 77 - config_modify_ok (rental) Structure Chart

Traveler Information Kiosk System Design Document123

Function Description

BUILD_RENTAL_CAR_CONFIG_ENTRY_ST BUILD_RENTAL_CAR_CONFIG_ENTRY_STRING is used to piece together
the character string to be used as the text for an item in the list. All text strings
are left justified within the appropriate fields of the entry string.

destroy Function which will return allocated X resources back to the system.

DISPLAY_ERROR_MESSAGE DISPLAY_ERROR_MESSAGE is a bridge layer routine that creates and
dispatches the GUI layer event responsible for displaying the error dialog box.

VALIDATE_PHONE_STRING VALIDATE_PHONE_STRING is a bridge layer routine used to determine the
validity of a telephone number entered by the user. Accepted strings are in the
form of xxx-xxxx or x-xxx-xxx-xxxx.

XmListReplaceItemsPos X Library function that will replace the instance of one X string with another
instance in a Scroll List.

Table 80 - Routines called by config_modify_ok (rental)

4.2.1.3.52 save_table (rental)

save_table is responsibile for creating the string list object that is used to write the configuration data to the
file. The structure chart for save_table (rental) is depicted in Figure 78. A description of the routines
called by save_table (rental) is provided in Table 81.

Traveler Information Kiosk System Design Document124

save_table
(rental)

create
string_list

ksmg_write_rental_car_config_fil

destroy

DISPLAY_ERROR_MESSAGE

ksmg_store_rental_car_config_fil

Figure 78 - save_table (rental) Structure Chart

Function Description

create string_list Function that creates a C character string from a series of X strings.

destroy Function which will return allocated X resources back to the system.

DISPLAY_ERROR_MESSAGE DISPLAY_ERROR_MESSAGE is a bridge layer routine that creates and dispatches the GUI
layer event responsible for displaying the error dialog box.

ksmg_store_rental_car_config_fil ksmg_store_rental_car_config_file is used to store the rental car agency data file from the local
file system to the data server.

ksmg_write_rental_car_config_fil ksmg_write_rental_car_config_file is used to write the list of rental car agencies displayed to the
user to the rental car agency data file.

Table 81 - Routines called by save_table (rental)

Traveler Information Kiosk System Design Document125

4.2.1.3.53 ksmg_write_rental_car_config_fil

ksmg_write_rental_car_config_file is used to write the list of rental car agencies displayed to the user to the
rental car agency data file. The structure chart for ksmg_write_rental_car_config_fil is depicted in Figure
79. A description of the routines called by ksmg_write_rental_car_config_fil is provided in Table 82.

ksmg_write_rental_car_config_fil

cfg_get_value

fopen

fprintf

DISPLAY_ERROR_MESSAGE

sprintf

fclose

Figure 79 - ksmg_write_rental_car_config_fil Structure Chart

Traveler Information Kiosk System Design Document126

Function Description

cfg_get_value MDI Configuration File routine used to return the value of the specified configuration name.

DISPLAY_ERROR_MESSAGE DISPLAY_ERROR_MESSAGE is a bridge layer routine that creates and dispatches the GUI layer
event responsible for displaying the error dialog box.

fclose C Library Function used to close an open file.

fopen C Library Function that opens the specified file using the specified access mode.

fprintf UNIX system call to print formatted data to a file stream.

sprintf C Library Function that provides printf capabilities to a character string.

Table 82 - Routines called by ksmg_write_rental_car_config_fil

4.2.1.3.54 ksmg_store_rental_car_config_fil

ksmg_store_rental_car_config_file is used to store the rental car agency data file from the local file system
to the data server. The structure chart for ksmg_store_rental_car_config_fil is depicted in Figure 80. A
description of the routines called by ksmg_store_rental_car_config_fil is provided in Table 83.

ksmg_store_rental_car_config_fil

cfg_get_value kiosk_dsif_write_file

Figure 80 - ksmg_store_rental_car_config_fil Structure Chart

Traveler Information Kiosk System Design Document127

Function Description

cfg_get_value MDI Configuration File routine used to return the value of the specified configuration name.

kiosk_dsif_write_file kiosk_dsif_write_file packages the write file data into the appropriate kiosk_dsif message and
sends it to the kiosk_dsif process.

Table 83 - Routines called by ksmg_store_rental_car_config_fil

4.2.1.3.55 configure_screen_saver

configure_screen_saver is the GUI layer event attached to the screen saver configuration table menu item.
The button is selected when the user desires to modify the contents of the screen saver configuration file.
The structure chart for configure_screen_saver is depicted in Figure 81. A description of the routines
called by configure_screen_saver is provided in Table 84.

configure_screen_saver

send

new_table ss_config_init

Figure 81 - configure_screen_saver Structure Chart

Traveler Information Kiosk System Design Document128

Function Description

new_table new_table is a GUI layer event triggered when a new table is selected for editing. Each D module contains
this event and if the D module is associated with the table currently being edited a check is make to see if the
current table should be saved. If so, the user is asked whether or not the table should be saved. The
sensitivity of the table menu item of the current table is made sensitive and the form containing the current
table is unmanaged.

send A TeleUSE statement used to trigger events immediately or queue events for later dispatch.

ss_config_init ss_config_init is the GUI layer event used to initialize the user interface when a table (data file) is initially
selected for modification. This includes clearing the list of items to be displayed, allowing additions to be
made, reading the data file, and creating the data file if it doesn't exist.

Table 84 - Routines called by configure_screen_saver

4.2.1.3.56 ss_config_init

ss_config_init is the GUI layer event used to initialize the user interface when a table (data file) is initially
selected for modification. This includes clearing the list of items to be displayed, allowing additions to be
made, reading the data file, and creating the data file if it doesn't exist. The structure chart for
ss_config_init is depicted in Figure 82. A description of the routines called by ss_config_init is provided in
Table 85.

Traveler Information Kiosk System Design Document129

ss_config_init

send

XmListDeleteAllItems

allow_additions

XmString

XmListAddItem

XmStringCreateSimple

ksmg_read_ss_config_file

display_question

change_table

disallow_additions

Figure 82 - ss_config_init Structure Chart

Traveler Information Kiosk System Design Document130

Function Description

allow_additions allow_additions is a GUI layer event in charge of setting the sensitivity for the Add button to true and
desensitizing the delete and modify buttons.

change_table change_table is a GUI layer event responsible for unmapping the current configuration data form and
sensitizing the table submenu item associated with the current configuration table.

disallow_additions disallow_additions is the GUI layer routine that sets the sensitivity of the add menu item so that no additions
can be made until a table is selected.

display_question display_question is a GUI layer event that creates a question dialog box to display the specified question to
the user.

ksmg_read_ss_config_file ksmg_read_ss_config_file is used to read the contents of the screen saver data file and create the list of
the screen saver files to be displayed to the user.

send A TeleUSE statement used to trigger events immediately or queue events for later dispatch.

XmListAddItem X Library function that will add a character string to a scroll list.

XmListDeleteAllItems X Library function that will delete all items from a scroll list.

XmString X Library function that will create an X string from a character string.

XmStringCreateSimple X Library function that will create a simple X string from a character string.

Table 85 - Routines called by ss_config_init

4.2.1.3.57 ksmg_read_ss_config_file

ksmg_read_ss_config_file is used to read the contents of the screen saver data file and create the list of the
screen saver files to be displayed to the user. The structure chart for ksmg_read_ss_config_file is depicted
in Figure 83. A description of the routines called by ksmg_read_ss_config_file is provided in Table 86.

Traveler Information Kiosk System Design Document131

ksmg_read_ss_config_file

cfg_get_value

fopen

fgets

strtok

sprintf

ADD_SS_LIST_ITEM

ferror

fclose

DISPLAY_ERROR_MESSAGE

access

atoi

strrchr

Figure 83 - ksmg_read_ss_config_file Structure Chart

Traveler Information Kiosk System Design Document132

Function Description

access UNIX Library function that tests the UNIX access rights for a specific file.

ADD_SS_LIST_ITEM ADD_SS_LIST_ITEM is a bridge layer routine that creates and dispatches the GUI layer event
responsible for adding an entry to the screen saver list.

atoi C Library Function to convert an ASCII string to an integer value.

cfg_get_value MDI Configuration File routine used to return the value of the specified configuration name.

DISPLAY_ERROR_MESSAGE DISPLAY_ERROR_MESSAGE is a bridge layer routine that creates and dispatches the GUI layer
event responsible for displaying the error dialog box.

fclose C Library Function used to close an open file.

ferror C Library Function that returns any previous errors on the associated stream.

fgets C Library Function used to read a line of text from a file.

fopen C Library Function that opens the specified file using the specified access mode.

sprintf C Library Function that provides printf capabilities to a character string.

strrchr C Library Function that provides the capability to find the first occurence of the specified character in
the given string.

strtok C Library Function used to break the specified string into a sequence of tokens.

Table 86 - Routines called by ksmg_read_ss_config_file

4.2.1.3.58 ADD_SS_LIST_ITEM

ADD_SS_LIST_ITEM is a bridge layer routine that creates and dispatches the GUI layer event
responsible for adding an entry to the screen saver list. The structure chart for ADD_SS_LIST_ITEM is
depicted in Figure 84. A description of the routines called by ADD_SS_LIST_ITEM is provided in Table
87.

Traveler Information Kiosk System Design Document133

ADD_SS_LIST_ITEM

tu_create_named_event

tu_assign_event_field

tu_dispatch_event

tu_free_event

add_ss_list_item

Figure 84 - ADD_SS_LIST_ITEM Structure Chart

Function Description

add_ss_list_item add_ss_list_item is a GUI layer event that creates an item in the screen saver list using the data specified for
the event.

tu_assign_event_field TeleUSE Library Function used to associate the contents of a C variable with the contents of an event
attribute.

tu_create_named_event TeleUSE Library Function used to create the data structure necessary to interface the C code with the D
event code.

tu_dispatch_event TeleUSE Library Function used to dispatch the created event. This causes the event to be executed.

tu_free_event TeleUSE Library Function used to free up any memory that was allocated to the event data structure using
tu_create_named_event.

Table 87 - Routines called by ADD_SS_LIST_ITEM

Traveler Information Kiosk System Design Document134

4.2.1.3.59 config_add_ok (ss)

config_add_ok (ss) is a GUI layer event triggered by the user selecting the ok button on the Screen Saver
Configuration Add Entry Dialog. The structure chart for config_add_ok (ss) is depicted in Figure 85. A
description of the routines called by config_add_ok (ss) is provided in Table 88.

config_add_ok
(ss)

allow_additions

DISPLAY_ERROR_MESSAGE

VALIDATE_DISPLAY_TIME

BUILD_SS_CONFIG_ENTRY_STRING

XmListAddItem destroy

send

VALIDATE_SS_FILE

COPY_SS_FILE

FILE_BASE_NAME

Figure 85 - config_add_ok (ss) Structure Chart

Traveler Information Kiosk System Design Document135

Function Description

allow_additions allow_additions is a GUI layer event in charge of setting the sensitivity for the Add button
to true and desensitizing the delete and modify buttons.

BUILD_SS_CONFIG_ENTRY_STRING BUILD_SS_CONFIG_ENTRY_STRING is used to piece together the character string to
be used as the text for an item in the list.

COPY_SS_FILE COPY_SS_FILES is a bridge layer routine used to copy the screen saver file from the
directory containing the screen saver file to the kiosk data directory where screen saver
files are stored for download to the kiosk.

destroy Function which will return allocated X resources back to the system.

DISPLAY_ERROR_MESSAGE DISPLAY_ERROR_MESSAGE is a bridge layer routine that creates and dispatches the
GUI layer event responsible for displaying the error dialog box.

FILE_BASE_NAME FILE_BASE_NAME is a bridge layer routine used to obtain the base name from a file
name that may contain the full pathname of the file.

send A TeleUSE statement used to trigger events immediately or queue events for later
dispatch.

VALIDATE_DISPLAY_TIME VALIDATE_DISPLAY_TIME is a bridge layer routine used to determine the validity of
the screen saver display time entered by the user. The display time must contain only
digits and cannot be less than or equal to 0.

VALIDATE_SS_FILE VALIDATE_SS_FILE is a bridge layer routine used to determine the validity of the
screen saver file name and type entered by the user. Using the file type (AVI, BMP,
BMP-WAV), this routine checks for the existence of the necessary files.

XmListAddItem X Library function that will add a character string to a scroll list.

Table 88 - Routines called by config_add_ok (ss)

4.2.1.3.60 VALIDATE_DISPLAY_TIME

VALIDATE_DISPLAY_TIME is a bridge layer routine used to determine the validity of the screen saver
display time entered by the user. The display time must contain only digits and cannot be less than or equal
to 0. The structure chart for VALIDATE_DISPLAY_TIME is depicted in Figure 86. A description of the
routines called by VALIDATE_DISPLAY_TIME is provided in Table 89.

Traveler Information Kiosk System Design Document136

VALIDATE_DISPLAY_TIME

utl_strip_trailing_whitespace

strlen

isdigit

atoi

Figure 86 - VALIDATE_DISPLAY_TIME Structure Chart

Function Description

atoi C Library Function to convert an ASCII string to an integer value.

isdigit C Library Function that determines if the given value is a number.

strlen UNIX system call that computes the number of characters in a NULL terminated string.

utl_strip_trailing_whitespace MDI Common Utility Library routine used to remove trailing blanks from a string.

Table 89 - Routines called by VALIDATE_DISPLAY_TIME

4.2.1.3.61 VALIDATE_SS_FILE

VALIDATE_SS_FILE is a bridge layer routine used to determine the validity of the screen saver file name
and type entered by the user. Using the file type (AVI, BMP, BMP-WAV), this routine checks for the
existence of the necessary files. The structure chart for VALIDATE_SS_FILE is depicted in Figure 87. A
description of the routines called by VALIDATE_SS_FILE is provided in Table 90.

Traveler Information Kiosk System Design Document137

VALIDATE_SS_FILE

utl_strip_trailing_whitespace

strcmp

strcpy

access

Figure 87 - VALIDATE_SS_FILE Structure Chart

Function Description

access UNIX Library function that tests the UNIX access rights for a specific file.

strcmp UNIX function that will compare the contents of two NULL terminated character strings.

strcpy C Library Function used to copy a source string to a destination string.

utl_strip_trailing_whitespace MDI Common Utility Library routine used to remove trailing blanks from a stirng.

Table 90 - Routines called by VALIDATE_SS_FILE

4.2.1.3.62 COPY_SS_FILES

COPY_SS_FILES is a bridge layer routine used to copy the screen saver file from the directory containing
the screen saver file to the kiosk data directory where screen saver files are stored for download to the
kiosk. The structure chart for COPY_SS_FILES is depicted in Figure 88. A description of the routines
called by COPY_SS_FILES is provided in Table 91.

Traveler Information Kiosk System Design Document138

COPY_SS_FILES

utl_strip_trailing_whitespace

basename

strcpy

strcmp

sprintf

system

Figure 88 - COPY_SS_FILES Structure Chart

Traveler Information Kiosk System Design Document139

Function Description

basename UNIX function that will strip of the directory information from a filename (i.e., it will return just the base
filename).

sprintf C Library Function that provides printf capabilities to a character string.

strcmp UNIX function that will compare the contents of two NULL terminated character strings.

strcpy C Library Function used to copy a source string to a destination string.

system UNIX function call that will execute the specified UNIX command in the shell.

utl_strip_trailing_whitespace MDI Common Utility Library routine used to remove trailing blanks from a string.

Table 91 - Routines called by COPY_SS_FILES

4.2.1.3.63 FILE_BASE_NAME

FILE_BASE_NAME is a bridge layer routine used to obtain the base name from a file name that may
contain the full pathname of the file. The structure chart for FILE_BASE_NAME is depicted in Figure 89.
A description of the routines called by FILE_BASE_NAME is provided in Table 92.

Traveler Information Kiosk System Design Document140

FILE_BASE_NAME

strlen

basename

memset strncpy

Figure 89 - FILE_BASE_NAME Structure Chart

Function Description

basename UNIX function that will strip the directory information from a filename (i.e., it will return just the base filename).

memset C Library Function used to set an area of memory to a specified value.

strlen UNIX system call that computes the number of characters in a NULL terminated string.

strncpy C Library Function used to copy a specified number of characters from a source string to a destination string.

Table 92 - Routines called by FILE_BASE_NAME

Traveler Information Kiosk System Design Document141

4.2.1.3.64 ksmg_create_ss_config_file

ksmg_create_ss_config creates an empty screen saver configuration data file. This routine is used when the
screen saver file does not exist. The structure chart for ksmg_create_ss_config_file is depicted in Figure
90. A description of the routines called by ksmg_create_ss_config_file is provided in Table 93.

ksmg_create_ss_config_file

cfg_get_value fopen fclose

Figure 90 - ksmg_create_ss_config_file Structure Chart

Function Description

cfg_get_value MDI Configuration File routine used to return the value of the specified configuration name.

fclose C Library Function used to close an open file.

fopen C Library Function that opens the specified file using the specified access mode.

Table 93 - Routines called by ksmg_create_ss_config_file

4.2.1.3.65 config_modify_cancel (ss)

config_modify_cancel (ss) is a GUI layer event triggered when the user selects the cancel button on the
Modify Screen Saver Entry Dialog. Modifications are not allowed so this is a safety net which displays an
error message to the user. The structure chart for config_modify_cancel (ss) is depicted in Figure 91. A
description of the routines called by config_modify_cancel (ss) is provided in Table 94.

Traveler Information Kiosk System Design Document142

config_modify_cancel
(ss)

DISPLAY_ERROR_MESSAGE

Figure 91 - config_modify_cancel (ss) Structure Chart

Function Description

DISPLAY_ERROR_MESSAGE DISPLAY_ERROR_MESSAGE is a bridge layer routine that creates and dispatches the GUI layer
event responsible for displaying the error dialog box.

Table 94 - Routines called by config_modify_cancel (ss)

4.2.1.3.66 config_modify_ok (ss)

config_modify_ok (ss) is a GUI layer event triggered when the user selects the ok button on the Modify
Screen Saver Entry Dialog. Modifications are not allowed so this is a safety net which displays an error
message to the user. The structure chart for config_modify_ok (ss) is depicted in Figure 92. A description
of the routines called by config_modify_ok (ss) is provided in Table 95.

Traveler Information Kiosk System Design Document143

config_modify_ok
(ss)

DISPLAY_ERROR_MESSAGE

Figure 92 - config_modify_ok (ss) Structure Chart

Function Description

DISPLAY_ERROR_MESSAGE DISPLAY_ERROR_MESSAGE is a bridge layer routine that creates and dispatches the GUI layer
event responsible for displaying the error dialog box.

Table 95 - Routines called by config_modify_ok (ss)

4.2.1.3.67 modify_entry (ss)

modify_entry (ss) is the GUI layer event triggered when the user attempts to modify a screen saver list
entry. Modification of a screen saver list entry is not allowed and an error dialog is displayed with a
message stating this fact. The structure chart for modify_entry (ss) is depicted in Figure 93. A description
of the routines called by modify_entry (ss) is provided in Table 96.

Traveler Information Kiosk System Design Document144

modify_entry
(ss)

DISPLAY_ERROR_MESSAGE

Figure 93 - modify_entry (ss) Structure Chart

Function Description

DISPLAY_ERROR_MESSAGE DISPLAY_ERROR_MESSAGE is a bridge layer routine that creates and dispatches the GUI layer
event responsible for displaying the error dialog box.

Table 96 - Routines called by modify_entry (ss)

4.2.1.3.68 delete_entry (ss)

delete_entry is a GUI level event defined in each of the D modules associated with a particular
configuration table type. This event is responsible for deleting all the items selected in the configuration
data list. The callbacks for the Ok and Cancel button are added by this routine so the events local to the D
module are used in response to these button selections. The structure chart for delete_entry (ss) is depicted
in Figure 94. A description of the routines called by delete_entry (ss) is provided in Table 97.

Traveler Information Kiosk System Design Document145

delete_entry
(ss)

XmListDeleteItem

send

save_table
(ss)

DELETE_SS_CONFIG_FILE

Figure 94 - delete_entry (ss) Structure Chart

Function Description

DELETE_SS_CONFIG_FILE DELETE_SS_CONFIG_FILE is a bridge layer routine that takes the name of the screen saver file and
breaks it into the file name and the file type (AVI, BMP, WAV). These two items are then used to
delete the screen saver file.

save_table (ss) save_table is responsibile for creating the string list object that is used to write the configuration data
to the file.

send A TeleUSE statement used to trigger events immediately or queue events for later dispatch.

XmListDeleteItem X Function call that will delete an item from a Scroll List.

Table 97 - Routines called by delete_entry (ss)

4.2.1.3.69 DELETE_SS_CONFIG_FILE

DELETE_SS_CONFIG_FILE is a bridge layer routine that takes the name of the screen saver file and
breaks it into the file name and the file type (AVI, BMP, WAV). These two items are then used to delete
the screen saver file. The structure chart for DELETE_SS_CONFIG_FILE is depicted in Figure 95. A
description of the routines called by DELETE_SS_CONFIG_FILE is provided in Table 98.

Traveler Information Kiosk System Design Document146

DELETE_SS_CONFIG_FILE

memset

strncpy

utl_strip_trailing_whitespace

ksmg_delete_ss_config_file

Figure 95 - DELETE_SS_CONFIG_FILE Structure Chart

Function Description

ksmg_delete_ss_config_file ksmg_delete_ss_config_file is used to delete screen saver files based on the advertisement type and
the file name.

memset C Library Function used to set an area of memory to a specified value.

strncpy C Library Function used to copy a specified number of characters from a source string to a destination
string.

utl_strip_trailing_whitespace MDI Common Utility Library routine used to remove trailing blanks from a stirng.

Table 98 - Routines called by DELETE_SS_CONFIG_FILE

Traveler Information Kiosk System Design Document147

4.2.1.3.70 ksmg_delete_ss_config_file

ksmg_delete_ss_config_file is used to delete screen saver files based on the advertisement type and the file
name. The structure chart for ksmg_delete_ss_config_file is depicted in Figure 96. A description of the
routines called by ksmg_delete_ss_config_file is provided in Table 99.

ksmg_delete_ss_config_file

strstr

sprintf

unlink

DISPLAY_ERROR_MESSAGE

getenv

Figure 96 - ksmg_delete_ss_config_file Structure Chart

Traveler Information Kiosk System Design Document148

Function Description

DISPLAY_ERROR_MESSAGE DISPLAY_ERROR_MESSAGE is a bridge layer routine that creates and dispatches the GUI layer
event responsible for displaying the error dialog box.

getenv UNIX function call that will search the environment for the specified variable.

sprintf C Library Function that provides printf capabilities to a character string.

strstr C Library Function that will return a pointer to the first occurrence of a string within a string.

unlink UNIX system call that will remove the specified file from the file system.

Table 99 - Routines called by ksmg_delete_ss_config_file

4.2.1.3.71 save_table (ss)

save_table is responsibile for creating the string list object that is used to write the configuration data to the
file. The structure chart for save_table (ss) is depicted in Figure 97. A description of the routines called
by save_table (ss) is provided in Table 100.

save_table
(ss)

create
string_list ksmg_write_ss_config_file destroy

Figure 97 - save_table (ss) Structure Chart

Traveler Information Kiosk System Design Document149

Function Description

create string_list Function that creates a C character string from a series of X strings.

destroy Function which will return allocated X resources back to the system.

ksmg_write_ss_config_file ksmg_write_ss_config_file is used to write the list of screen saver data displayed to the user to the
screen saver data file.

Table 100 - Routines called by save_table (ss)

4.2.1.3.72 ksmg_write_ss_config_file

ksmg_write_ss_config_file is used to write the list of screen saver data displayed to the user to the screen
saver data file. The structure chart for ksmg_write_ss_config_file is depicted in Figure 98. A description
of the routines called by ksmg_write_ss_config_file is provided in Table 101.

Traveler Information Kiosk System Design Document150

ksmg_write_ss_config_file

cfg_get_value

fopen

fprintf

DISPLAY_ERROR_MESSAGE

sprintf

fclose

utl_strip_trailing_whitespace

strcpy

atoi

Figure 98 - ksmg_write_ss_config_file Structure Chart

Traveler Information Kiosk System Design Document151

Function Description

atoi C Library Function to convert an ASCII string to an integer value.

cfg_get_value MDI Configuration File routine used to return the value of the specified configuration name.

DISPLAY_ERROR_MESSAGE DISPLAY_ERROR_MESSAGE is a bridge layer routine that creates and dispatches the GUI layer
event responsible for displaying the error dialog box.

fclose C Library Function used to close an open file.

fopen C Library Function that opens the specified file using the specified access mode.

fprintf UNIX system call to print formatted data to a file stream.

sprintf C Library Function that provides print capabilities to a character string.

strcpy C Library Function used to copy a source string to a destination string.

utl_strip_trailing_whitespace MDI Common Utility Library routine used to remove trailing blanks from a string.

Table 101 - Routines called by ksmg_write_ss_config_file

4.2.1.3.73 configure_kiosk

configure_kiosk is the GUI layer event attached to the kiosk configuration table menu item. The button is
selected when the user desires to modify the contents of the kiosk configuration file. The structure chart for
configure_kiosk is depicted in Figure 99. A description of the routines called by configure_kiosk is
provided in Table 102.

Traveler Information Kiosk System Design Document152

configure_kiosk

send

new_table kiosk_config_init

Figure 99 - configure_kiosk Structure Chart

Function Description

kiosk_config_init kiosk_config_init is the GUI layer event used to initialize the user interface when a table (data file) is initially selected
for modification. This includes clearing the list of items to be displayed, allowing additions to be made, reading the
data file, and creating the data file if it doesn't exist.

new_table new_table is a GUI layer event triggered when a new table is selected for editing. Each D module contains this event
and if the D module is associated with the table currently being edited a check is make to see if the current table
should be saved. If so, the user is asked whether or not the table should be saved. The sensitivity of the table menu
item of the current table is made sensitive and the form containing the current table is unmanaged.

send A TeleUSE statement used to trigger events immediately or queue events for later dispatch.

Table 102 - Routines called by configure_kiosk

Traveler Information Kiosk System Design Document153

4.2.1.3.74 kiosk_config_init

kiosk_config_init is the GUI layer event used to initialize the user interface when a table (data file) is
initially selected for modification. This includes clearing the list of items to be displayed, allowing
additions to be made, reading the data file, and creating the data file if it doesn't exist. The structure chart
for kiosk_config_init is depicted in Figure 100. A description of the routines called by kiosk_config_init is
provided in Table 103.

Traveler Information Kiosk System Design Document154

kiosk_config_init

send

XmListDeleteAllItems

allow_additions

XmString

XmListAddItem

XmStringCreateSimple

ksmg_read_kiosk_config_file

display_question

change_table

disallow_additions

Figure 100 - kiosk_config_init Structure Chart

Traveler Information Kiosk System Design Document155

Function Description

allow_additions allow_additions is a GUI layer event in charge of setting the sensitivity for the Add button to true and
desensitizing the delete and modify buttons.

change_table change_table is a GUI layer event responsible for unmapping the current configuration data form and
sensitizing the table submenu item associated with the current configuration table.

disallow_additions disallow_additions is the GUI layer routine that sets the sensitivity of the add menu item so that no
additions can be made until a table is selected.

display_question display_question is a GUI layer event that creates a question dialog box to display the specified
question to the user.

ksmg_read_kiosk_config_file ksmg_read_kiosk_config_file is used to read the contents of the kiosk data file and create the list of
kiosks to be displayed to the user.

send A TeleUSE statement used to trigger events immediately or queue events for later dispatch.

XmListAddItem X Library function that will add a character string to a scroll list.

XmListDeleteAllItems X Library function that will delete all items from a scroll list.

XmString X Library function that will create an X string from a character string.

XmStringCreateSimple X Library function that will create a simple X string from a character string.

Table 103 - Routines called by kiosk_config_init

4.2.1.3.75 ksmg_read_kiosk_config_file

ksmg_read_kiosk_config_file is used to read the contents of the kiosk data file and create the list of kiosks
to be displayed to the user. The structure chart for ksmg_read_kiosk_config_file is depicted in Figure 101.
A description of the routines called by ksmg_read_kiosk_config_file is provided in Table 104.

Traveler Information Kiosk System Design Document156

ksmg_read_kiosk_config_file

cfg_get_value

fopen

fgets

sscanf sprintf

ADD_KIOSK_LIST_ITEM

ferror

fclose

DISPLAY_ERROR_MESSAGE

access

Figure 101 - ksmg_read_kiosk_config_file Structure Chart

Traveler Information Kiosk System Design Document157

Function Description

access UNIX Library function that tests the UNIX access rights for a specific file.

ADD_KIOSK_LIST_ITEM ADD_KIOSK_LIST_ITEM is a bridge layer routine that creates and dispatches the GUI layer event
responsible for adding an entry to the kiosk list.

cfg_get_value MDI Configuration File routine used to return the value of the specified configuration name.

DISPLAY_ERROR_MESSAGE DISPLAY_ERROR_MESSAGE is a bridge layer routine that creates and dispatches the GUI layer
event responsible for displaying the error dialog box.

fclose C Library Function used to close an open file.

ferror C Library Function that returns any previous errors on the associated stream.

fgets C Library Function used to read a line of text from a file.

fopen C Library Function that opens the specified file using the specified access mode.

sprintf C Library Function that provides printf capabilities to a character string.

sscanf UNIX function call that will allow formatted "input" from a NULL terminated character string.

Table 104 - Routines called by ksmg_read_kiosk_config_file

4.2.1.3.76 ADD_KIOSK_LIST_ITEM

ADD_KIOSK_LIST_ITEM is a bridge layer routine that creates and dispatches the GUI layer event
responsible for adding an entry to the kiosk list. The structure chart for ADD_KIOSK_LIST_ITEM is
depicted in Figure 102. A description of the routines called by ADD_KIOSK_LIST_ITEM is provided in
Table 105.

Traveler Information Kiosk System Design Document158

ADD_KIOSK_LIST_ITEM

tu_create_named_event

tu_assign_event_field

tu_dispatch_event

tu_free_event

add_kiosk_list_item

Figure 102 - ADD_KIOSK_LIST_ITEM Structure Chart

Function Description

add_kiosk_list_item add_kiosk_list_item is a GUI layer event that creates an item in the kiosk list using the data specified for the
event.

tu_assign_event_field TeleUSE Library Function used to associate the contents of a C variable with the contents of an event
attribute.

tu_create_named_event TeleUSE Library Function used to create the data structure necessary to interface the C code with the D
event code.

tu_dispatch_event TeleUSE Library Function used to dispatch the created event. This causes the event to be executed.

tu_free_event TeleUSE Library Function used to free up any memory that was allocated to the event data structure using
tu_create_named_event.

Table 105 - Routines called by ADD_KIOSK_LIST_ITEM

Traveler Information Kiosk System Design Document159

4.2.1.3.77 config_add_ok (Kiosk)

config_add_ok (kiosk) is a GUI layer event triggered by the user selecting the ok button on the Kiosk
Configuration Add Entry Dialog. The structure chart for config_add_ok (Kiosk) is depicted in Figure 103.
A description of the routines called by config_add_ok (Kiosk) is provided in Table 106.

config_add_ok
(kiosk)

VALIDATE_KIOSK_NAME_STRING DISPLAY_ERROR_MESSAGE

VALIDATE_PHONE_STRING

BUILD_KIOSK_CONFIG_ENTRY_STRING

XmListAddItem destroy

send

allow_additions

Figure 103 - config_add_ok (Kiosk) Structure Chart

Traveler Information Kiosk System Design Document160

Function Description

allow_additions allow_additions is a GUI layer event in charge of setting the sensitivity for the Add
button to true and desensitizing the delete and modify buttons.

BUILD_KIOSK_CONFIG_ENTRY_STRING BUILD_KIOSK_CONFIG_ENTRY_STRING is used to piece together the
character string to be used as the text for an item in the list. All text strings are left
justified within the appropriate fields of the entry string.

destroy Function which will return allocated X resources back to the system.

DISPLAY_ERROR_MESSAGE DISPLAY_ERROR_MESSAGE is a bridge layer routine that creates and
dispatches the GUI layer event responsible for displaying the error dialog box.

Send A TeleUSE statement used to trigger events immediately or queue events for later
dispatch.

VALIDATE_KIOSK_NAME_STRING VALIDATE_KIOSK_NAME_STRING is a bridge layer routine used to determine
the validity of a kiosk name entered by the user. Accepted strings do not contain
any whitespace.

VALIDATE_PHONE_STRING VALIDATE_PHONE_STRING is a bridge layer routine used to determine the
validity of a telephone number entered by the user. Accepted strings are in the
form of xxx-xxxx or x-xxx-xxx-xxxx.

XmListAddItem X Library function that will add a character string to a scroll list.

Table 106 - Routines called by config_add_ok (Kiosk)

4.2.1.3.78 VALIDATE_KIOSK_NAME_STRING

VALIDATE_KIOSK_NAME_STRING is a bridge layer routine used to determine the validity of a kiosk
name entered by the user. Accepted strings do not contain any whitespace. The structure chart for
VALIDATE_KIOSK_NAME_STRING is depicted in Figure 104. A description of the routines called by
VALIDATE_KIOSK_NAME_STRING is provided in Table 107.

Traveler Information Kiosk System Design Document161

VALIDATE_KIOSK_NAME_STRING

utl_strip_trailing_whitespace

strlen

isspace

Figure 104 - VALIDATE_KIOSK_NAME_STRING Structure Chart

Function Description

isspace C Library Function that determines if the given value is a blank space.

strlen UNIX system call that computes the number of characters in a NULL terminated string.

utl_strip_trailing_whitespace MDI Common Utility Library routine used to remove trailing blanks from a stirng.

Table 107 - Routines called by VALIDATE_KIOSK_NAME_STRING

4.2.1.3.79 ksmg_create_kiosk_config_file

ksmg_create_kiosk_config creates an empty kiosk configuration data file. This routine is used when the
kiosk file does not exist. The structure chart for ksmg_create_kiosk_config_file is depicted in Figure 105.
A description of the routines called by ksmg_create_kiosk_config_file is provided in Table 108.

Traveler Information Kiosk System Design Document162

ksmg_create_kiosk_config_file

cfg_get_value fopen fclose

Figure 105 ksmg_create_kiosk_config_file Structure Chart

Function Description

cfg_get_value MDI Configuration File routine used to return the value of the specified configuration name.

fclose C Library Function used to close an open file.

fopen C Library Function that opens the specified file using the specified access mode.

Table 108 - Routines called by ksmg_create_kiosk_config_file

4.2.1.3.80 config_modify_ok (Kiosk)

config_modify_ok (kiosk) is a GUI layer event triggered by the user selecting the ok button on the Kiosk
Configuration Modify Entry Dialog. The structure chart for config_modify_ok (Kiosk) is depicted in
Figure 106. A description of the routines called by config_modify_ok (Kiosk) is provided in Table 109.

Traveler Information Kiosk System Design Document163

config_modify_ok
(kiosk)

VALIDATE_KIOSK_NAME_STRING DISPLAY_ERROR_MESSAGE

VALIDATE_PHONE_STRING

BUILD_KIOSK_CONFIG_ENTRY_STRING

XmListReplaceItemPos

destroy

Figure 106 - config_modify_ok (Kiosk) Structure Chart

Traveler Information Kiosk System Design Document164

Function Description

BUILD_KIOSK_CONFIG_ENTRY_STRING BUILD_KIOSK_CONFIG_ENTRY_STRING is used to piece together the
character string to be used as the text for an item in the list. All text strings are
left justified within the appropriate fields of the entry string.

destroy Function which will return allocated X resources back to the system.

DISPLAY_ERROR_MESSAGE DISPLAY_ERROR_MESSAGE is a bridge layer routine that creates and
dispatches the GUI layer event responsible for displaying the error dialog box.

VALIDATE_KIOSK_NAME_STRING VALIDATE_KIOSK_NAME_STRING is a bridge layer routine used to determine
the validity of a kiosk name entered by the user. Accepted strings do not contain
any whitespace.

VALIDATE_PHONE_STRING VALIDATE_PHONE_STRING is a bridge layer routine used to determine the
validity of a telephone number entered by the user. Accepted strings are in the
form of xxx-xxxx or x-xxx-xxx-xxxx.

XmListReplaceItemPos X Library function that will replace the instance of one X string with another
instance in a Scroll List.

Table 109 - Routines called by config_modify_ok (Kiosk)

4.2.1.3.81 save_table (Kiosk)

save_table is responsibile for creating the string list object that is used to write the configuration data to the
file. The structure chart for save_table (Kiosk) is depicted in Figure 107. A description of the routines
called by save_table (Kiosk) is provided in Table 110.

save_table
(kiosk)

create
string_list ksmg_write_kiosk_config_file destroy

Figure 107 - save_table (Kiosk) Structure Chart

Traveler Information Kiosk System Design Document165

Function Description

create string_list Function that will creates a C character string from a series of X strings.

destroy Function which will return allocated X resources back to the system.

ksmg_write_kiosk_config_file ksmg_write_kiosk_config_file is used to write the list of kiosk data displayed to the user to the kiosk
data file.

Table 110 - Routines called by save_table (Kiosk)

4.2.1.3.82 ksmg_write_kiosk_config_file

ksmg_write_kiosk_config_file is used to write the list of kiosk data displayed to the user to the kiosk data
file. The structure chart for ksmg_write_kiosk_config_file is depicted in Figure 108. A description of the
routines called by ksmg_write_kiosk_config_file is provided in Table 111.

Traveler Information Kiosk System Design Document166

ksmg_write_kiosk_config_file

cfg_get_value

fopen

fprintf

DISPLAY_ERROR_MESSAGE

sprintf

fclose

Figure 108 - ksmg_write_kiosk_config_file Structure Chart

Traveler Information Kiosk System Design Document167

Function Description

cfg_get_value MDI Configuration File routine used to return the value of the specified configuration name.

DISPLAY_ERROR_MESSAGE DISPLAY_ERROR_MESSAGE is a bridge layer routine that creates and dispatches the GUI
layer event responsible for displaying the error dialog box.

fclose C Library Function used to close an open file.

fopen C Library Function that opens the specified file using the specified access mode.

fprintf UNIX system call to print formatted data to a file stream.

sprintf C Library Function that provides printf capabilities to a character string.

Table 111 - Routines called by ksmg_write_kiosk_config_file

4.2.1.3.83 add_entry

add_entry is a GUI level event defined in each of the D modules associated with a particular configuration
table type. This event is responsible for displaying the dialog box containing the input fields for the
configuration data. The callbacks for the Ok and Cancel button are added by this routine so the events
local to the D module are used in response to these button selections. The structure chart for add_entry is
depicted in Figure 109. A description of the routines called by add_entry is provided in Table 112.

Traveler Information Kiosk System Design Document168

add_entry

XmDeselectAllItems send create
widget

disallow_additions

Figure 109 - add_entry Structure Chart

Function Description

create widget create widget is used to create a widget of a particular TeleUSE template allowing for the specification of a
widget name and a parent for the widget.

disallow_additions disallow_additions is the GUI layer routine that sets the sensitivity of the add menu item so that no additions can
be made until a table is selected.

send A TeleUSE statement used to trigger events immediately or queue events for later dispatch.

XmDeselectAllItems X Function call that will force all items in a Scroll List to be un-selected.

Table 112 - Routines called by add_entry

4.2.1.3.84 config_add_cancel

config_add_cancel is a GUI layer event triggered when the user selects the cancel button on the Add Entry
Dialog. The structure chart for config_add_cancel is depicted in Figure 110. A description of the routines
called by config_add_cancel is provided in Table 113.

Traveler Information Kiosk System Design Document169

config_add_cancel

destroy send

allow_additions

Figure 110 - config_add_cancel Structure Chart

Function Description

allow_additions allow_additions is a GUI layer event in charge of setting the sensitivity for the Add button to true and desensitizing
the delete and modify buttons.

destroy Function which will return allocated X resources back to the system.

send A TeleUSE statement used to trigger events immediately or queue events for later dispatch.

Table 113 - Routines called by config_add_cancel

4.2.1.3.85 modify_entry

modify_entry is a GUI layer event triggered when the user selects the modify menu item. The data from the
entry selected from the list is used to fill in the data entry fields of the data entry dialog box. This dialog
box is created and displayed to the user allowing for Ok and Cancel of the modify task. The structure chart
for modify_entry is depicted in Figure 111. A description of the routines called by modify_entry is
provided in Table 114.

Traveler Information Kiosk System Design Document170

modify_entry

utl_strip_trailing_whitespace XmDeselectAllItems create
widget

Figure 111 - modify_entry Structure Chart

Function Description

create widget create widget is used to create a widget of a particular TeleUSE template allowing for the
specification of a widget name and a parent for the widget.

utl_strip_trailing_whitespace MDI Common Utility Library routine used to remove trailing blanks from a string.

XmDeselectAllItems X Function call that will force all items in a Scroll List to be un-selected.

Table 114 - Routines called by modify_entry

4.2.1.3.86 config_modify_cancel

config_modify_cancel is a GUI layer event triggered when the user selects the cancel button on the Modify
Entry Dialog. The structure chart for config_modify_cancel is depicted in Figure 112. A description of the
routines called by config_modify_cancel is provided in Table 115.

Traveler Information Kiosk System Design Document171

config_modify_cancel

destroy

Figure 112 - config_modify_cancel Structure Chart

Function Description

destroy Function which will return allocated X resources back to the system.

Table 115 - Routines called by config_modify_cancel

4.2.1.3.87 delete_entry

delete_entry is a GUI level event defined in each of the D modules associated with a particular
configuration table type. This event is responsible for deleting all the items selected in the configuration
data list. The callbacks for the Ok and Cancel button are added by this routine so the events local to the D
module are used in response to these button selections. The structure chart for delete_entry is depicted in
Figure 113. A description of the routines called by delete_entry is provided in Table 116.

Traveler Information Kiosk System Design Document172

delete_entry

XmListDeleteItem

Figure 113 - delete_entry Structure Chart

Function Description

XmListDeleteItem X Function call that will delete an item from a Scroll List.

Table 116 - Routines called by delete_entry

4.2.1.3.88 ksmg_delete_widget

ksmg_delete_widget is the GUI layer event attached to all widgets that need to be deleted based on some
form of user interaction. The structure chart for ksmg_delete_widget is depicted in Figure 114. A
description of the routines called by ksmg_delete_widget is provided in Table 117.

Traveler Information Kiosk System Design Document173

ksmg_delete_widget

destroy

Figure 114 - ksmg_delete_widget Structure Chart

Function Description

destroy Function which will return allocated X resources back to the system.

Table 117 - Routines called by ksmg_delete_widget

4.2.1.3.89 ksmg_disconnect_from_dsif

ksmg_disconnect_from_dsif manages the task of disconnecting from the Kiosk Data Server Interface
Process. The structure chart for ksmg_disconnect_from_dsif is depicted in Figure 115. A description of
the routines called by ksmg_disconnect_from_dsif is provided in Table 118.

Traveler Information Kiosk System Design Document174

ksmg_disconnect_from_dsif

kiosk_dsif_disconnect

Figure 115 - ksmg_disconnect_from_dsif Structure Chart

Function Description

kiosk_dsif_disconnect kiosk_dsif_disconnect is used to disconnect a process from the kiosk_dsif process.

Table 118 - Routines called by ksmg_disconnect_from_dsif

4.2.1.3.90 exit_application

exit_application is the GUI layer event responsible for performing housekeeping functions prior to
termination of the application. The structure chart for exit_application is depicted in Figure 116. A
description of the routines called by exit_application is provided in Table 119.

Traveler Information Kiosk System Design Document175

exit_application

send tu_exit

new_table

Figure 116 - exit_application Structure Chart

Function Description

new_table new_table is a GUI layer event triggered when a new table is selected for editing. Each D module contains this event
and if the D module is associated with the table currently being edited a check is make to see if the current table should
be saved. If so, the user is asked whether or not the table should be saved. The sensitivity of the table menu item of
the current table is made sensitive and the form containing the current table is unmanaged.

send A TeleUSE statement used to trigger events immediately or queue events for later dispatch.

tu_exit A TeleUSE library routine used to exit the application.

Table 119 - Routines called by exit_application

Traveler Information Kiosk System Design Document176

4.2.1.4 Status Logger

The Status Logger was developed as part of the MDI common code. For design information about the
Status Logger consult the Common Code Model Deployment Initiative Design Document.

4.2.1.5 Data Server Interface

The Data Server Interface (DSIF) provides the communication path between the Data Server and the KMC
applications residing on the KMC. The DSIF accepts requests from the KMC applications and returns the
requested data or an error. Figure 117 depicts the DSIF data flows and Table 120 provides descriptions
for the DSIF data flows.

Traveler Information Kiosk System Design Document177

0.1.1

Dispatch
Data
File
Requests

0.1.2

Dispatch
Equipment
Status

0.1.3

Dispatch
Subsystem
Heartbeat

0.1.4

Generate
Process
Heartbeat

Process
Status

Data Files

Equipment
Status

Start Process

Stop Process

Most Severe
Process Status

Data Files

Equipment
Status

Subsystem
Heartbeat

File Times

Process
Heartbeat

Status Log
Message

Start Process

Stop Process

Start Process

Stop Process

Start Process

Stop Process

Status Log
Message

Status Log
Message

Status Log
Message

Figure 117 - DSIF Data Flows

Traveler Information Kiosk System Design Document178

Function Description

Data Files Data Files are files that are stored at the Data Server and include files such as weather files,
screen saver files, and airport files.

Dispatch Data File Requests Dispatch Data File Requests is responsible for receiving the Data Files to write to the Data
Server or to use to receive File Times from the Data Server. Errors that occur reading or
writing files or obtaining file times from the Data Server are logged using Status Log
Messages.

Dispatch Equipment Status Dispatch Equipment Status is responsible for receiving the Equipment Status from the
Kiosk Field Unit data process and sending the Equipment Status to the Data Server. Errors
that occur sending the Equipment Status to the Data Server are logged using Status Log
Messages.

Dispatch Subsystem Heartbeat Dispatch Subsystem Heartbeat is responsible for receiving the Most Severe Process Status
from the Subsystem Heartbeat Management data process and sending the Subsystem
Heartbeat to the Data Server. Errors that occur sending the Subsystem Heartbeat to the
Data Server are logged using Status Log Messages.

Equipment Status Equipment Status is used to define the current state of different equipment. For the Kiosk
subsystem the Equipment Status is used to send the Kiosk Field Unit Equipment Status to
the Data Server.

File Times File Times are the last update times associated with the Data Files stored at the Data
Server.

Generate Process Heartbeat Generate Process Heartbeat periodically sends the Process Heartbeat to the Subsystem
Heartbeat Management process. The current Process Status is read and sent as part of
the Process Heartbeat. The time interval for sending the Process Heartbeat is specified by
the Heartbeat Interval configuration item. Errors and other status information is logged
using the Status Log Message.

Most Severe Process Status Most Severe Process Status is the value of the process status being managed by the
Subsystem Heartbeat Management that represents the worst status of all the processes.
For example if all processes indicated an ok status except one process indicated a warning
status then the Most Severe Process Status would be warning.

Process Status Process Status contains the current value associated with the execution status of the
process. This status can indicate an OK condition, a warning condition, or an error
condition.

Start Process Start Process is an event used to start the execution of a process.

Status Log Message Status Log Message contains information to be logged to the subsystem log file. Typical
Status Log Messages include error messages such as memory allocation errors or data
being logged from field equipment associated with the subsystem.

Stop Process Stop Process is an event used to stop the execution of a process.

Subsystem Heartbeat Subsystem Heartbeat is the heartbeat message containing the overall status of the KIOSK
subsystem. This message is generated by the Subsystem Heartbeat Management process
and is passed on to the Data Server by the subsystem's Data Server Interface process.

Table 120 – DSIF Data Flow Descriptions

Traveler Information Kiosk System Design Document179

The following subsections provide the detailed design for the DSIF. Each subsection contains a description
of the routine, a structure chart of the routine and a table containing descriptions of the components defined
in the structure chart.

4.2.1.5.1 kiosk_dsif_main

The kiosk_dsif main routine is responsible for setting up configuration information, opening the socket used
for communication, and connecting to the status logger. This routine enters a loop waiting for data server
messages and periodically sending heartbeat messages to the subsystem heartbeat process. The structure
chart for kiosk_dsif_main is depicted in Figure 118. A description of the routines called by
kiosk_dsif_main is provided in Table 121.

Traveler Information Kiosk System Design Document180

kiosk_dsif_mainatexit

utl_signal_setup

sigset

initialize_kiosk_dsif

process_status_config_with_logge

kiosk_dsif_cleanup

ph_connect ds_init process_status_message

sock_listen_with_reuse

alarm

process_status_get_status

send_heartbeat_pulse

select

respond_to_read_sockets

sigalrm_handler

Figure 118 - kiosk_dsif_main Structure Chart

Traveler Information Kiosk System Design Document181

Function Description

alarm System Call used to set the alarm clock of the calling process to send a SIGALRM signal
after the specified number of seconds have elapsed.

atexit C Library Function used to register routines to be called on normal termination of a program.

ds_init MDI Data Server library routine used to initialize the connection to the Data Server.

initialize_kiosk_dsif The kiosk_dsif configuration file specified on the command line is read to obtain the values
of the configurable items of the kiosk_dsif process.

kiosk_dsif_cleanup Called when kiosk_dsif exits. This routine is responsible for performing the housekeeping
necessary for a graceful shutdown. This includes sending a last heartbeat, disconnecting
from the process-level heartbeat service, disconnecting from the Data Server, and closing
any sockets that are open for communicating with the kiosk_dsif process.

ph_connect MDI Process Heartbeat routine used to connect to the specified process-level heartbeat
service. The host name and service name are used to make the connection.

process_status_config_with_logge process_status_config_with_logger is an MDI Process Status Common routine used to
configure the process status handling for the process. This routine is used to set up the
connection to the status logger used by the calling program.

process_status_get_status MDI Process Status routine used to obtain the most severe process-level status. This is an
aggregation of the status for each of the status types defined for the process.

process_status_message MDI Process Status routine used to log a status message for the specified status type. If
the process status library was configured to use a status logger then the message is
forwarded to the status logger. Otherwise the message is written to the configured status
log file.

respond_to_read_sockets Loops through the list of socket descriptors ready for reading and either accepts
connections, if the socket descriptor is for the listen socket, or receives messages
containing information to be sent to the Data Server.

select C Library Function used to multiplex synchronous I/O. The list of file descriptors for
reading, writing, and receiving exceptions are examined and any file descriptors that are
ready for reading, writing, or have an exceptional condition pending are identified.

send_heartbeat_pulse Sends the process-level heartbeat to the Subsystem Heartbeat process.

sigalrm_handler The signal handler for the SIGALRM signal. This signal is used to indicate when the
process-level heartbeat should be sent to the Kiosk subsystem heartbeat process. The
alarm is reinitialized as part of this routine.

sigset C Library Function used to modify the disposition of a signal. The signal can be caught,
ignored, or returned to the default disposition.

sock_listen_with_reuse MDI Common Socket routine used to set up a socket to listen for connections and to make
the socket address reusable.

utl_signal_setup MDI Common Utility Library routine used to set up a default signal handler for all catchable
signals.

Table 121 - Routines called by kiosk_dsif_main

4.2.1.5.2 kiosk_dsif_cleanup

Traveler Information Kiosk System Design Document182

kiosk_dsif_cleanup is called when kiosk_dsif exits. This routine is responsible for performing the
housekeeping necessary for a graceful shutdown. This includes sending a last heartbeat, disconnecting
from the process-level heartbeat service, disconnecting from the Data Server, and closing any sockets that
are open for communicating with the kiosk_dsif process. The structure chart for kiosk_dsif_cleanup is
depicted in Figure 119. A description of the routines called by kiosk_dsif_cleanup is provided in Table
122.

kiosk_dsif_cleanup

send_heartbeat_pulse

ph_disconnect

ds_close

sock_close

Figure 119 - kiosk_dsif_cleanup Structure Chart

Traveler Information Kiosk System Design Document183

Function Description

ds_close MDI Data Server routine used to close the connection to the Data Server.

ph_disconnect MDI Process Heartbeat routine used to disconnect from the process-level heartbeat service.

send_heartbeat_pulse Sends the process-level heartbeat to the Subsystem Heartbeat process.

sock_close MDI Socket routine used to close the specified socket connection.

Table 122 - Routines called by kiosk_dsif_cleanup

4.2.1.5.3 send_heartbeat_pulse

send_heartbeat_pulse sends the process-level heartbeat to the Subsystem Heartbeat process. The structure
chart for send_heartbeat_pulse is depicted in Figure 120. A description of the routines called by
send_heartbeat_pulse is provided in Table 123.

send_heartbeat_pulse

ph_send_heartbeat ph_disconnect ph_connectprocess_status_message

Figure 120 - send_heartbeat_pulse Structure Chart

Traveler Information Kiosk System Design Document184

Function Description

ph_connect MDI Process Heartbeat routine used to connect to the specified process-level heartbeat service. The
host name and service name are used to make the connection.

ph_disconnect MDI Process Heartbeat routine used to disconnect from the process-level heartbeat service.

ph_send_heartbeat MDI Process Heartbeat routine used to send the specified status value to the heartbeat service
configured by the ph_connect call.

process_status_message MDI Process Status routine used to log a status message for the specified status type. If the process
status library was configured to use a status logger then the message is forwarded to the status logger.
Otherwise the message is written to the configured status log file.

Table 123 - Routines called by send_heartbeat_pulse

4.2.1.5.4 initialize_kiosk_dsif

initialize_kiosk_dsif reads the kiosk_dsif configuration file specified on the command line to obtain the
values of the configurable items of the kiosk_dsif process. The structure chart for initialize_kiosk_dsif is
depicted in Figure 121. A description of the routines called by initialize_kiosk_dsif is provided in Table
124.

cfg_load_configuration_data

cfg_get_value

initialize_kiosk_dsif

atoi

Figure 121 - initialize_kiosk_dsif Structure Chart

Traveler Information Kiosk System Design Document185

Function Description

atoi C Library Function to convert an ASCII string to an integer value.

cfg_get_value MDI Configuration File routine used to return the value of the specified configuration name.

cfg_load_configuration_data MDI Configuration File routine used to read the configuration name-value pairs from the specified
configuration file. These name-value pairs are loaded into memory so they can be accessed on
demand by the calling program.

Table 124 - Routines called by initialize_kiosk_dsif

4.2.1.5.5 sigalm_handler

sigalm_handler is the signal handler for the SIGALRM signal. This signal is used to indicate when the
process-level heartbeat should be sent to the Kiosk subsystem heartbeat process. The alarm is reinitialized
as part of this routine. The structure chart for sigalm_handler is depicted in Figure 122. A description of
the routines called by sigalm_handler is provided in Table 125.

sigalrm_handler

alarm

Figure 122 - sigalm_handler Structure Chart

Function Description

alarm System Call used to set the alarm clock of the calling process to send a SIGALRM signal after the specified number
of seconds have elapsed.

Table 125 - Routines called by sigalm_handler

Traveler Information Kiosk System Design Document186

4.2.1.5.6 respond_to_read_sockets

The respond_to_read_sockets routine loops through the list of socket descriptors ready for reading and
either accepts connections, if the socket descriptor is for the listen socket, or receives messages containing
information to be sent to the Data Server. The structure chart for respond_to_read_sockets is depicted in
Figure 123. A description of the routines called by respond_to_read_sockets is provided in Table 126.

respond_to_read_sockets

process_status_message

process_status_set_status_type_v

sock_accept

sock_set_nonblocking

receive_dsif_message

disconnect_receive_socket

send_data_server_message

Figure 123 - respond_to_read_sockets Structure Chart

Traveler Information Kiosk System Design Document187

Function Description

disconnect_receive_socket Removes the specified socket descriptor from the specified file descriptor set and shuts
down and closes the associated socket.

process_status_message MDI Process Status routine used to log a status message for the specified status type. If
the process status library was configured to use a status logger then the message is
forwarded to the status logger. Otherwise the message is written to the configured status
log file.

process_status_set_status_type_value process_status_set_status_type_value is used to set the value associated with the
specified process status type.

receive_dsif_message Reads a message from the specified socket. There is no attempt to clear the socket data
or try to resynchronize the message data if any errors occur during reading.

send_data_server_message Extracts the contents of the message and sends the contents on to the Data Server. The
message sent to the Data Server could have a response that needs to be read from the
Data Server.

sock_accept MDI Socket routine that accepts connections on the specified listen socket.

sock_set_nonblocking MDI Socket routine that sets the specified socket to be a non-blocking socket.

Table 126 - Routines called by respond_to_read_sockets

4.2.1.5.7 receive_dsif_message

receive_dsif_message reads a message from the specified socket. There is no attempt to clear the socket
data or try to resynchronize the message data if any errors occur during reading. The structure chart for
receive_dsif_message is depicted in Figure 124. A description of the routines called by
receive_dsif_message is provided in Table 127.

Traveler Information Kiosk System Design Document188

receive_dsif_message

sock_readn

Figure 124 - receive_dsif_message Structure Chart

Function Description

sock_readn MDI Socket routine that reads a specified number of bytes from the specified socket.

Table 127 - Routines called by receive_dsif_message

4.2.1.5.8 disconnect_receive_socket

disconnect_receive_socket removes the specified socket descriptor from the specified file descriptor set and
shuts down and closes the associated socket. The structure chart for disconnect_receive_socket is depicted
in Figure 125. A description of the routines called by disconnect_receive_socket is provided in Table 128.

Traveler Information Kiosk System Design Document189

disconnect_receive_socket

sock_close

Figure 125 - disconnect_receive_socket Structure Chart

Function Description

sock_close MDI Socket routine used to close the specified socket connection.

Table 128 - Routines called by disconnect_receive_socket

4.2.1.5.9 send_data_server_message

The send_data_server_message routine extracts the contents of the message and sends the contents on to
the Data Server. The message sent to the Data Server could have a response that needs to be read from the
Data Server. The structure chart for send_data_server_message is depicted in Figure 126. A description
of the routines called by send_data_server_message is provided in Table 129.

Traveler Information Kiosk System Design Document190

send_data_server_message

ntohl

process_status_set_status_type_v

process_status_message

ds_close

ds_init

send_heartbeat_message

send_write_file_message

send_read_file_message

send_file_time_message

send_delete_file_message

send_write_equip_status_message

send_get_file_type_time_message

Figure 126 - send_data_server_message Structure Chart

Traveler Information Kiosk System Design Document191

Function Description

ds_close MDI Data Server routine used to close the connection to the Data Server.

ds_init MDI Data Server library routine used to initialize the connection to the Data Server.

ntohl Network Function used to convert between network and host byte order.

process_status_message MDI Process Status routine used to log a status message for the specified status type. If
the process status library was configured to use a status logger then the message is
forwarded to the status logger. Otherwise the message is written to the configured status
log file.

process_status_set_status_type_value process_status_set_status_type_value is used to set the value associated with the
specified process status type.

send_delete_file_message send_delete_file_message extracts the specific information from the received message
and calls the data server delete file routine.

send_file_time_message send_file_time_message extracts the specific information from the received message and
calls the data server file time routine.

send_get_file_type_time_message send_get_file_type_time_message extracts the specific information from the received
message and calls the data server get file type time routine.

send_heartbeat_message send_heartbeat_message extracts the specific information from the received message
calls the data server heartbeat routine.

send_read_file_message send_read_file_message extracts the specific information from the received message and
calls the data server read file routine.

send_write_equip_status_message send_write_equip_status_message extracts the specific information from the received
message and calls the data server write equipment status routine.

send_write_file_message send_write_file_message extracts the specific information from the received message and
calls the data server write file routine.

Table 129 - Routines called by send_data_server_message

4.2.1.5.10 send_heartbeat_message

send_heartbeat_message extracts the specific information from the received message and calls the data
server heartbeat routine. The structure chart for send_heartbeat_message is depicted in Figure 127. A
description of the routines called by send_heartbeat_message is provided in Table 130.

Traveler Information Kiosk System Design Document192

send_heartbeat_message

ntohl

ds_send_heartbeat process_status_message

process_status_set_status_type_v

Figure 127 - send_heartbeat_message Structure Chart

Function Description

ds_send_heartbeat MDI Data Server routine used to send the subsystem-level heartbeat message to the Data
Server. The heartbeat status is the overall status for the subsystem.

ntohl Network Function used to convert between network and host byte order.

process_status_message MDI Process Status routine used to log a status message for the specified status type. If
the process status library was configured to use a status logger then the message is
forwarded to the status logger. Otherwise the message is written to the configured status
log file.

process_status_set_status_type_value process_status_set_status_type_value is used to set the value associated with the
specified process status type.

Table 130 - Routines called by send_heartbeat_message

4.2.1.5.11 send_write_file_message

send_write_file_message extracts the specific information from the received message and calls the data
server write file routine. The structure chart for send_write_file_message is depicted in Figure 128. A
description of the routines called by send_write_file_message is provided in Table 131.

Traveler Information Kiosk System Design Document193

send_write_file_message

ntohl ds_write_file process_status_message send_ds_return_status

Figure 128 - send_write_file_message Structure Chart

Function Description

ds_write_file MDI Data Server library routine used to write a file to the Data Server.

ntohl Network Function used to convert between network and host byte order.

process_status_message MDI Process Status routine used to log a status message for the specified status type. If the process
status library was configured to use a status logger then the message is forwarded to the status logger.
Otherwise the message is written to the configured status log file.

send_ds_return_status send_ds_return_status sends the return status from the data server back to the process that sent the
original request to the kiosk_dsif process.

Table 131 - Routines called by send_write_file_message

4.2.1.5.12 send_ds_return_status

send_ds_return_status sends the return status from the data server back to the process that sent the original
request to the kiosk_dsif process. The structure chart for send_ds_return_status is depicted in Figure 129.
A description of the routines called by send_ds_return_status is provided in Table 132.

Traveler Information Kiosk System Design Document194

send_ds_return_status

memset send_ds_return_message

Figure 129 - send_ds_return_status Structure Chart

Function Description

memset C Library Function used to set an area of memory to a specified value.

send_ds_return_message send_ds_return_message sends the information returned by the data server to the process that
originally sent the data server message to the kiosk_dsif process.

Table 132 - Routines called by send_ds_return_status

4.2.1.5.13 send_ds_return_message

send_ds_return_message sends the information returned by the data server to the process that originally
sent the data server message to the kiosk_dsif process. The structure chart for send_ds_return_message is
depicted in Figure 130. A description of the routines called by send_ds_return_message is provided in
Table 133.

Traveler Information Kiosk System Design Document195

send_ds_return_message

sock_writen

Figure 130 - send_ds_return_message Structure Chart

Function Description

sock_writen MDI Socket routine used to write a specified number of bytes to a specified socket.

Table 133 - Routines called by send_ds_return_message

4.2.1.5.14 send_write_equip_status_message

send_write_equip_status_message extracts the specific information from the received message and calls the
data server write equipment status routine. The structure chart for send_write_equip_status_message is
depicted in Figure 131. A description of the routines called by send_write_equip_status_message is
provided in Table 134.

Traveler Information Kiosk System Design Document196

send_write_equip_status_message

ntohl

calloc

sock_readmax

ds_write_equip_status

process_status_message

send_ds_return_status

free

Figure 131 - send_write_equip_status_message Structure Chart

Function Description

calloc C Library Function used to allocate the specified amount of space and fill it with zeros.

ds_write_equip_status MDI Data Server library routine used to write the equipment status of the specified
equipment type to the Data Server.

free C Library Function used to free previously allocated memory and make it available for
further allocation.

ntohl Network Function used to convert between network and host byte order.

Traveler Information Kiosk System Design Document197

Function Description

process_status_message MDI Process Status routine used to log a status message for the specified status type. If
the process status library was configured to use a status logger then the message is
forwarded to the status logger. Otherwise the message is written to the configured status
log file.

send_ds_return_status send_ds_return_status sends the return status from the data server back to the process
that sent the original request to the kiosk_dsif process.

sock_readmax MDI Socket routine that reads a maximum number of bytes from the specified socket
using a specified timeout to stop the read when there is no data available for the specified
time.

Table 134 - Routines called by send_write_equip_status_message

4.2.1.5.15 send_delete_file_message

send_delete_file_message extracts the specific information from the received message and calls the data
server delete file routine. The structure chart for send_delete_file_message is depicted in Figure 132. A
description of the routines called by send_delete_file_message is provided in Table 135.

send_delete_file_message

ntohl

ds_delete_file

process_status_message

send_ds_return_status

Figure 132 - send_delete_file_message Structure Chart

Traveler Information Kiosk System Design Document198

Function Description

ds_delete_file MDI Data Server library routine used to delete the specified file from the Data Server.

ntohl Network Function used to convert between network and host byte order.

process_status_message MDI Process Status routine used to log a status message for the specified status type. If the process
status library was configured to use a status logger then the message is forwarded to the status
logger. Otherwise the message is written to the configured status log file.

send_ds_return_status send_ds_return_status sends the return status from the data server back to the process that sent the
original request to the kiosk_dsif process.

Table 135 - Routines called by send_delete_file_message

4.2.1.5.16 send_file_time_message

send_file_time_message extracts the specific information from the received message and calls the data
server file time routine. The structure chart for send_file_time_message is depicted in Figure 133. A
description of the routines called by send_file_time_message is provided in Table 136.

send_file_time_message

ntohl

ds_get_file_time process_status_message

htonl

send_ds_return_message

Figure 133 - send_file_time_message Structure Chart

Traveler Information Kiosk System Design Document199

Function Description

ds_get_file_time MDI Data Server library routine used to obtain the modification time of the specified file located on the
Data Server.

htonl Network function used to convert from host to network byte formats.

ntohl Network Function used to convert between network and host byte order.

process_status_message MDI Process Status routine used to log a status message for the specified status type. If the process
status library was configured to use a status logger then the message is forwarded to the status logger.
Otherwise the message is written to the configured status log file.

send_ds_return_message send_ds_return_message sends the information returned by the data server to the process that
originally sent the data server message to the kiosk_dsif process.

Table 136 - Routines called by send_file_time_message

4.2.1.5.17 send_get_file_type_time_message

send_get_file_type_time_message extracts the specific information from the received message and calls the
data server get file type time routine. The structure chart for send_get_file_type_time_message is depicted
in Figure 134. A description of the routines called by send_get_file_type_time_message is provided in
Table 137.

Traveler Information Kiosk System Design Document200

send_get_file_type_time_message

ntohl

ds_get_file_type_time

process_status_message

send_ds_return_status

memset

send_ds_return_message

htonl

sock_writen

Figure 134 - send_get_file_type_time_message Structure Chart

Traveler Information Kiosk System Design Document201

Function Description

ds_get_file_type_time MDI Data Server library routine used to obtain the file modification times for all the files of
the specified file type that exist at the Data Server.

htonl Network function used to convert from host to network byte formats.

memset C Library Function used to set an area of memory to a specified value.

ntohl Network Function used to convert between network and host byte order.

process_status_message MDI Process Status routine used to log a status message for the specified status type. If
the process status library was configured to use a status logger then the message is
forwarded to the status logger. Otherwise the message is written to the configured status
log file.

send_ds_return_message Send_ds_return_message sends the information returned by the data server to the process
that originally sent the data server message to the kiosk_dsif process.

send_ds_return_status Send_ds_return_status sends the return status from the data server back to the process
that sent the original request to the kiosk_dsif process.

sock_writen MDI Socket routine used to write a specified number of bytes to a specified socket.

Table 137 - Routines called by send_get_file_type_time_message

4.2.1.5.18 send_read_file_message

send_read_file_message extracts the specific information from the received message and calls the data
server read file routine. The structure chart for send_read_file_message is depicted in Figure 135. A
description of the routines called by send_read_file_message is provided in Table 138.

send_read_file_message

ds_read_file process_status_message send_ds_return_status

Figure 135 - send_read_file_message Structure Chart

Traveler Information Kiosk System Design Document202

Function Description

ds_read_file MDI Data Server library routine used to read the contents of the specified file from the Data Server and
place the contents in the specified local file.

process_status_message MDI Process Status routine used to log a status message for the specified status type. If the process
status library was configured to use a status logger then the message is forwarded to the status logger.
Otherwise the message is written to the configured status log file.

send_ds_return_status send_ds_return_status sends the return status from the data server back to the process that sent the
original request to the kiosk_dsif process.

Table 138 - Routines called by send_read_file_message

4.2.1.6 Data Server Interface Library

The DSIF Library is composed of a set of functions that can be used by other KMC applications to
communicate with the Data Server through DSIF. The following list contains the DSIF Library functions.

• kiosk_dsif_connect,
• kiosk_dsif_delete_file,
• kiosk_dsif_disconnect,
• kiosk_dsif_get_file_time,
• kiosk_dsif_get_file_type_time,
• kiosk_dsif_read_file,
• kiosk_dsif_read_file_list,
• kiosk_dsif_read_status,
• kiosk_dsif_read_timestamp,
• kiosk_dsif_send_heartbeat,
• kiosk_dsif_write_equip_status, and
• kiosk_dsif_write_file.

The functions are described in the sections that follow.

4.2.1.6.1 kiosk_dsif_connect

kiosk_dsif_connect is used to connect to the KIOSK Data Server Interface process. The service name is
passed to this routine and is used to make the connection to the appropriate port. The structure chart for
kiosk_dsif_connect is depicted in Figure 136. A description of the routines called by kiosk_dsif_connect is
provided in Table 139.

Traveler Information Kiosk System Design Document203

kiosk_dsif_connect

sock_get_service_port sock_connect

Figure 136 - kiosk_dsif_connect Structure Chart

Function Description

sock_connect MDI Socket routine used to create a socket connection to the specified host and port.

sock_get_service_port MDI Socket routine that returns the port number associated with the specified service name.

Table 139 - Routines called by kiosk_dsif_connect

4.2.1.6.2 kiosk_dsif_delete_file

kiosk_dsif_delete_file packages the delete file data into the appropriate kiosk_dsif message and sends it to
the kiosk_dsif process. The structure chart for kiosk_dsif_delete_file is depicted in Figure 137. A
description of the routines called by kiosk_dsif_delete_file is provided in Table 140.

Traveler Information Kiosk System Design Document204

kiosk_dsif_delete_file

strlen

memset

htonl strncpy

sock_writen

kiosk_dsif_read_status

Figure 137 - kiosk_dsif_delete_file Structure Chart

Function Description

htonl Network function used to convert from host to network byte formats.

kiosk_dsif_read_status kiosk_dsif_read_status reads the return status from the Data Server request.

memset C Library Function used to set an area of memory to a specified value.

sock_written MDI Socket routine used to write a specified number of bytes to a specified socket.

strlen UNIX system call that computes the number of characters in a NULL terminated string.

strncpy C Library Function used to copy a specified number of characters from a source string to a destination
string.

Table 140 - Routines called by kiosk_dsif_delete_file

Traveler Information Kiosk System Design Document205

4.2.1.6.3 kiosk_dsif_disconnect

kiosk_dsif_disconnect is used to disconnect a process from the kiosk_dsif process. The structure chart for
kiosk_dsif_disconnect is depicted in Figure 138. A description of the routines called by
kiosk_dsif_disconnect is provided in Table 141.

kiosk_dsif_disconnect

sock_close

Figure 138 - kiosk_dsif_disconnect Structure Chart

Function Description

sock_close MDI Socket routine used to close the specified socket connection.

Table 141 - Routines called by kiosk_dsif_disconnect

4.2.1.6.4 kiosk_dsif_get_file_time

kiosk_dsif_get_file_time packages the get file time data into the appropriate kiosk_dsif message and sends
it to the kiosk_dsif process. The structure chart for kiosk_dsif_get_file_time is depicted in Figure 139. A
description of the routines called by kiosk_dsif_get_file_time is provided in Table 142.

Traveler Information Kiosk System Design Document206

kiosk_dsif_get_file_time

strlen

memset

htonl strncpy

sock_writen

kiosk_dsif_read_timestamp

Figure 139 - kiosk_dsif_get_file_time Structure Chart

Function Description

htonl Network function used to convert from host to network byte formats.

kiosk_dsif_read_timestamp kiosk_dsif_read_timestamp reads the returned file time message containing the timestamp returned
by the Data Server.

memset C Library Function used to set an area of memory to a specified value.

sock_writen MDI Socket routine used to write a specified number of bytes to a specified socket.

strlen UNIX system call that computes the number of characters in a NULL terminated string.

strncpy C Library Function used to copy a specified number of characters from a source string to a destination
string.

Table 142 - Routines called by kiosk_dsif_get_file_time

Traveler Information Kiosk System Design Document207

4.2.1.6.5 kiosk_dsif_get_file_type_time

kiosk_dsif_get_file_type_time packages the file type time request into the appropriate kiosk_dsif message
and sends it to the kiosk_dsif process. Memory is allocated for the file list within this routine, but must be
freed by the caller. The structure chart for kiosk_dsif_get_file_type_time is depicted in Figure 140. A
description of the routines called by kiosk_dsif_get_file_type_time is provided in Table 143.

kiosk_dsif_get_file_type_time

memset

htonl

sock_writen

kiosk_dsif_read_status

kiosk_dsif_read_file_list

Figure 140 - kiosk_dsif_get_file_type_time Structure Chart

Traveler Information Kiosk System Design Document208

Function Description

Htonl Network function used to convert from host to network byte formats.

kiosk_dsif_read_file_list kiosk_dsif_read_file_list reads the file list information from the kiosk_dsif socket connection. This
information includes the number of files in the list and the information for each file in the list.

kiosk_dsif_read_status kiosk_dsif_read_status reads the return status from the Data Server request.

memset C Library Function used to set an area of memory to a specified value.

sock_writen MDI Socket routine used to write a specified number of bytes to a specified socket.

Table 143 - Routines called by kiosk_dsif_get_file_type_time

4.2.1.6.6 kiosk_dsif_read_file

kiosk_dsif_read_file packages the read file request into the appropriate kiosk_dsif message and sends it to
the kiosk_dsif process. The structure chart for kiosk_dsif_read_file is depicted in Figure 141. A
description of the routines called by kiosk_dsif_read_file is provided in Table 144.

Traveler Information Kiosk System Design Document209

kiosk_dsif_read_file

strlen

memset

htonl strncpy

sock_writen

kiosk_dsif_read_status

Figure 141 - kiosk_dsif_read_file Structure Chart

Function Description

htonl Network function used to convert from host to network byte formats.

kiosk_dsif_read_status kiosk_dsif_read_status reads the return status from the Data Server request.

memset C Library Function used to set an area of memory to a specified value.

sock_writen MDI Socket routine used to write a specified number of bytes to a specified socket.

Traveler Information Kiosk System Design Document210

Function Description

strlen UNIX system call that computes the number of characters in a NULL terminated string.

strncpy C Library Function used to copy a specified number of characters from a source string to a destination
string.

Table 144 - Routines called by kiosk_dsif_read_file

4.2.1.6.7 kiosk_dsif_read_file_list

kiosk_dsif_read_file_list reads the file list information from the kiosk_dsif socket connection. This
information includes the number of files in the list and the information for each file in the list. The
structure chart for kiosk_dsif_read_file_list is depicted in Figure 142. A description of the routines called
by kiosk_dsif_read_file_list is provided in Table 145.

kiosk_dsif_read_file_list

memset

sock_readn

ntohl

calloc

sock_readmax

Figure 142 - kiosk_dsif_read_file_list Structure Chart

Traveler Information Kiosk System Design Document211

Function Description

calloc C Library Function to allocate the specified amount of space and fill it with zeros.

memset C Library Function used to set an area of memory to a specified value.

ntohl Network Function used to convert between network and host byte order.

sock_readmax MDI Socket routine that reads a maximum number of bytes from the specified socket using a
specified timeout to stop the read when there is no data available for the specified time.

sock_readn MDI Socket routine that reads a specified number of bytes from the specified socket.

Table 145 - Routines called by kiosk_dsif_read_file_list

4.2.1.6.8 kiosk_dsif_read_status

kiosk_dsif_read_status reads the return status from the Data Server request. The structure chart for
kiosk_dsif_read_status is depicted in Figure 143. A description of the routines called by
kiosk_dsif_read_status is provided in Table 146.

kiosk_dsif_read_status

sock_readn ntohl

Figure 143 - kiosk_dsif_read_status Structure Chart

Function Description

ntohl Network Function used to convert between network and host byte order.

sock_readn MDI Socket routine that reads a specified number of bytes from the specified socket.

Table 146 - Routines called by kiosk_dsif_read_status

Traveler Information Kiosk System Design Document212

4.2.1.6.9 kiosk_dsif_read_timestamp

kiosk_dsif_read_timestamp reads the returned file time message containing the timestamp returned by the
Data Server. The structure chart for kiosk_dsif_read_timestamp is depicted in Figure 144. A description
of the routines called by kiosk_dsif_read_timestamp is provided in Table 147.

kiosk_dsif_read_timestamp

memset sock_readn ntohl

Figure 144 - kiosk_dsif_read_timestamp Structure Chart

Function Description

memset C Library Function used to set an area of memory to a specified value.

ntohl Network Function used to convert between network and host byte order.

sock_readn MDI Socket routine that reads a specified number of bytes from the specified socket.

Table 147 - Routines called by kiosk_dsif_read_timestamp

4.2.1.6.10 kiosk_dsif_send_heartbeat

kiosk_dsif_send_heartbeat packages the heartbeat message data into the appropriate kiosk_dsif message
and sends it to the kiosk_dsif process. The structure chart for kiosk_dsif_send_heartbeat is depicted in
Figure 145. A description of the routines called by kiosk_dsif_send_heartbeat is provided in Table 148.

Traveler Information Kiosk System Design Document213

kiosk_dsif_send_heartbeat

memset htonl sock_writen

Figure 145 - kiosk_dsif_send_heartbeat Structure Chart

Function Description

htonl Network function used to convert from host to network byte formats.

memset C Library Function used to set an area of memory to a specified value.

sock_writen MDI Socket routine used to write a specified number of bytes to a specified socket.

Table 148 - Routines called by kiosk_dsif_send_heartbeat

4.2.1.6.11 kiosk_dsif_write_equip_status

kiosk_dsif_write_equip_status packages the write equipment status request into the appropriate kiosk_dsif
message and sends it to the kiosk_dsif process. The structure chart for kiosk_dsif_write_equip_status is
depicted in Figure 146. A description of the routines called by kiosk_dsif_write_equip_status is provided
in Table 149.

Traveler Information Kiosk System Design Document214

kiosk_dsif_write_equip_status

calloc

htonl

memset sock_writen

free

kiosk_dsif_read_status

Figure 146 - kiosk_dsif_write_equip_status Structure Chart

Function Description

calloc C Library Function used to allocate the specified amount of space and fill it with zeros.

free C Library Function used to free previously allocated memory and make it available for further
allocation.

htonl Network function used to convert from host to network byte formats.

kiosk_dsif_read_status kiosk_dsif_read_status reads the return status from the Data Server request.

memset C Library Function used to set an area of memory to a specified value.

sock_writen MDI Socket routine used to write a specified number of bytes to a specified socket.

Table 149 - Routines called by kiosk_dsif_write_equip_status

Traveler Information Kiosk System Design Document215

4.2.1.6.12 kiosk_dsif_write_file

kiosk_dsif_write_file packages the write file data into the appropriate kiosk_dsif message and sends it to
the kiosk_dsif process. The structure chart for kiosk_dsif_write_file is depicted in Figure 147. A
description of the routines called by kiosk_dsif_write_file is provided in Table 150.

kiosk_dsif_write_file

strlen

memset

htonl strncpy

sock_writen

kiosk_dsif_read_status

Figure 147 - kiosk_dsif_write_file Structure Chart

Traveler Information Kiosk System Design Document216

Function Description

htonl Network function used to convert from host to network byte formats.

kiosk_dsif_read_status Kiosk_dsif_read_status reads the return status from the Data Server request.

memset C Library Function used to set an area of memory to a specified value.

sock_writen MDI Socket routine used to write a specified number of bytes to a specified socket.

strlen UNIX system call that computes the number of characters in a NULL terminated string.

strncpy C Library Function used to copy a specified number of characters from a source string to a destination
string.

Table 150 - Routines called by kiosk_dsif_write_file

4.2.1.7 Kiosk MC Main

The Kiosk MC Main requests data files from the Data Server (via DSIF) and transmits the files to each of
the Kiosk Field Units. The Kiosk MC Main also retrieves status information from each of the Kiosk Field
Units. The following structure charts and tables provide the design information for the Kiosk MC Main.
Figure 148 depicts the Kiosk MC Main data flows.

1

Kiosk
Heartbeat
Process

4

Kiosk
Field
Units

3

Kiosk
DSIF
Process

2

Kiosk
MC
Master
Process

Weather Data

Heartbeat

Airport Data

VIA Data

DataHeartbeat/Usage
Data

Figure 148 – Kiosk MC Main Data Flows

The VIA, Airport, and Weather files are transmitted to the Kiosk MC Master Process from the DSIF
process. These files are then transmitted to the Kiosk Field Units. The Field Unit Heartbeat/Usage data is
retrieved from the Field Units and used to update the Detailed Status GUI. The Kiosk MC Master Process
periodically reports its own heartbeat data to the Kiosk Heartbeat Process.

Traveler Information Kiosk System Design Document217

4.2.1.7.1 Kiosk MC Main

The Kiosk Master Computer (MC) main process is responsible for interrogating the status of each Kiosk
field unit as well as downloading any files that need to be resident on the Kiosk field unit. The main
process maintains the current status (of the files on each field unit) using the MDI configuration routines
(by storing a filename and a timestamp). This information is kept in configuration files, which are named
in the same format as the name of the Kiosk field unit. The main process contains a loop that executes
forever checking to see if the Data Server has new files that need to be downloaded, if so, these files are
transfered to each active Kiosk field unit. The structure chart for Kiosk MC Main is depicted in Figure
149. A description of the routines called by Kiosk MC Main is provided in Table 151.

Traveler Information Kiosk System Design Document218

Kiosk
MC
Main

request
heartbeat

signal
setup

cfg
get
value

catch
signal

SerialSetAttr

cfg
load
configuration
data

ph
connect

ph
send
heartbeat

cfg
clear
configuration
data

log
error

initialize
field
unit
data

process
heartbeat

update
files
pending

download
files

close
kiosk
connection

load
kiosk
cfgs

update
paper
disk
stats

check
for
ping

save
kiosk
cfgs

update
files

init
kiosk
connection

status
logger
connect

kiosk
dsif
connect

LogSetAttr

initialize
field
unit
status

send
field
unit
status

Figure 149 - Kiosk MC Main Structure Chart

Traveler Information Kiosk System Design Document219

Function Description

catch signal Kiosk MC function which is invoked when UNIX sends a signal to the Kiosk Master Computer
Application.

cfg clear configuration data MDI Configuration File Common Library routine used to clear the configuration name-pairs loaded
from memory.

cfg get value MDI Configuration File Common Library routine used to return the value of the specified
configuration name.

cfg load configuration data MDI Configuration File Common Library routine used to read the configuration name-pairs from the
specified configuration file. These name-value pairs are loaded into memory so they can be
accessed on demand by the calling program.

check for ping Kiosk MC function which will check to see if a "ping" request has been set through the Kiosk
detailed status GUI. If a "ping" request has been received, file downloads are temporairly
suspended until the Kiosk is "pinged" (and the heartbeat/usage statistic file is retreived).

close kiosk connection Kiosk MC function which will terminate the modem connection to a Kiosk field unit.

download files Kiosk MC function which will download the "pending" files to each Kiosk field unit.

init kiosk connection Kiosk MC function which connects to a specified Kiosk at at a specified phone number.

initialize field unit data Kiosk MC function which initializes the data structures defined for each Kiosk field unit.

initialize field unit status Kiosk MC function that is invoked to establish the necessary data structures to transmit the status
of each field unit to the Data Server.

kiosk dsif connect MDI MC Kiosk Master Computer DSIF Library Routine that is invoked to connect to the Kiosk
Master Computer process.

load kiosk cfgs Kiosk MC application routine which will load the last known Kiosk "file download status" (e.g.,
timestamp for each file downloaded) for each Kiosk field unit.

log error Kiosk MC function which will log an error message to the status logger.

LogSetAttr IVN Master Computer function that is used to set the logging levels for the modem and serial port
functions.

ph connect MDI Process Heartbeat Common Library routine which is invoked to connect to the Kiosk MC
heartbeat process.

ph send heartbeat MDI Process Heartbeat Common Library routine which is invoked to send a heartbeat to the Kiosk
MC heartbeat process.

process heartbeat Kiosk MC function which will be post the usage statistics to shared memory for use by the Kiosk
detailed status GUI.

request heartbeat Kiosk MC function which is invoked once the Kiosk is "on-line" with the master computer. The
function will request the heartbeat/usage statistics file from the Kiosk filed unit.

save kiosk cfgs Kiosk MC function which will save the current configuration information (i.e., what version of each
file is stored on each Kiosk field unit) to a configuration file. This information is used on startup of
the Kiosk MC main process to allow the process to be placed in the same state it was it when it
was terminated.

send field unit status Kiosk MC function that is invoked to transmit the current status of each field unit to the Data
Server.

Traveler Information Kiosk System Design Document220

Function Description

SerialSetAttr MDI In-Vehicle Navigation Common Library routine that allows the attributes of the specified serial
port to be modified.

signal setup Kiosk MC function which is invoked to setup the UNIX signal handler for each type of UNIX signal
that the application can receive.

status logger connect MDI Status Logger Common Library Routine that is invoked to connect to the status logger
process.

update files Kiosk MC function which will update the local copies of files from the Data Server (if the version on
the Data Server is different from the local copy).

update files pending Kiosk MC application routine which will determine if any files need to be downloaded to the Kiosk
field units. The routine will compare the timestamps of the files on the dataserver to the timestamp
of the file last downloaded to the Kiosk for each Kiosk field unit.

update paper disk stats Function which will determine if the "low paper" or "disk space low" indicator should be set (which
the Kiosk detailed status GUI uses to warn the user of these conditions). Data from the
configuration file is used to set the threshold of when these values are to be set.

Table 151 - Routines called by Kiosk MC Main

4.2.1.7.2 catch signal

catch signal is the Kiosk MC function that traps signals from the UNIX operating system. The structure
chart for signal setup is depicted in Figure 150. A description of the routines called by signal setup is
provided in Table 152.

catch
signal

sprintf
log
error

Figure 150 - catch signal Structure Chart

Traveler Information Kiosk System Design Document221

Function Description

log error Kiosk MC function which will log an error message to the status logger.

Sprintf C Library Function that provides printf capabilities to a character string.

Table 152 - Routines Called by catch signal

4.2.1.7.3 signal setup

signal setup is the Kiosk MC function that sets up the UNIX signal handler for each type of UNIX signal
that the application can receive. The structure chart for signal setup is depicted in Figure 151. A
description of the routines called by signal setup is provided in Table 153.

signal
setup

sigset

Figure 151 - signal setup Structure Chart

Function Description

sigset UNIX system call that associates a function with a specific signal; that is, when the system generates the signal the
specified function will be invoked.

Table 153 - Routines called by signal setup

4.2.1.7.4 initialize field unit data

initialize field unit data is the Kiosk MC function that initializes the data structures for each Kiosk Field
Unit. The structure chart for initialize field unit data is depicted in Figure 152. A description of the
routines called by initialize field unit data is provided in Table 154.

Traveler Information Kiosk System Design Document222

initialize
field
unit
data

count
kiosks

attach
to
shared
memory

create
shared
memory

sprintf

fopen

fgets

sscanf

load
directory
dataserver

log
error

strcmp

sprintf fopen fgets fclose

load
directory
filesystem

Figure 152 - initialize field unit data Structure Chart

Function Description

attach to shared memory MDI Data Server support utility that will attach to an existing UNIX shared memory segment.

count kiosks Kiosk MC utility function will count how many kiosks are defined in the configuration file. This information
is useful when "sizing" data structures.

create shared memory MDI Data Server support utility that will create a UNIX shared memory segment.

fclose C Library Function used to close an open file.

fgets C Library Function used to read a line of text from a file.

fopen C Library Function that opens the specified file using the specified access mode.

load directory data server Kiosk MC function that will determine which files from the data server have been updated. The function
will set any update status in the appropriate data structure; this information will then be used to determine
if the files need to be downloaded to the Kiosk field units.

Traveler Information Kiosk System Design Document223

Function Description

load directory filesystem Kiosk MC function that will determine which files in the specified directory have been updated. The
function will set any update status in the appropriate data structure; this information will then be used to
determine if the files need to be downloaded to the Kiosk field units.

log error Kiosk MC function which will log an error message to the status logger.

sprintf C Library Function that provides printf capabilities to a character string.

sscanf UNIX function call that will allow formatted "input" from a NULL terminated character string.

strcmp UNIX function that will compare the contents of two NULL terminated character strings.

Table 154 - Routines called by initialize field unit data

4.2.1.7.5 log error

log error is the Kiosk MC function that transmits an error message to the status logger. The structure chart
for log error is depicted in Figure 153. A description of the routines called by log error is provided in
Table 155.

log
error

fprintf
status
logger
send

Figure 153 - log error Structure Chart

Function Description

fprintf UNIX system call to print formatted data to a file stream.

status logger send Kiosk MC Library routine that will send messages to the Status Logger process.

Table 155 - Routines called by log error

Traveler Information Kiosk System Design Document224

4.2.1.7.6 load directory data server

load directory data server is the Kiosk MC function that determines which Kiosk data files have been
updated in the Data Server. The function will set any update status in the appropriate data structure; this
information will then be used to determine if the files need to be downloaded to the Kiosk field units. The
structure chart for load directory data server is depicted in Figure 154. A description of the routines called
by load directory data server is provided in Table 156.

load
directory
dataserver

malloc statsprintf

kiosk
dsif get
file type
time

kiosk
dsif
read
file

Figure 154 - load directory data server Structure Chart

Function Description

kiosk dsif get file type time MDI Kiosk MC library function that will retrieve a list of active filenames (and their timestamps) from the
Data Server.

kiosk dsif read file MDI Kiosk MC library function that will retrieve a file from the Data Server.

malloc UNIX system call which will allocate the specified number bytes of memory.

sprintf C Library Function that provides printf capabilities to a character string.

Stat UNIX system call that will return file attributes for a specified file.

Table 156 - Routines Called by load directory data server

4.2.1.7.7 load directory filesystem

load directory filesystem is the Kiosk MC function that checks the specified directory and determines which
files have been updated. The function will set any update status in the appropriate data structure; this
information will then be used to determine if the files need to be downloaded to the Kiosk field units. The
structure chart for init kiosk connection is depicted in Figure 155. A description of the routines called by
init kiosk connection is provided in Table 157.

Traveler Information Kiosk System Design Document225

load
directory
filesystem

malloc opendir readdir closedir sprintf stat

Figure 155 - load directory filesystem Structure Chart

Function Description

closedir UNIX system call that will "close" a directory (which had been previously opened for programmatic
reading).

malloc UNIX system call which will allocate the specified number bytes of memory.

opendir UNIX system call that will "open" a directory for programmatic reading of the contents.

readdir UNIX system call which reads the next entry in the directory.

sprintf C Library Function that provides printf capabilities to a character string.

stat UNIX system call that will return file attributes for a specified file.

Table 157 - Routines Called by load directory filesystem

4.2.1.7.8 init kiosk connection

init kiosk connection is the Kiosk MC function that performs the connection to the specified Kiosk using
the specified phone number. The structure chart for init kiosk connection is depicted in Figure 156. A
description of the routines called by init kiosk connection is provided in Table 158.

Traveler Information Kiosk System Design Document226

init
kiosk
connection

ModemDial Flush

Figure 156 - init kiosk connection Structure Chart

Function Description

Flush MDI In-Vehicle Navigation Common Library routine that will perform a UNIX "flush" on the specified
serial port. This is invoked to assure that all data is flushed from the serial UART.

ModemDial MDI In-Vehicle Navigation Common Library routine that will dial a specified phone number, at a
specified baud rate, using the specified serial port (i.e., modem).

Table 158 - Routines called by init kiosk connection

4.2.1.7.9 update files pending

update files pending is the Kiosk MC routine that determines if any files need to be downloaded to the
Kiosk field units. The routine will compare the timestamps of the files on the data server to the timestamp
of the file last downloaded to the Kiosk for each Kiosk field unit. The structure chart for update files
pending is depicted in Figure 157. A description of the routines called by update files pending is provided
in Table 159.

update
files
pending

update
filecount

Figure 157 - update files pending Structure Chart

Traveler Information Kiosk System Design Document227

Function Description

update filecount Kiosk MC function which will determine which files need to be updated on each Kiosk field unit.

Table 159 - Routines called by update files pending

4.2.1.7.10 update filecount

update filecount is the Kiosk MC function that determines the files that need to be updated on each Kiosk
field unit. The structure chart for update filecount is depicted in Figure 158. A description of the routines
called by update filecount is provided in Table 160.

update
filecount

kiosk
dsif
read
file

kiosk
dsif get
file type
time

log
error

Figure 158 - update filecount Structure Chart

Function Description

kiosk dsif get file type time MDI Kiosk MC library function that will retrieve a list of active filenames (and their timestamps) from the
Data Server.

kiosk dsif read file MDI Kiosk MC library function that will retrieve a file from the Data Server.

log error Kiosk MC function which will log an error message to the status logger.

Table 160 - Routines called by update filecount

4.2.1.7.11 load kiosk cfgs

load kiosk cfgs is the Kiosk MC routine that loads the last known Kiosk "file download status" (e.g.,
timestamp for each file downloaded) of each Kiosk field unit. The structure chart for load kiosk cfgs is
depicted in Figure 159. A description of the routines called by load kiosk cfgs is provided in Table 161.

Traveler Information Kiosk System Design Document228

load
kiosk
cfgs

sprintf
read
timestamps

cfg clear
configuration
data

cfg
get
value

atol

Figure 159 - load kiosk cfgs Structure Chart

Function Description

read timestamps Kiosk MC function which will write timestamps to a configuration file.

atol UNIX system call that converts a NULL terminated character string to a long integer.

cfg clear configuration data MDI Configuration File Common Library routine used to clear the configuration name-pairs loaded
from memory.

cfg get value MDI Configuration File Common Library routine used to return the value of the specified
configuration name.

sprintf UNIX system call to print formatted data to character string.

Table 161 - Routines called by load kiosk cfgs

4.2.1.7.12 download files

download files is the Kiosk MC function that downloads the "pending" files to each Kiosk field unit. The
structure chart for download files is depicted in Figure 160. A description of the routines called by
download files is provided in Table 162.

Traveler Information Kiosk System Design Document229

download
files

send
file

check
and
download

sprintf strcpy

sprintf
log
error

Figure 160 - download files Structure Chart

Function Description

check and download Kiosk MC function that will download any "pending" files to a Kiosk field unit that requires an updated
file.

log error Kiosk MC function which will log an error message to the status logger.

send file Kiosk MC function which is invoked to transfer a file to the Kiosk field unit.

sprintf UNIX system call to print formatted data to character string.

strcpy UNIX system call to copy a NULL terminated character string from one variable to another.

Table 162 - Routines called by download files

4.2.1.7.13 send file

send file is the Kiosk MC function that is invoked to transfer a file from the Master Computer to the Kiosk
field unit. The structure chart for send file is depicted in Figure 161. A description of the routines called
by send file is provided in Table 163.

Traveler Information Kiosk System Design Document230

log
error

Write Readopen implode close sprintf

writepkdatareadpkdata

read crc32 memcpy insertDLEs Write

send
file

Figure 161 - send file Structure Chart

Function Description

insertDLEs A Kiosk MC function that will insert ASCII DLEs before any ASCII DLE, SOH, or EOT. Once the DLE is inserted, the DLE,
SOH, or EOT byte is then incremented by one so that the byte is not interpreted by the communications software as a
"control character". The data receiving program on the Kiosk field unit will reverse the insertDLE function so that the data
stream is correct.

log error Kiosk MC function which will log an error message to the status logger.

readpkdata The function is utilized in the PKWare implode function to "supply" data to the PKWare compression engine. The function is
utilized to read data from a data file and supply the requested number of bytes to the PKWare engine.

writepkdata The function is utilized in the PKWare implode function to "dispose" of the data as it is compressed by the PKWare
compression engine. The function will format the data and write it to the modem port that is currently attached to the Kiosk
field unit.

close UNIX system call to close a previously opened file descriptor.

crc32 PKWare supplied function that computes a 32 bit CRC for the data supplied to the function. The CRC will be transmitted to
the Kiosk field unit so that the integrity of the data transmitted can be verified.

implode PKWare supplied function that provides programmatic support to compress data streams using PKWare's technology
(PKWare developed pkzip and pkunzip). The implode function includes as arguments function definitions which provide
"data provider" (data to be compressed) and "data disposer" (how to save the compressed data).

memcpy UNIX system call that copies data from one place in memory to another place in memory.

Traveler Information Kiosk System Design Document231

Function Description

open UNIX system call to open a file; the function will return an integer file descriptor that can be used with the UNIX read, write,
and close system calls.

Read MDI In-Vehicle Navigation Common Library routine that will read a specified number of characters from the specified serial
port (i.e. modem). This function will invoke the UNIX read system call.

sprintf UNIX system call to print formatted data to character string.

Write MDI In-Vehicle Navigation Common Library routine that will write a specified number of characters to the specified serial port
(i.e. modem). This function will invoke the UNIX write system call.

Table 163 - Routines called by send file

4.2.1.7.14 request heartbeat

request heartbeat is the Kiosk MC function that requests the heartbeat/usage statistics file from the Kiosk
filed unit. This function is invoked once the Kiosk is "on-line" (connected via the modem) with the Master
Computer. The structure chart for request heartbeat is depicted in Figure 162. A description of the
routines called by request heartbeat is provided in Table 164.

request
heartbeat

Write closeopenstrlen Read atoi

Figure 162 - request heartbeat Structure Chart

Function Description

atoi UNIX system call that converts a NULL terminated character string to an integer value.

close UNIX system call to close a previously opened file descriptor.

open UNIX system call to open a file; the function will return an integer file descriptor that can be used with the UNIX read,
write, and close system calls.

Read MDI In-Vehicle Navigation Common Library routine that will read a specified number of characters from the specified
serial port (i.e. modem). This function will invoke the UNIX read system call.

Traveler Information Kiosk System Design Document232

Function Description

strlen UNIX system call that computes the number of characters in a NULL terminated string.

Write MDI In-Vehicle Navigation Common Library routine that will write a specified number of characters to the specified serial
port (i.e., modem). This function will invoke the UNIX write system call.

Table 164 - Routines called by request heartbeat

4.2.1.7.15 update files

update files is the Kiosk MC function which updates the local copies of files from the Data Server (if the
version on the Data Server is different from the local copy). The structure chart for update files is depicted
in Figure 163. A description of the routines called by update files is provided in Table 165.

update
files

update
directory
filesystem

update
directory
dataserver

Figure 163 - update files Structure Chart

Function Description

update directory data server Kiosk MC function that is invoked to update the master file data structures with a list (and timestamps)
of each file obtained from the data server.

update directory filesystem Kiosk MC function that is invoked to update the master file data structures with a list (and timestamps)
of each file contained in the target directory.

Table 165 - Routines called by update files

Traveler Information Kiosk System Design Document233

4.2.1.7.16 update directory data server

update directory data server is the Kiosk MC function that updates the master file data structures with a list
(and timestamps) of each file obtained from the data server. The structure chart for update files is depicted
in Figure 164. A description of the routines called by update files is provided in Table 166.

log
error

update
directory
dataserver

kiosk
dsif get
file type
time

kiosk
dsif
read
file

sprintf
process
status
message

strcmp

strcpy

Figure 164 - update directory data server structure chart

Function Description

kiosk dsif get file type time MDI Kiosk MC library function that will retrieve a list of active filenames (and their timestamps) from
the Data Server.

kiosk dsif read file MDI Kiosk MC library function that will retrieve a file from the Data Server.

log error Kiosk MC function which will log an error message to the status logger.

process status message MDI Data Server utility routine which will send a message (which will be logged) to the Status Logger.

sprintf C Library Function that provides printf capabilities to a character string.

strcmp UNIX function that will compare the contents of two NULL terminated character strings.

strcpy C Library Function used to copy a source string to a destination string.

Table 166 - Routines Called by update directory dataserver

4.2.1.7.17 update directory filesystem

update directory filesystem is the Kiosk MC function that updates the master file data structures with a list
(and timestamps) of each file contained in the target directory. The structure chart for update files is
depicted in Figure 165. A description of the routines called by update files is provided in Table 167.

Traveler Information Kiosk System Design Document234

process
roadclosed

update
directory
filesystem

opendir

readdir

sprintf

stat strcmp

strcpy

log
error

closedir

process
status
message

Figure 165 - update directory filesystem Structure Chart

Function Description

closedir UNIX system call that will "close" a directory (which had been previously opened for programmatic
reading).

log error Kiosk MC function which will log an error message to the status logger.

opendir UNIX system call that will "open" a directory for programmatic reading of the contents.

process roadclosed Transferfiles function that will convert the State of Texas provided road closed datafile to a format
required by the Data Server requirements.

process status message MDI Data Server utility routine which will send a message (which will be logged) to the Status Logger.

readdir UNIX system call which reads the next entry in the directory.

sprintf C Library Function that provides printf capabilities to a character string.

stat UNIX system call that will return file attributes for a specified file.

strcmp UNIX function that will compare the contents of two NULL terminated character strings.

strcpy C Library Function used to copy a source string to a destination string.

Table 167 - Routines Called by update directory filesystem

Traveler Information Kiosk System Design Document235

4.2.1.7.18 process heartbeat

process heartbeat is the Kiosk MC function which posts the usage statistics to shared memory for use by
the Kiosk detailed status GUI. The structure chart for process heartbeat is depicted in Figure 166. A
description of the routines called by process heartbeat is provided in Table 168.

process
heartbeatfopen

fgets

sscanf strcasecmp
log
error

fclose

unlink

Figure 166 - process heartbeat Structure Chart

Function Description

log error Kiosk MC function which will log an error message to the status logger.

fclose UNIX system call to close a previously opened file stream pointer.

fgets UNIX system call that will get one line of data from a stream based file descriptor.

fopen UNIX system call to open a file stream pointer to the specified file.

sscanf UNIX function call that will allow formatted "input" from a NULL terminated character string.

strcasecmp UNIX system call that will compare two NULL terminated character strings while ignoring differences in case.

unlink UNIX system call that will remove the specified file from the file system.

Table 168 - Routines called by process heartbeat

4.2.1.7.19 close kiosk connection

close kiosk connection is the Kiosk MC function that terminates the modem connection to a Kiosk field
unit. The structure chart for close kiosk connection is depicted in Figure 167. A description of the routines
called by close kiosk connection is provided in Table 169.

Traveler Information Kiosk System Design Document236

close
kiosk
connection

ModemDisconnect

Figure 167 - close kiosk connection Structure Chart

Function Description

ModemDisconnect MDI In-Vehicle Navigation Common Library routine that will disconnect the specified modem port (i.e., hang
up the line).

Table 169 - Routines called by close kiosk connection

4.2.1.7.20 update paper disk stats

The update paper disk stats function determines if the "low paper" or "disk space low" indicator should be
set (used on the detailed status GUI to warn the user of these conditions). Data from the configuration file
is used to set the threshold of when these values are to be set. The structure chart for update paper disk
stats is depicted in Figure 168. A description of the routines called by update paper disk stats is provided
in Table 170.

update
paper
disk
stats

sprintf strcpy

Figure 168 - update paper disk stats Structure Chart

Traveler Information Kiosk System Design Document237

Function Description

sprintf UNIX system call to print formatted data to character string.

strcpy UNIX system call to copy a NULL terminated character string from one variable to another.

Table 170 - Routines called by update paper disk stats

4.2.1.7.21 check for ping

check for ping is the Kiosk MC function that checks to see if a "ping" (see if the Kiosk is responding)
request has been set through the Kiosk detailed status GUI. If a "ping" request has been received, file
downloads are temporarily suspended until the Kiosk is "pinged" (and the heartbeat/usage statistic file is
retrieved). The structure chart for check for ping is depicted in Figure 169. A description of the routines
called by check for ping is provided in Table 171.

check
for
ping

init
kiosk
connection

request
heartbeat

log
error

sprintf sleep strcpy
process
heartbeat

close
kiosk
connection

update
paper
disk
stats

Figure 169 - check for ping Structure Chart

Function Description

close kiosk connection Kiosk MC function which will terminate the modem connection to a Kiosk field unit.

init kiosk connection Kiosk MC function which connects to a specified Kiosk at a specified phone number.

log error Kiosk MC function which will log an error message to the status logger.

process heartbeat Kiosk MC function which will be post the usage statistics to shared memory for use by the Kiosk detailed
status GUI.

request heartbeat Kiosk MC function which is invoked once the Kiosk is "on-line" with the master computer. The function will
request the heartbeat/usage statistics file from the Kiosk filed unit.

Traveler Information Kiosk System Design Document238

Function Description

update paper disk stats Function which will determine if the "low paper" or "disk space low" indicator should be set (which the Kiosk
detailed status GUI uses to warn the user of these conditions). Data from the configuration file is used to
set the threshold of when these values are to be set.

sleep UNIX system call that is invoked to suspend execution of a program for a specified number of seconds.

sprintf UNIX system call to print formatted data to character string.

strcpy UNIX system call to copy a NULL terminated character string from one variable to another.

Table 171 - Routines called by check for ping

4.2.1.7.22 init kiosk connection

init kiosk connection is the Kiosk MC function that connects to the specified Kiosk at the specified phone
number. The structure chart for init kiosk connection is depicted in Figure 170. A description of the
routines called by init kiosk connection is provided in Table 172.

init
kiosk
connection

ModemDial Flush

Figure 170 - init kiosk connection Structure Chart

Function Description

Flush MDI In-Vehicle Navigation Common Library routine that will perform a UNIX "flush" on the specified serial port.
This is invoked to assure that all data is flushed from the serial UART.

ModemDial MDI In-Vehicle Navigation Common Library routine that will dial a specified phone number, at a specified baud
rate, using the specified serial port (i.e., modem).

Table 172 - Routines called by init kiosk connection

Traveler Information Kiosk System Design Document239

4.2.1.7.23 close kiosk connection

close kiosk connection is the Kiosk MC function that terminates the modem connection with a Kiosk field
unit. The structure chart for close kiosk connection is depicted in Figure 171. A description of the routines
called by close kiosk connection is provided in Table 173.

close
kiosk
connection

ModemDisconnect

Figure 171 - close kiosk connection Structure Chart

Function Description

ModemDisconnect MDI In-Vehicle Navigation Common Library routine that will disconnect the specified modem port
(i.e., hang up the line).

Table 173 - Routines called by close kiosk connection

4.2.1.7.24 save kiosk cfgs

save kiosk cfgs is the Kiosk MC function that saves the current configuration information (i.e., what
version of each file is stored on each Kiosk field unit) to the appropriate configuration file. This
information is used on startup of the Kiosk MC main process to allow the process to be placed in the same
state it was in when it was terminated. The structure chart for save kiosk cfgs is depicted in Figure 172. A
description of the routines called by save kiosk cfgs is provided in Table 174.

Traveler Information Kiosk System Design Document240

save
kiosk
cfgs

fprintf

sprintf fopen
write
timestamps fclose

Figure 172 - save kiosk cfgs Structure Chart

Function Description

write timestamps Kiosk MC function which will read timestamps to a configuration file (which has been previously
created by the write_timestamps function).

fclose UNIX system call to close a previously opened file stream pointer.

fopen UNIX system call to open a file stream pointer to the specified file.

fprintf UNIX system call to print formatted data to a file stream.

sprintf UNIX system call to print formatted data to character string.

Table 174 - Routines called by save kiosk cfgs

4.2.1.7.25 initialize field unit status

initialize field unit status is the Kiosk MC function that initializes each of the Kiosk field unit’s data
structures. The structure chart for initialize field unit status is depicted in Figure 173. A description of the
routines called by initialize field unit status is provided in Table 175.

Traveler Information Kiosk System Design Document241

initialize
field
unit
status

malloc MDIEquipmentCount MDIEquipmentDefined strcasecmp free

Figure 173 - initialize field unit status Structure Chart

Function Description

free C Library Function used to free previously allocated memory and make it available for further allocation.

malloc UNIX system call which will allocate the specified number bytes of memory.

MDIEquipmentCount Real-Time Subsystem function that will access the MDI configuration files and return the number of Kiosk
Field Units defined within the real-time subsystem.

MDIEquipmentDefined Real-Time Subsystem function that will access the MDI configuration files and return a sorted list of Kiosk
Field Units defined within the real-time subsystem.

strcasecmp UNIX system call that will compare two NULL terminated character strings while ignoring differences in
case.

Table 175 - Routines Called by initialize field unit status

4.2.1.7.26 send field unit status

send field unit status is the Kiosk MC function that transmits the current status of each field unit to the
Data Server. The structure chart for send field unit status is depicted in Figure 174. A description of the
routines called by send field unit status is provided in Table 176.

Traveler Information Kiosk System Design Document242

send
field
unit
status

kiosk
dsif
write
equip status

log
error

Figure 174 - send field unit status Structure Chart

Function Description

kiosk dsif write equip status Kiosk DSIF function that allows the status of all Kiosk Field Units to be transferred to the Data
Server.

log error Kiosk MC function which will log an error message to the status logger.

Table 176 - Routines Called by send field unit status

4.2.1.8 Transfer Data Files

Once an hour, the Transfer Data Files application runs on the Data Server that connects to the NT server to
get the current versions of the VIA data files. This application constructs a temporary version control file
that contains the VIA data file information. It then compares the version of each data file in the temporary
version control file with the master version control file retrieved from the Data Server. The application
then constructs a list of files that are out-of-date, reconnects to the NT server, and retrieves the files and
stores the files on the Data Server. The updated VIA data files are downloaded by System Maintenance to
the Kiosk Field Units.

Once an hour, the Transfer Data Files application retrieves the current weather conditions and five-day
forecast information from the Transguide Web Server. The weather provider, Alex Garcia of KABB
Channel 29, updates a San Antonio area radar map, a current weather conditions file and a five-day
forecast file once an hour. The files are retrieved from the Web Server and stored on the Data Server. The
data flows for Transfer Data Files are depicted in Figure 175.

Traveler Information Kiosk System Design Document243

1

Data
Server
Heartbeat
Process

2

Status
Logger

3

Data
Server
DSIF
Process

4

Transfer
Files
Process

Data FilesHeartbeat

Status Messages

Figure 175 – Transfer Data Files Data Flows

The Transfer Files Process data flows are supplying Weather and Via files to the Data Server, logging
status messages to the Status Logger, and providing a periodic heartbeat to the Data Server Heartbeat
Process.

4.2.1.8.1 Transfer Data File Main

The Transfer Data File program will continuously monitor a single directory and the program will update
the Data Server with changed files. The program is written generically so that on startup a source directory
is specified. This implies that multiple instances of the Transfer Data File program execute in the MDI
environment. The structure chart for Transfer Data File Main is depicted in Figure 176. A description of
the routines called by Transfer Data File Main is provided in Table 177.

Traveler Information Kiosk System Design Document244

Transfer
Files
Main

process
status
message

signal
setup

cfg
get
value

cfg
load
configuration
data

sprintf

strcpy

create
config
filename

covert
filetype

process
status
config
with
logf

fprintf

ds
dsif
connect

send
heartbeat

initialize
read
timestamps

update
files

save
timestamps

sleep

Figure 176 - Transfer Data File Main Structure Chart

Function Description

covert filetype Transferfiles function which will convert a character string process type (e.g., VIA, Weather,
Screen Saver or Road Closed) to a C enumerated type.

create config filename Transferfiles function that will create a full pathname to the configuration file (which holds process
configuration data).

initialize read timestamps The function will initialize its local data structure and then read the appropriate data configuration
file to "reset" the program's status to the state it was in when it was last executing.

save timestamps Transferfiles function that will save the current file timestamp information to the appropriate
configuration file (this information is used on process restart).

send heartbeat Transferfiles function that is invoked to send a heartbeat to the Data Server DSIF process.

Traveler Information Kiosk System Design Document245

Function Description

signal setup Kiosk MC function which is invoked to setup the UNIX signal handler for each type of UNIX
signal that the application can receive.

update files Kiosk MC function which will update the local copies of files from the Data Server (if the
version on the Data Server is different from the local copy).

cfg get value MDI Configuration File Common Library routine used to return the value of the specified
configuration name.

cfg load configuration data MDI Configuration File Common Library routine used to read the configuration name-pairs
from the specified configuration file. These name-value pairs are loaded into memory so they
can be accessed on demand by the calling program.

ds dsif connect MDI Data Server utility routine which will "connect" to the Data Server DSIF process. This will
allow heartbeat and data requests to be sent between the invoking process and the Data
Server.

fprintf UNIX system call to print formatted data to a file stream.

process status config with logf MDI Data Server utility routine which will "attach" the invoking process to the Status Logger. A
logfile will also be opened.

process status message MDI Data Server utility routine which will send a message (which will be logged) to the Status
Logger.

sleep UNIX system call that is invoked to suspend execution of a program for a specified number of
seconds.

sprintf UNIX system call to print formatted data to character string.

strcpy UNIX system call to copy a NULL terminated character string from one variable to another.

Table 177 - Routines called by Transfer Data File Main

4.2.1.8.2 signal setup

The signal setup function sets up the UNIX signal handler for each type of UNIX signal that the
application can receive. The structure chart for signal setup is depicted in Figure 177. A description of the
routines called by signal setup is provided in Table 178.

Traveler Information Kiosk System Design Document246

signal
setup

sigset

Figure 177 - signal setup Structure Chart

Function Description

sigset UNIX system call that associates a function with a specific signal; that is, when the system generates the signal the
specified function will be invoked.

Table 178 - Routines called by signal setup

4.2.1.8.3 save timestamps

The save timestamps function saves the current file timestamp information to the appropriate configuration
file (this information is used on process restart). The structure chart for save timestamps is depicted in
Figure 178. A description of the routines called by save timestamps is provided in Table 179.

save
timestamps

fopen fprintf fclose

Figure 178 - save timestamps Structure Chart

Traveler Information Kiosk System Design Document247

Function Description

fclose UNIX system call to close a previously opened file stream pointer.

fopen UNIX system call to open a file stream pointer to the specified file.

fprintf UNIX system call to print formatted data to a file stream.

Table 179 - Routines called by save timestamps

4.2.1.8.4 update files

The update files function updates the local copies of files from the Data Server (if the version on the Data
Server is different from the local copy). The structure chart for update files is depicted in Figure 179. A
description of the routines called by update files is provided in Table 180.

update
files

update
directory
filesystem

update
directory
dataserver

Figure 179 - update files Structure Chart

Function Description

update directory dataserver Kiosk MC function that is invoked to update the master file data structures with a list (and
timestamps) of each file obtained from the data server.

update directory filesystem Kiosk MC function that is invoked to update the master file data structures with a list (and
timestamps) of each file contained in the target directory.

Table 180 - Routines called by update files

4.2.1.8.5 update directory filesystem

update directory filesystem is the Kiosk MC function that updates the master file data structures with a list
(and timestamps) of each file contained in the target directory. The structure chart for update directory

Traveler Information Kiosk System Design Document248

filesystem is depicted in Figure 180. A description of the routines called by update directory filesystem is
provided in Table 181.

process
roadclosed

update
directory
filesystem

opendir

readdir

sprintf

stat strcmp

strcpy

log
error

closedir

process
status
message

Figure 180 - update directory filesystem Structure Chart

Function Description

closedir UNIX system call that will "close" a directory (which had been previously opened for programmatic
reading).

log error Kiosk MC function which will log an error message to the status logger.

opendir UNIX system call that will "open" a directory for programmatic reading of the contents.

process roadclosed Transferfiles function that will convert the State of Texas provided road closed datafile to a format
required by the Data Server requirements.

process status message MDI Data Server utility routine which will send a message (which will be logged) to the Status
Logger.

readdir UNIX system call which reads the next entry in the directory.

sprintf C Library Function that provides printf capabilities to a character string.

stat UNIX system call that will return file attributes for a specified file.

strcmp UNIX function that will compare the contents of two NULL terminated character strings.

strcpy C Library Function used to copy a source string to a destination string.

Table 181 - Routines called by update directory filesystem

Traveler Information Kiosk System Design Document249

4.2.1.8.6 update directory dataserver

This Kiosk MC function updates the master file data structures with a list (and timestamps) of each file
obtained from the data server. The structure chart for update directory dataserver is depicted in Figure
181. A description of the routines called by update directory dataserver is provided in Table 182.

log
error

update
directory
dataserver

kiosk
dsif get
file type
time

kiosk
dsif
read
file

sprintf
process
status
message

strcmp

strcpy

Figure 181 - update directory dataserver Structure Chart

Function Description

kiosk dsif get file type time MDI Kiosk MC library function that will retrieve a list of active filenames (and their timestamps) from
the Data Server.

kiosk dsif read file MDI Kiosk MC library function that will retrieve a file from the Data Server.

log error Kiosk MC function which will log an error message to the status logger.

process status message MDI Data Server utility routine which will send a message (which will be logged) to the Status
Logger.

sprintf C Library Function that provides printf capabilities to a character string.

strcmp UNIX function that will compare the contents of two NULL terminated character strings.

strcpy C Library Function used to copy a source string to a destination string.

Table 182 - Routines called by update directory dataserver

Traveler Information Kiosk System Design Document250

4.2.1.8.7 initialize read timestamps

This function will initialize its local data structure and then read the appropriate data configuration file to
"reset" the program's status to the state it was in when it was last executing. The structure chart for
initialize read timestamps is depicted in Figure 182. A description of the routines called by initialize read
timestamps is provided in Table 183.

initialize
read
timestamps

process
status
message

fopen feof fscanf fclose

Figure 182 - initialize read timestamps Structure Chart

Function Description

fclose UNIX system call to close a previously opened file stream pointer.

feof UNIX system call which is used to determine if the end of file condition is true for a file stream pointer.

fopen UNIX system call to open a file stream pointer to the specified file.

fscanf UNIX system call to read formatted data from a file stream pointer.

process status message MDI Data Server utility routine which will send a message (which will be logged) to the Status Logger.

Table 183 - Routines called by initialize read timestamps

4.2.1.8.8 send heartbeat

This function sends a heartbeat to the Data Server DSIF process. The structure chart for send heartbeat is
depicted in Figure 183. A description of the routines called by send heartbeat is provided in Table 184.

Traveler Information Kiosk System Design Document251

send
heartbeat

ph
send
heartbeat

ph
connect

ph
disconnect gethostname

process
status
message

Figure 183 - send heartbeat Structure Chart

Function Description

gethostname UNIX system call that returns the hostname of the machine on which the function is executing.

ph connect MDI Process Heartbeat Common Library routine which is invoked to connect to the Kiosk MC
heartbeat process.

ph disconnect MDI Process Heartbeat Common Library routine which is invoked to disconnect from the Kiosk MC
heartbeat process.

ph send heartbeat MDI Process Heartbeat Common Library routine which is invoked to send a heartbeat to the Kiosk
MC heartbeat process.

process status message MDI Data Server utility routine which will send a message (which will be logged) to the Status
Logger.

Table 184 - Routines called by send heartbeat

4.2.2 Kiosk Field Unit

A total of forty (40) Kiosk Field Units are located in areas of the city with high pedestrian and vehicle
traffic. Thirty-six (36) Kiosk Field Units are located indoors at various shopping malls and businesses, and
four (4) are located outdoors at various tourist attractions and points of interest.

The high level design and data flows of the Kiosk Field Units is shown in Figure 184. Data is received by a
Kiosk Field Unit using two communications methods. Real-time data (traffic conditions) are received via
FM STIC broadcasts. Non-real-time data (VIA information, airport data, weather data, and screen-saver
files) are received via an internal modem. The modem is also used to transfer status information from each
Kiosk Field Unit to the KMC.

Traveler Information Kiosk System Design Document252

1.2.1

Startup/Error
Process

1.2.2

Modem
Communications
Process

1.2.3

GUI/Map
Display
Process

1.2.4

Real-Time
Data
Process

MC/FU
Data
Exchange
Area

FM STIC Messages

TG Link Data

Heartbeat/Error
Message

Heartbeat/Error
Message

Heartbeat/Error
Message

Heartbeat/Error
Message

FU Data Files

FU Statistics
File

FU Statistics
File

FU Data Files

FU Statistics
File FU Data Files

Figure 184. Kiosk Field Unit High Level Design and Data Flows

The Kiosk Field Unit GUI receives VIA, Airport, and weather information from the data communications
interface and map data stored locally on the disk. A Kiosk user is able to interactively request a map
display, route guidance, airport information, transit information, and weather information at a touch screen
terminal. The information requested may be viewed on the terminal screen or printed in a black and white
representation.

Traveler Information Kiosk System Design Document253

4.2.2.1 Startup/Error Server Process

The Startup/Error Server Process is started at boot up of the Kiosk Field Unit (KFU). This process is
responsible for starting the other KFU processes, monitoring the activity (heartbeat) of the processes it
starts, logging errors and messages from the other KFU processes, and moving data files (VIA, Airport,
Weather, and Screensaver) from the KMC Received directory to the appropriate Production directory.
Figure 185 depicts the events that occur within the Start/Error Server Process and Table 185 provides a
description of these events and their triggers.

Program Control

1.2.1.4
Socket
Data
Processing

1.2.1.3
Socket
Connection
Request

1.2.1.1
Form
Load
Processing

1.2.1.2

Timer
Process

1.2.1.5
Monitor
Apps
Startup

One Minute

Data on Socket

Connection
Request

Program Start

One Minute

Figure 185 – Startup/Error Events and Event Triggers Structure Chart

Event/Event Trigger Description

Connection Request When another application accepts the socket connection to this application, the Socket Connection
event is triggered. This event allows the outside application to connect to the socket so that it can
send data to this application.

Data on Socket When data is written to the socket by another application, the Data Arrival event is triggered and the
data is processed.

Form Load Processing This is the initial action performed by the application, when it is started.

Monitor Apps Startup This event occurs during startup of the Field Unit applications. After an application is started, the
Error Server waits for the application to send a heartbeat to indicate that it has successfully started.
This timer event monitors how long it has been since the application was started and compares it to
the maximum time allowed for an application to start. If the application does not heartbeat within the
prescribed time, the Error Server stops existing applications, logs a fatal error, and terminates itself.

One Minute The minute timer is set to run once every sixty seconds. When the timer executes, the heartbeat
status is updated, the Received Data directories are updated, the hour timer is checked and the
midnight timer is checked.

Program Control The control of the events and activities that can occur while an application is executing.

Traveler Information Kiosk System Design Document254

Event/Event Trigger Description

Program Start When the program is initiated, the first action of the application is to load the startup form and
perform the form load functions.

Socket Connection Request This event occurs when one application requests a socket connection to another application so that
data can be exchanged. The maximum number of connections is incremented. The new connection
is initialized and accepted.

Socket Data Processing This event is triggered when data is sent from one application to another application that is listening
for data. When data is detected on the socket, this event is started and the data is processed.

Timer Process This event is used to control actions that occur on a periodic basis.

Table 185 - Startup/Error Events and Event Triggers Descriptions

The Timer Event within the Startup/Error Server Process is used to cause several other events to take place
at varying times. The timer is used to determine when one minute has passed, one hour has elapsed, and
when it is midnight. The Timer Event activities are depicted in Figure 186. A description of these
activities and the events that trigger these activities is provided in Table 186.

Traveler Information Kiosk System Design Document255

Timer Event

1.2.1.2.1

Check
For
New
Data

1.2.1.2.2

Heartbeat
Check

1.2.1.2.3

Build
FU
Statistics
File

1.2.1.2.4

Midnight
Processing

One Minute

60 Second
Timer

60 Second
Timer

Hour Timer

Midnight Timer

Figure 186 – Startup/Error Server Timer Events

Traveler Information Kiosk System Design Document256

Function Description

60 Second Timer This timer is triggered once a minute and the functions scheduled to occur once a minute are performed.

Build FU Statistics File Builds the Field Unit Statistics file that is used to transmit the Field Unit's current status to the Master
Computer.

Check For New Data Determines whether new data files have been received from the Master Computer. When new data files are
found, the files are moved into the production directories.

Heartbeat Check This activity monitors the applications that were started by the Error Server. The Heartbeat Check ensures
that each application has transmitted a heartbeat message within the prescribed heartbeat time as defined in
the configuration file.

Hour Timer This timer is triggered once an hour and the functions scheduled to occur once an hour are performed.

Midnight Processing Performs a daily set of activities for the Field Unit at midnight.

Midnight Timer This timer is triggered once a day and the functions scheduled to occur once a day are performed.

One Minute The minute timer is set to run once every sixty seconds. When the timer executes, the heartbeat status is
updated, the Received Data directories are updated, the hour timer is checked and the midnight timer is
checked.

Timer Event This timer is used to control a series of events that occur periodically. These events are checking for the
arrival of new data files, checking the heartbeat status of each application, building the field unit statistics file,
and performing midnight processing.

Table 186 - Startup/Error Server Timer Event Descriptions

4.2.2.1.1 Form Load

This event is activated when the application is started. The Kiosk Out of Service form is displayed, the
Configuration file is processed, the error port is initialized and setup to listen, the error log file is opened,
the startup activity is logged, the applications are started, and the Kiosk Out of Service form is unloaded.
The structure chart for Form Load is depicted in Figure 187. A description of the routines called by Form
Load is provided in Table 187.

Traveler Information Kiosk System Design Document257

Form
Load

Show
Form

Write
Error
Message

Start
Kiosk
Apps

Unload
Form

Heartbeat
File

Kiosk
Application
Startup
File

Shell
OpenProcess
API

Process
Config
File

Cleanup

Error
Server
Configuration
File

Figure 187 - Form Load Structure Chart

Function Description

Cleanup The routine obtains a list of existing files in the window temporary directory and attempts to delete them. This
activity is performed to prevent temporary files from building up.

Form Load This event is activated when the application is started. The Kiosk Out of Service form is displayed, the
Configuration file is processed, the error port is intialized and setup to listen, the error log file is opened, the
startup activity is logged, the applications are started, and the Kiosk Out of Service form is unloaded.

OpenProcess API The Open Process Windows API is used to retrieve an application Process Handle. The API accepts the
application's process id that is returned by the Shell command. The Process Handle is what is used to
terminate the application.

Process Config File This function opens the configuration file, reads in the configuration items into an array, and closes the file.
The format of each line is a text identifier of the item followed by a colon and the value for that item. Each item
is then loaded into the appropriate variable for use.

Shell The Shell is used to start Field Unit applicaitons. The command accepts the application name and window
style as input and returns the process id for the application or returns 0 if the application is not started
successfully.

Show Form Visual Basic Event that displays the specified form.

Traveler Information Kiosk System Design Document258

Function Description

Start Kiosk Apps This function starts up the Field Unit applications specified in the application startup file. If the heartbeat file
exist, it is deleted. The heartbeat file is then opened so that the application data can be written to the file as
each application is started. The application startup file is also opened. As each application is read from the
application startup file, the heartbeat data structure is loaded, the application is started using the Shell
command, the starting of the application is logged, the success of the application starting is tested. If the
application starts successfully, the process id is retrieved using the Open Process API, the process id is loaded
into the heartbeat structure and the heartbeat structure is written to the heartbeat file. If the application fails to
start, the loop is exited and an error is logged. The process continues all until the applications in the application
startup file have been processed. If an error occurs, the error is logged and the function is setup to return
failure.

Unload Form Visual Basic Event that removes the specified form from the display and closes it. The form and its fields are
no longer accessible until another load or show form is executed.

Write Error Message The function writes a message into the error log file. The current time and data are prepended to the message
and the record is written to the file.

Table 187 - Routines called by Form Load

4.2.2.1.2 Data Arrival

The Data Arrival event is triggered by the arrival of data on the socket. The data is read from the socket
and processed. The record is parsed from the data and the first two bytes are used to determine what type
of record it is. If the record is a heartbeat record, Process Heartbeat is called. Otherwise, it is an error
message and Write Error Message is called to log the message. The structure chart for Data Arrival is
depicted in Figure 188. A description of the routines called by Data Arrival is provided in Table 188.

Data
Arrival

Process
Heartbeat

Write
Error
Message

Figure 188 - Data Arrival Structure Chart

Traveler Information Kiosk System Design Document259

Function Description

Process Heartbeat This function receives the heartbeat string and parses out the application id. The Heartbeat file is opened and
each record read. As the records are read, the application id contained in the record is compared to the one
passed into the function. If the ids match, the current time is stored in the application time portion of the record,
the record is written back to the file, and the heartbeat is logged. If none of the records contain the application id
passed into the function, then an error is logged. The heartbeat file is closed and the function returns.

Write Error Message The function writes a message into the error log file. The current time and data are prepended to the message
and the record is written to the file.

Table 188 - Routines called by Data Arrival

4.2.2.1.3 Check for New Data

The Check for New Data function is designed to move data files from the Received Data directories into the
Production directories and delete the specified data files from the Production directories. The function
processes data files for transit, screensaver, weather and airport. These file formats are described in the
subsections below. The processing for transit and screensaver is unique in that these entities not only have
files to move into production, but may also have files that need to be deleted from production. For the
transit entity, the temporary directory is checked to see if there is a delete file that still needs to be
processed and if found, the Delete File subroutine is called to process the file. Next, the Received Data
transit directory is checked for a delete file and if found the Delete File subroutine is called to process the
file. The Received Data transit directory is tested for data files. If one or more files are present, the Move
Files To Prod function is called to process the files. The Received Data weather directory is tested for
files. If one or more files are present, the Move Files To Prod function is called to process the files. The
Received Data airport directory is tested for files. If one or more files are present, the Move Files To Prod
function is called to process the files. For the screensaver entity, the temporary directory is checked to see
if there is a delete file that still needs to be processed and if found, the Delete File subroutine is called to
process the file. Next, the Received Data screensaver directory is checked for a delete file and if found the
Delete File subroutine is called to process the file. The Received Data screensaver directory is tested for
data files. If one or more files are present, the Move Files To Prod function is called to process the files.
The structure chart for Check for New Data is depicted in Figure 189. A description of the routines called
by Check for New Data is provided in Table 189.

Traveler Information Kiosk System Design Document260

Check
for
New
Data

Delete
Files

Move
Files
To
Production

Delete
SS
Files

Write
Error
Message

Kiosk
System
Shutdown

Get
Filenames

Exit
WindowsEx
API

Figure 189 - Check for New Data Structure Chart

Function Description

Delete Files Using the delete filename and directory path passed into the routine, the filenames contained in the
delete file are deleted from the specified directory path. The delete file is opened. As each filename is
read, the directory path is appended and the file is deleted. If a file cannot be deleted, the filename is
stored into a temporary delete file. If the temporary delete file contains filenames, it is written to the
directory and filename passed into the routine. If an error occurs during normal processing, the error is
logged and the routine exits. If an error occurs while trying to delete a file, the error is logged and if the
error is NOT file not found, the filename is saved into an array. This array is written to the temporary
delete file.

Delete SS Files This subroutine compares the contents of the screen saver control file with the files in the screen saver
directory. If the file in the screen saver directory is not in the control file, then the file is deleted. First,
the filenames from the control file are read into an array. Next, the filenames are retrieved from the
screen saver directory one by one and compared to each of the filenames from the control file. If a
match is not found, then delete the file from the screen saver directory. If an attempt to delete a file fails,
store the filename into a temporary delete file that is processed at a later time.

Exit WindowsEx API A Windows API that provides the capability to shutdown the PC in a number of ways. Error Server used
the PowerOff and Shutdown and Reboot options.

Get Filenames Using the directory path passed into the function, the directory is searched for the existence of files. If
one or more files are found, the filenames are written to an array and the number of files is counted.
Once the filenames are saved into the array, the function returns the array and the number of files found.
If an error occurs during execution, the error is logged and the function returns failure.

Kiosk System Shutdown This routine shutdowns and reboots the Field Unit. The Kiosk applications are terminated and a
message is logged that the system is shutdown down. Next, the Windows API ExitWindosEx is called
with the shutdown type set to shutdown and restart the system.

Traveler Information Kiosk System Design Document261

Function Description

Move Files To Production Using the Master Computer (MC) directory path and the Production directory path, this function moves
files from the MC directory to the Production directory. The function, Get Filenames is called to
determine the filenames that need to be moved into the Production directory. If Get Filenames returns
failure, Move Files To Prod set the failure code and returns. Using the filenames returned by Get
Filenames, Move Files To Prod move each file from the MC directory to the Production directory. The
file in the Production directory is deleted. The file in the MC directory is opened and locked for read write
so that no other application can access the file while it is being processed. The Production file is opened
for read write so that no other application can access the file while it is being processed. The records
are read from the file in the MC directory and written to the file in the Production directory. This process
continues until the entire file is written to the production directory. Both files are closed and made
available to other applications. The file in the MC directory is then deleted. This process is performed
for each file in the MC directory. If an occurs while deleting the production file, the error is logged. If the
error is file not found, the processing resumes at the next statement. If the error is something other than
file not found, the next file is processed. If an error occurs at a location other than the deleting of the
production file, the error is logged and the next file is processed.

Write Error Message The function writes a message into the error log file. The current time and data are prepended to the
message and the record is written to the file.

Table 189 - Routines called by Check for New Data

4.2.2.1.3.1 VIA Data File Formats

The information that VIA provides to the kiosk system includes:

• General Information,
• Fare Information,
• Special Events Information,
• VIATrans Information, and
• Route Schedule Information.

VIA stores this information on a Windows NT server in a directory named VIAInfo. Under this directory
are subdirectories that contain data files VIA provides as listed above. The following sections describe the
data fields that comprises the VIA data. In addition, the descriptions, formats and byte counts are defined.

4.2.2.1.3.1.1 General Information

The VIA General Information file is supplied by VIA in a gif file format. In order to accommodate large
amounts of data, there may be multiple files containing general information. The naming convention for
these files is as follows:

• GIxx - where GI stands for General Information and xx stands for the page number of the
information up to 99 pages (e.g., GI01 is the first page of containing general information).

VIA is responsible for the content and naming of these files.

Traveler Information Kiosk System Design Document262

4.2.2.1.3.1.2 Fare and Pass Information

The VIA Fare and Pass Information file is supplied by VIA in a gif file format. In order to accommodate
large amounts of data, there may be multiple files containing fare and pass information. The naming
convention for these files is as follows:

• FPxx - where FP stands for Fare and Pass Information and xx stands for the page number of
the information up to 99 pages (e.g., FP01 is the first page of containing fare and pass
information).

VIA is responsible for the content and naming of these files.

4.2.2.1.3.1.3 Special Events Information

The VIA Special Events Information file is supplied by VIA in a gif file format. In order to accommodate
large amounts of data, there may be multiple files containing special event information. The naming
convention for these files is as follows:

• SExx - where SE stands for Special Event Information and xx stands for the page number of
the information up to 99 pages (e.g., SE01 is the first page of containing special event
information).

VIA is responsible for the content and naming of these files.

4.2.2.1.3.1.4 VIATrans Information

The VIATrans Information file is supplied by VIA in a gif file format. In order to accommodate large
amounts of data, there may be multiple files containing disability information. The naming convention for
these files is as follows:

• DSxx - where DS stands for VIATrans (disability) Information and xx stands for the page
number of the information up to 99 pages (e.g., DS01 is the first page of containing disability
information).

VIA is responsible for the content and naming of these files.

Traveler Information Kiosk System Design Document263

4.2.2.1.3.1.5 Route Schedule Information

The first set of files will contain information about the bus routes. Each file in this set will contain
information for one route only. Also, there will be a corresponding image file (gif) that contains a graphic
layout of the route. The file name will be of the format x.txt and x.gif where x is the route number

(1 < x < 999). The format of the text file is described below.

A) Record 1: Effective Date (date route is first used)

e.g. (970524) On May 24, 1997, route became an active route

B) Record 2: Attribute List (currently wheelchair only-if applicable)

e.g. WHEELCHAIR

C) Record 3: Direction

e.g. I (Inbound) / O (Outbound)
N (Northbound) / S (Southbound)
E (Eastbound) / W (Westbound)

C (Clockwise) / CW (Counter Clockwise)

D) Record 4: Service Number

e.g. 1 (Monday through Friday)
2 (Saturday and certain holidays)
3 (Sunday and certain holidays)
4 (Special Service Schedule)
5 (Special Service Schedule)

E) Record 5: Bus Stop Numbers (time points only for the given bus route)

e.g. 34347 (fixed length of 5 digits)

F) Record 6-n, where n = the last set of bus stop times for a given direction and/or service
number: Bus Stop Times (one for each bus stop number). The format is hh:mmXX, where
XX is a code that succeeds the bus stop time if applicable, and hh:mm represents the time
based on a 24-hour clock. No time present indicates the bus does not stop at that
particular bus stop. If no code is present then blanks will be present. An example of the
codes is G (garage) and FG (from garage). Repeat D-F for each service number and
Repeat C-F when a new direction is encountered. See attached file.

Traveler Information Kiosk System Design Document264

The second file is a cross-reference file that lists bus stop numbers against the following fields:

1) full location names,

2) time point (1 or 0),

3) list of associated bus routes that service the bus stop.

The fields are comma delimited and the values are enclosed in quotes. The record format is as follows:

Columns 1-8 bus stop numbers,
Columns 9-51 bus stop names,
Columns 52-55 time points, and
Columns 56+ comma separated bus routes.

The third file is a master service file, servXXXX.txt where XXXX is the year, that consists of 366 (367 for
leap years) lines. The first line is a header line indicating routes that follow a normal or special service
schedule (e.g. 0 in the first position represents a default service schedule for all routes with the exception of
those routes following 0). Each line thereafter consists of a single digit which reflects the service number
for that day of the year (e.g. line 2 will have the number 3 which represents a Sunday service schedule since
line 2 corresponds to January 1, New Year’s Day, and New Year’s Day follows a Sunday schedule). This
method will handle holiday schedules and weekends in a simpler manner.

The fourth file is a route deletion file, viadel.txt, which lists each bus route and associated image file that is
to be deleted. For example, 16 indicates that route file (16.txt) and image file (16.gif) are to be deleted.

4.2.2.1.3.2 Weather Data File Formats

The Weather Data is provided by KABB Channel 29 meteorologist, Alex Garcia. Mr. Garcia was awarded
the weather provider contract by TxDOT. The Weather Data consists of three files containing a radar
image of San Antonio and the surrounding area, the current San Antonio conditions, and the San Antonio
five day forecast. These files are supplied by the weather provider in a gif file format. The files are
transmitted from the weather provider to the TxDOT Web Server on an hourly basis. Examples of these
files can be found in the description of the Field Unit GUI design later in this document.

4.2.2.1.3.3 Airport Data File Formats

The airport information is manually maintained through the System Maintenance GUI, which executes on
the KMC. The airport information consists of the following information:

• Airline Terminal Information,
• Rental Car Agency Information , and
• Airport Parking Fees.

This data is maintained in individual files, which are described in the following sections.

Traveler Information Kiosk System Design Document265

4.2.2.1.3.3.1 Airline Information

Table 190 shows the data that comprises airline information. The data is stored in a file named airline.txt.

Field Description Format # of Bytes

Name Airline Name ASCII 20

Local Number Local Telephone Number ASCII 12

TollFree 1-800 Telephone Number ASCII 12

Terminal Airport Terminal Servicing the Airline ASCII 1

Table 190. Airline Data Fields

4.2.2.1.3.3.2 Rental Car Agency Information

Table 191 shows the data that comprises rental car agency information. The data is stored in a file named
Rental.txt.

Field Description Format # of Bytes

Name Rental Car Agency Name ASCII 20

Local Number Local Telephone Number ASCII 12

TollFree 1-800 Telephone Number ASCII 12

Table 191. Rental Car Agency Data Fields

4.2.2.1.3.3.3 Parking Fee Information

Table 192 shows the data that comprises parking fee information. The data is stored in a file named
parking.txt.

Field Description Format # of Bytes

Location Parking Lot (Short/Long Term) ASCII 11

Fee Price ASCII 7

Table 192. Airport Parking Fee Data Fields

4.2.2.1.3.4 Screensaver Files

Traveler Information Kiosk System Design Document266

The screensaver files are composed of a control file and the graphics, audio, and video files to be played.
The control file is maintained on the KMC, using the System Maintenance GUI. The graphics, audio, and
video files are copied to the KMC from an external source and added to the control file through the System
Maintenance GUI. The files are maintained separately and described below

4.2.2.1.3.4.1 ScreenSaver Control File

The file contains the name of the file(s) to execute, the file(s) type, and how long the file(s) are to be
played. Table 193 contains the format of the control file.

Field Description Format # of Bytes

Filename Name of file(s) to be played ASCII 8

Type Specifies the type of file(s) to be played,

 1 – bitmap only

 2 – bitmap and audio file(s) together

 3 – video file

ASCII 1

Length Amount of time in milliseconds to play the
file(s)

ASCII 5

Table 193 – Screensaver Control File Data Fields

4.2.2.1.3.4.2 Graphics, Audio, and Video Files

The graphics, audio, and video files are copied to the KMC from an external source (e.g., floppy disk).
The format of the graphics is required to be .bmp. The format of the audio files is required to be .wav.
The format of the video files is required to be .avi.

4.2.2.1.4 Perform Heartbeat Check

This routine monitors the applications that were started by the application. The routine opens the heartbeat
file, reads the application information from the file, and compares the last heartbeat time to current time. If
the difference between the two times is greater than or equal to the heartbeat timeout (e.g., 5 minutes), then
the Kiosk Out of Service form is displayed, the heartbeat file is closed, the applications are stopped, the
applications are restarted, the Kiosk Out of Service form is removed and the loop is exited. If the
difference between the two times is less than the heartbeat timeout, the next application is checked. When

Traveler Information Kiosk System Design Document267

the check application loop is complete, the routine returns. The structure chart for Perform Heartbeat
Check is depicted in Figure 190. A description of the routines called by Perform Heartbeat Check is
provided in Table 194.

Perform
Heartbeat
Check

Kill
Kiosk
Applications

Restart
Kiosk
Applications

Heartbeat
File

Show
Form

Unload
Form

Shell
Write
Error
Message

Terminate
Process
API

Figure 190 - Perform Heartbeat Check Structure Chart

Function Description

Kill Kiosk Applications This function terminates the applications started by this application. The heartbeat file is
opened and each started application's information is read from the file into the heartbeat status
data structure. From this structure, the application's process id is read and used to terminate
the application. A Windows API call is made to the TerminateProcess API passing the
application's process id. When the API returns, a message is logged that the application was
terminated and the next application is processed. Once the applications have been terminated
the heartbeat file is closed and the function returns success.

Restart Kiosk Applications This function restarts the Field Unit applications specified in the heartbeat status file.
Heartbeat monitoring is disabled and the program state is set to startup. The heartbeat status
file is opened, the heartbeat records are read from the file, and the file is closed. For each
record (application), the application name and window style are read from the record and used
to restart the given application using the Shell command. If the application starts successfully,
the process id is retrieved using the Open Process API. The new process id and current time
are loaded into the heartbeat structure. Next, the application id passed into this function is
compared with the application id that is being restarted. If these application ids match, the
number of times the application has been restarted is incremented by one and stored into the
heartbeat structure. The heartbeat status file is then opened, the record is written back to the
file and the file is closed. The function then waits until the application has successfully started
by monitoring the startup flag and the application timeout flag. If the application times out, the
function returns failure. Otherwise, the application returns success.

Traveler Information Kiosk System Design Document268

Function Description

Shell The Shell is used to start Field Unit applications. The command accepts the application name
and window style as input and returns the process id for the application or returns 0 if the
application is not started successfully.

Show Form Visual Basic Event that displays the specified form.

Terminate Process API This function is a Windows 32 API that terminates an application based on the handle
(process) id that is passed to the function. The application is immediately terminated without
warning.

Unload Form Visual Basic Event that removes the specified form from the display and closes it. The form
and its fields are no longer accessible until another load or show form is executed.

Write Error Message The function writes a message into the error log file. The current time and data are prepended
to the message and the record is written to the file.

Table 194 - Routines called by Perform Heartbeat Check

4.2.2.1.5 Build HB Stats File

The Build HB Stats File routine builds the Field Unit Statistics file. If the previous Statistics file exists, it
is deleted. The Statistics file is opened and locked for Read/Write, so that no other applications can access
the file while it is being built. The status of the Field Unit applications and the estimated number of pages
printed are determined. Next the Usage Statistics file is opened for Read/Write, so that no other
applications can access the file while it is being processed. The usage statistics are read from the file and
stored locally. Using the GetDiskFreeSpace Window API, the amount and percentage of available disk
space is calculated. The number of times the kiosk has been restarted is determined and stored locally.
The statistics data is written to the Field Units Statistics File. The structure chart for Build HB Stats File
is depicted in Figure 191. A description of the routines called by Build HB Stats File is provided in Table
195.

Traveler Information Kiosk System Design Document269

Build
HB
Stats
File

GetDisk
FreeSpace
API

Determine
FU HB
Status

Write
Error
Message

Kill
Kiosk
Applications

Terminate
Process
API

Figure 191 - Build HB Stats File Structure Chart

Function Description

Determine FU HB Status The function determines the overall status of the Field Unit, the status of each application, and the
estimated number of pages printed. The Heartbeat File is opened and each application's heartbeat
data is read using the Heartbeat Status Data Structure. The number of times the application has
been restarted is compared to the restart limits. If the application has been restarted more than
once, but less than 3 times, the overall Field Unit status is updated to warning (Yellow). If the
application has been started more the 3 times, the overall Field Unit status is updated to Out of
Service (Red). The status information for the Field Unit and each application are saved and
returned. In order to determine the estimated number of pages printed, the Paperlow File is
opened and the estimated number of pages printed is read from the file. If the number of pages
printed is greater than the Paper Threshold (700), the overall Field Unit status is updated to
Warning. The Heartbeat and Paperlow files are closed and the status and paperlow statuses are
returned.

GetDisk FreeSpace API The API is provided using the Windows 32 Application Program Interfaces. The function is
passed the Drive and Directory path to be used to determine the disk free space. The function
returns the sectors per cluster, bytes per sector, number of free clusters, and the total clusters.
The values are used to calculate the number of bytes available.

Kill Kiosk Applications This function terminates the applications started by this application. The heartbeat file is opened
and each started application's information is read from the file into the heartbeat status data
structure. From this structure, the application's process id is read and used to terminate the
application. A Windows API call is made to the TerminateProcess API passing the application's
process id. When the API returns, a message is logged that the application was terminated and
the next application is processed. Once the applications have been terminated the heartbeat file is
closed and the function returns success.

Traveler Information Kiosk System Design Document270

Function Description

Terminate Process API This function is a Windows 32 API that terminates an application based on the handle (process) id
that is passed to the function. The application is immediately terminated without warning.

Write Error Message The function writes a message into the error log file. The current time and data are prepended to
the message and the record is written to the file.

Table 195 - Routines called by Build HB Stats File

4.2.2.1.6 Midnight Processing

The Midnight Processing activity is spawned by the minute timer. Each time the timer executes, the routine
determines if midnight has passed. If it is midnight or later, the routine performs the midnight activities.
These activities are cleaning up the error log file, deleting temporary files from the windows temp
directory, and shutting down the system and rebooting The structure chart for Midnight Processing is
depicted in Figure 192. A description of the routines called by Midnight Processing is provided in Table
196.

Midnight
Processing

Process
Errorlog
File

Kiosk
System
Shutdown

Kill
Kiosk
Applications

Write
Error
Message

Exit
WindowsEx
API

Figure 192 - Midnight Processing Structure Chart

Traveler Information Kiosk System Design Document271

Function Description

Exit WindowsEx API A Windows API that provides the capability to shutdown the PC in a number of ways. Error Server used
the PowerOff and Shutdown and Reboot options.

Kill Kiosk Applications This function terminates the applications started by this application. The heartbeat file is opened and
each started application's information is read from the file into the heartbeat status data structure. From
this structure, the application's process id is read and used to terminate the application. A Windows API
call is made to the TerminateProcess API passing the application's process id. When the API returns, a
message is logged that the application was terminated and the next application is processed. Once the
applications have been terminated the heartbeat file is closed and the function returns success.

Kiosk System Shutdown This routine shutdowns and reboots the Field Unit. The Kiosk applications are terminated and a
message is logged that the system is shutdown. Next, the Windows API ExitWindosEx is called with the
shutdown type set to shutdown and restart the system.

Process Errorlog File This routine renames the current error log file using the day of the week as the extension. A week's
worth of error log files are maintained.

Write Error Message The function writes a message into the error log file. The current time and data are prepended to the
message and the record is written to the file.

Table 196 - Routines called by Midnight Processing

4.2.2.2 Graphical User Interface

Kiosk Field Units contain a GUI based display that allows a user to navigate the system by touch. The
user can access real-time traffic conditions, a San Antonio Area map display, airport information, weather
information, VIA bus information, and route guidance through a series of GUIs. Icons, buttons, and images
for the GUI of the Kiosk Field Units are custom designed using a San Antonio/Texas theme. The artwork
is stored in one of the following formats: BMP or GIF. The primary events that occur and the actions that
trigger these events are depicted in Figure 193.

Traveler Information Kiosk System Design Document272

GUI Program
Control

1.2.3.1
GUI
Form
Load

1.2.3.2
GUI
Heartbeat
Timer

1.2.3.3
Socket
Connection
Request

1.2.3.4
GUI Socket
Data
Processing

1.2.3.5
Real
Time
Timer

1.2.3.6
Enable
Print
Timer

1.2.3.7
Last
Touch
Timer

1.2.3.14

Main
Menu

Program Start

30 Second
Timer

Connection
Request

Data on Socket

60 Second
Timer

60 Second
Timer

45 Second
Timer

Click Event

Figure 193 - GUI Events and Event Triggers Structure Chart

Function Description

30 Second Timer This event is set to occur every thirty seconds. When the event is triggered, the application will
perform the actions specified in the timer.

45 Second Timer This event is set to occur every forty-five seconds. When the event is triggered, the application will
perform the actions specified in the timer.

60 Second Timer This timer is triggered once a minute and the functions scheduled to occur once a minute are
performed.

Click Event This event is activated when the user touches a button on the GUI.

Connection Request When another application accepts the socket connection to this application, the Socket Connection
event is triggered. The event allows the outside application to connect to the socket so that it can
send data to this application.

Data on Socket When data is written to the socket by another application, the Data Arrival event is triggered and the
data is processed.

Enable Print Timer This timer disables itself and enables the printer capability after the print button has being repeatedly
selected too many times.

Traveler Information Kiosk System Design Document273

Function Description

GUI Form Load When the form load event is activated, the configuration file is processed, the command line
parameters are retrieved, the screensaver state is set to false, the error logging capabilities are
initialized, the color arrays are loaded, the primary forms are loaded, the last touch time to
determine the length of time between touches is initialized to the current time, the usage counts
are initialized, the printer is enabled, the screensaver and real time timers are initialized, the real
time socket is initialized, the volume is initialized, a heartbeat is transmitted, and a successful
startup message is transmitted.

GUI Heartbeat Timer This event is triggered every thirty seconds to transmit the heartbeat record to the Error Server
and to check for new weather, airport and transit files.

GUI Socket Data Processing This event is triggered when data is sent from the real time application to the GUI application that
is listening for data. When data is detected on the socket, this event is started and the data is
processed. The data is retrieved from the socket and broken into records. The records are
divided by a record delimiter. Each record contains either speed or incident data. The record
type, starting longitude, starting latitude, starting level, ending longitude, ending latitude, ending
level, and speed or incident code are extracted from each record and loaded into the global real
time data array.

Last Touch Timer This timer first checks to see if the screensaver is already executing. If the screensaver is not
executing, the last touch time is subtracted from the current time and the difference is compared
to the screensaver timeout. If the difference exceeds the timeout, then the current form is either
unloaded or hidden (this is based on the forms that are loaded at startup), the timer is disabled,
and the screensaver control file is read. If there is a problem with the screensaver control file, the
screensaver is not executed. Otherwise, the first file(s) are processed.

Main Menu This event is triggered when the user touches one of the buttons on the SA Online Main Menu.
The possible choices are Help, Volume, SA Map, Weather, Transit (Via) and Weather.

Program Start When the program is initiated, the first action of the application is to load the startup form and
perform the form load functions.

Real Time Timer When this timer is activated, the timer activate event is disabled to prevent the timer from being
triggered while the code inside the timer is executing. The current form and the screensaver
state are checked. If the current form is the SA Map form or the screensaver state is true and
real time data is available, then the SA Map is updated with the most current real time data. Once
the timer completes execution, the timer is enabled.

Socket Connection Request This event occurs when one application requests a socket connection to another application so
that data can be exchanged. The maximum number of connections is incremented. The new
connection is initialized and accepted.

Table 197 - GUI Events and Event Triggers Descriptions

Traveler Information Kiosk System Design Document274

4.2.2.2.1 Main Menu Screen

The Main Menu Screen defines a hierarchy of options available to the user. The user can select to view the
San Antonio Area Map, view Airport information, view Weather information, view VIA information,
perform Route Guidance, and obtain Help. Each of these options are further divided into one or more
informational screens. The structure chart for Main Menu Screen is depicted in Figure 194. A description
of the routines called by Main Menu Screen is provided in Table 198.

frmMainMenu

cmd
Help

cmd
Volume

cmd
SA
Map

cmd
Airport

cmd
VIA

cmd
Weather

Figure 194 - Main Menu Screen Structure Chart

Function Description

cmd Airport This button increments the number of airport accesses by one and activates the airport GUI.

cmd Help The button displays help for the specified GUI from which it is selected. The appropriate bitmap file is retrieved and
displayed.

cmd SA Map This button increments the number of San Antonio Map accesses by one and activates the San Antonio Map display.

cmd VIA This button increments the number of transit accesses by one and displays the transit GUI.

cmd Volume This button changes the volume of the Kiosk. Each time the button is selected the volume is raised until it reaches
maximum volume. The next selection of the button mutes the volume and another selection of the button sets the volume
to it lowest audible setting.

cmd Weather This button increments the number of weather accesses by one and activates the weather GUI.

frmMainMenu This is the initial form that is displayed for the user.

Table 198 - Routines called by Main Menu Screen

4.2.2.2.2 San Antonio Area Map

Traveler Information Kiosk System Design Document275

The San Antonio Street Map Display is the primary method of displaying data to the user at the Kiosk
Field Unit. The map, which is based on the Navigation Technologies San Antonio Region database,
displays major arterials, city streets, residential streets, road labels, highway signage, hospitals, schools,
parks, and airports. The user may use touch-screen input to zoom or pan the map display.

The map distinguishes road classification by line segment size and/or color and distinguishes real-time
travel speeds on instrumented roadways using color-coded line segments. For example, roadways with
normal traffic speeds are indicated in green, while roadways with below-normal traffic speeds are indicated
in yellow and red, respectively.

The map displays icons indicating current traffic incidents and lane closures. The icons reveal detailed
information about the incident and lane closures when the icon is touched by the user. The map also
indicates in icon form, at the request of the user, the location of selected Points of Interest such as
automated teller machines (ATMs), shopping centers, restaurants, gas stations, and tourist attractions. The
structure charts for Main Menu Screen are depicted in Figure 195, Figure 196, and Figure 197. A
description of the routines called by Main Menu Screen is provided in Table 199.

Traveler Information Kiosk System Design Document276

frmSAMap BA

Streets File

Initialize
Street
File

LookUp
Incident
Table

Display
Incident
Detail

SAMap
Mouse
Down

frmIdentify

Street
Names
Array

Initialize
POI
Table

POI Cat File

Layer
Info
Data
Structure

Get
Color

Initialize
Map

Create
Shield
Renderer

Create
Label
Renderer

Initialize
Tracking
Layer

Initialize
RealTime
Data

Translation
Table

RealTime
mdb

Threshhold
Speed
Tables

Incident
Types
File

Incident
Type
Table

Build
Translation
Table

Update
Real
Time
Data

Figure 195 - San Antonio Area Map Structure Chart 1 of 3

Traveler Information Kiosk System Design Document277

SAMAP
cmdMainMenu

cmd
PtsInterest

cmd
Reset
Clear
Map

cmd
Reset
Map

A

ReInitMap
SA Map
Form
Initialize

Form
Deactivate

SAMap
After
TrackingLayer
Draw

cmd
Pan
LostFocus

Find
NavTechIds

cmd
ZoomIn
LostFocus

cmd
ZoomOut
LostFocus

Figure 196 - San Antonio Area Map Structure Chart 2 of 3

cmd
FindAdd

cmd
Help

cmd
Pan

SA
MAP
cmdPrint

cmd
Zoom
In

cmd
Zoom
Out

Initialize
Route

Create
Routes
Renderer

cmd
PtsInterest

SAMap
Before
Layer
Draw

B

Build
Identfy
Form

Figure 197 - San Antonio Area Map Structure Chart 3 of 3

Traveler Information Kiosk System Design Document278

Function Description

Build Identify Form This subroutine creates field values for the Identify Form and determines if the GetMeThere button should be
displayed. Load the Identify form with name, address, and phone number. Set display criteria for form depending
on the values of fields. Make the form large enough to display the larger of the name or address field. If address
can be geocoded, then add GetMeThere button to the form. If an error occurs, build an error message using the
error number and error message (if known) and send it to LogError.

Build Translation Table This function loads the translation table file into the Access database, translation_table.mdb. The Translation
Table file (trns_tbl.dat) is opened and the first record (number of Transguide links) is read. Next the Transguide
link information and each NavTech link ID associated with the Transguide links information is read. The data for
each Transguide link is terminated by a record containing only "-1". For each Transguide Link, perform the
following: read the Transguide Link ID, starting longitude, starting latitude, starting level, ending longitude, ending
latitude, ending level, and street name. Read the Navtech IDs and bearings until a "-1" is encountered, build a
NavTech ID string by concatenating the Navtech IDs and bearings with a space between each and incrementing
the NavTech Count with each. Build the string that will be used as the primary index by concatenating the starting
latitude, starting longitude, starting level, ending latitude, ending longitude, and ending level. Replace any
apostrophes in the Transguide Link ID with underscores. Insert into the Translation Table Database the following:
starting latitude, starting longitude, starting level, ending latitude, ending longitude, ending level, number of
NavTech IDs, NavTech ID string, bearing, index string, and Transguide Link ID. After all Transguide Links have
been processed, sort the database (by index string) and count the number of records. Build the Transguide-to-
NavTech table by reading each record from the database into the table. If an error occurs, build an error message
using the error number and error message (if known) and send it to LogError.

cmd FindAdd Read a list of street names from a file and add the names to the Find Address form.

cmd Help The button displays help for the specified GUI from which it is selected. The appropriate bitmap file is retrieved
and displayed.

cmd Pan If current scale is 1, then instruct user that map can not be moved and disable map. Otherwise, instruct user to
touch map and move in any direction.

cmd Pan LostFocus This event occurs when the user has selected Pan and moved their finger along the map. If current scale is 1,
then instruct user that map can not be moved. Otherwise, reset label instructions to default (Touch Any Button to
Continue). While the map is redrawing, this routine displays the Please Wait message.

cmd PtsInterest Determine which label instructions should be displayed. If there are more layers displayed that street layers plus
shields (implying that there is a POI layer), then instruct the user to touch any button or icon. Otherwise, instruct
the user to touch any button.

cmd Reset Clear Map Re-initialize map (ReInitMap), set current scale to 1, and display map at its fullest extent.

cmd Reset Map Resize the map to its full extent, but do not clear the layers.

cmd Zoom In Reset label instructions based on current scale. If map is at maximum scale, then instruct user that map can not
be scaled and disable map. Otherwise, instruct user to touch map where more detail is desired.

cmd Zoom Out Reset label instructions based on current scale. If current scale is 1, then instruct user that map can not be
scaled and disable map. Otherwise, instruct user to touch map where less detail is desired.

cmd ZoomIn LostFocus This event occurs when the user has selected Zoom In and touched an area on the map. If current scale is at
maximum scale, then instruct user that map can not be scaled. Otherwise, reset label instructions to default
(Touch Any Button to Continue). While the map is redrawing, this routine displays the Please Wait message.

cmd ZoomOut LostFocus This event occurs when the user has selected Zoom Out and touched an area on the map. If current scale is 1,
then instruct user that map can not be scaled. Otherwise, reset label instructions to default (Touch Any Button to
Continue). While the map is redrawing, this routine displays the Please Wait message.

Traveler Information Kiosk System Design Document279

Function Description

Create Label Renderer This subroutine creates and displays street labels. The renderers are assigned to the all_rds and fast_rds layers.
For each renderer, assign values to the label placers for link classes 1, 2, 3, 4, and 9. NOTE: This renderer
(LabelPlacer) is part of MoPlus, a set of unsupported objects. These objects have not been beta-tested and ESRI
does not provide support for them.

Create Routes Renderer This subroutine renders the street segments with colors representing realtime speeds.

Create a strings collection with each possible color value from the colors array. For each color (green, lime,
yellow, orange, red), concatenate a "1" for half the values and concatenate a "2" for the others. The strings
collection now contains the following values: green1, lime1, yellow1, orange1, red1, green2, lime2, yellow2,
orange2, & red2.

For each value in the link_rds shapefile (access database related to it), the specific values are displayed as
follows:

color codeColor Line Thickness

green1 DarkGreen 1
green2 DarkGreen 2
lime1 Green 1
lime2 Green 2
yellow1 Yellow 2
yellow2 Yellow 4
orange1 Maroon 2
orange2 Maroon 3
red1 Red 2
red2 Red 3
all others Black 1

Create Shield Renderer This function creates the highway shields for the SA Map and places them on the Shields layer. This is done only
for the top level map.

Display Incident Detail Compare the point where user touched against incident points in the realtime table. If the user touched a point
"close enough" to an actual incident, then display the incident type. Find location where the screen was touched.
Convert the touched xy coordinates to strings and compare to the location of each current incident. Calculate the
distance between that point and any incident icon and consider that distance to be the shortest and that incident
to be the closest. For each incident, calculate the distance between the incident and the point touched, and if the
distance is shorter than the shortest distance, make that incident the closest. If the shortest distance is no more
than a predefined distance (assigned to be .005/current scale) then look up the incident type and write that type to
the Identify form. (refer to frmIdentify.Identify).

Find NavTechIds This function looks up the Transguide linkid and returns the associated NavTech linkids, the number of links, the
bearing and the color for each link. The search key is built from the update real time array based on the pointer
passed to the function. The key is composed of the starting longitude, starting latitude, starting level, ending
longitude, ending latitude, and ending level. The function using a binary search, searches through the Link Id
table looking for a match on the Transguide Linkid key. When a match is found, the number of links and the
pointer into the NavTech link id is read from the Translation table. For each NavTech linkid associated with the
Transguide linkid, the linkid, color and bearing are retrieved. When the information has been assimilated, the data
is returned.

Form Deactivate Reset map and caption if any form other than frmPtsInterest, frmIdentify, frmFindPOI, or frmFindAdd are
displayed.

FrmIdentify This form displays the name and address of either the Point of Interest or address selected by the user.

FrmSAMap This GUI displays the San Antonio Street Map, real time traffic data if it is available, and the user interactive
functions for the map (i.e., Zoom In, Zoom Out, Pan, Find Address, Find Point of Interest, Reset Map, and Reset
and Clear Map).

Traveler Information Kiosk System Design Document280

Function Description

Get Color This function returns a color-width code with which to color each map link segment. Based on the link class
input, determine which speed threshold table to use. There is a speed threshold table for each link class of 1
(roads with average speed of greater than 45 mph), link class 2 (roads with average speed greater than 30 mph),
and link class 3 (road with average speed greater than 20 mph). Once the speed threshold table is selected,
check speed input against each array value. If the input speed is greater than the array value, select the color by
indexing into the colors array with the corresponding array index from the thresholds table. If the link class is "1",
concatenate a "2" to the color value, otherwise concatenate a "1". This value will be used as the value of the
thickness of the line drawn on the map. If an error occurs, build an error message using the error number and
error message (if known) and send it to LogError.

Initialize Map This subroutine creates the San Antonio street map street layers and label renderers. Clear Instruction Label, set
current scale level to 1, initialize RealTimeData flag to False, and set the map background color. Connect to the
database and add layers corresponding to different zoom levels of the map. Create a layer that consists of 2
separate layers to display streets that have thickness: create one layer of thickness 5 and color black to display
the outside edge of the streets and create one layer of thickness 3 and color white to mark the inside. Both layers
are created from the "All_rds" shapefile. Create a layer to display streets that average more than 30 mph. This
layer is created from the "Fast_rds" shapefile. Create a layer to display major arteries from the "Maj_rds"
shapefile. Create a layer to display highway shields at the top layer of the map. This layer is created from the
"Shields" shapefile. Render this layer to display different shields for different roads. Create a layer to display real-
time data from the shapefile, "Lnk_rds". Render the labels for the all_rds layer and fast_rds layer. Find the
address for the kiosk and add event to the tracking layer. Display map at its fullest extent. If an error occurs,
disable the SA Map option from the Main Menu, build an error message using the error number and error
message (if known) and send it to LogError.

Initialize POI Table This subroutine builds the Points of Interest table in memory. Open the POI Category file. This file contains the
parameters for each type of POI category. Read each record into a globally-defined data structure. Based on the
value of the color read from the file, assign a MapObjects color constant. If an error occurs, build an error
message using the error number and error message (if known) and send it to LogError.

Initialize RealTime Data This subroutine builds a Transguide-to-Navtech-Link Lookup table, relates the lnk_rds shapefile (realtime links) to
an Access database table, initializes the speed threshold arrays, and initializes the incident types array. Read the
translation table into memory. If an error occurs, ensure that realtime data will not be used. Perform an
AddRelate to initialize the relationship between the lnk_rds shapefile and Access database. Open the database
and create a recordset of all records. Initialize each record to null or false. Initialize the speed threshold arrays.
Initialize the incident types data structure by reading the incident text file. If an error occurs, build an error
message using the error number and error message (if known) and send it to LogError.

Initialize Route This subroutine prepares the network engine for route guidance. Call AddNetLayer to create new layer. Set
global variable ROUTE_GUIDE_VALID to true if new net layer was created and if the kiosk has a valid location.

Initialize Street File If the streets file does not exist, then build it from the all_rds shapefile as follows: Build a recordset of all the
records in the all_rds shapefile. Create a strings collection of each full street name. A strings collection is used
to avoid duplicate names. Write the contents of the strings collection to the streets file. Write the street names to
the FindAdd form and street name array for later use in Find Address function. If an error occurs, build an error
message using the error number and error message (if known) and send it to LogError.

Initialize Tracking Layer This subroutine initializes the tracking layer to display the kiosk location icon, incident icons, and user-specified
POI and address icons. Set up the icon properties. The total number of tracking layer icons is equal to the
number of POI icons identified in the POI category file, plus the kiosk icon, plus any incident icons displayed, plus
a user-selected POI or address destination icon if active. Initialize incident icons (red circle around the letter "i").
Initialize kiosk location icon (navy blue star). Initialize user-specified destination (dark green asterisk). Initialize
icon properties for each POI category defined in POI categories file. These properties were previously read into
LAYER_INFO data structure. If an error occurs, build an error message using the error number and error
message (if known) and send it to LogError.

LookUp Incident Table This subroutine searches the incident table to determine if the incident exists or to delete the record. From
realtime data, incidents can be identified by a point (lat/lon) or a segment (identified by starting lat/lon and ending
lat/lon). If the former, the incident is displayed on the map by displaying an icon at the point specified. If the
latter, the incident is displayed on the map by displaying an icon at the starting point of the link. Therefore,
incidents are always displayed at the starting lat/lon of the realtime record. If an error occurs, build an error
message using the error number and error message (if known) and send it to LogError.

Traveler Information Kiosk System Design Document281

Function Description

ReInitMap This subroutine reinitializes the San Antonio street map display by removing all POI layers and all icons. The
kiosk location icon and incident icons are redisplayed. If there is a route line, it is cleared and set to nothing. If
there are layers displayed other than street layers, delete them. Clear the tracking layer. Redisplay the kiosk
location. Redisplay incidents. Clear the route line. If an error occurs, build an error message using the error
number and error message (if known) and send it to LogError.

SA MAP cmdPrint This subroutine prints the SA Map, NavTech Logo and disclaimer as a minimum. If the identify form is currently
displayed, this routine will also print the name, address, and phone number. Finally, if a route was calculated, the
turn by turn instructions will also be displayed.

SA Map Form Initialize Initialize Streets File, POI Table, Tracking Layer, Map, Real Time Data, and Route Guidance.

SAMap After TrackingLayer
Draw

Executes after Tracking Layer has been drawn which is done after all other map layers have been drawn. If there
exists output from the Route Guidance application, display the line. Reset label instructions.

SAMap Before Layer Draw Executes before each layer is drawn. Resizes Incident icons, Points of Interest icons for Tracking Layer, Points
of Interest icons for map layers, and Highway shields. Sets all layers to false and determines, based on current
scale of map which should be visible. For example, when the full extent of the map is displayed, the current scale
is 1 and only the TopView and Shields are displayed. When the map is fully zoomed in, the current scale is equal
to the max scale and the Black and White 1604 layers are visible.

SAMAP cmdMainMenu Hide the SA Map GUI and show the SA Online Main Menu.

SAMap Mouse Down Activated when the screen in touched, or the mouse is clicked. Based on which button is active, perform the
following:

Zoom In - If the current scale is less than the maximum scale, the center is set to the location touched and the
map is scaled to 1/scale factor. Scale Factor is set to 3.5. Maximum scale is set to 5

Zoom Out - If the current scale is at least 3, then the center is set to the location touched and the map is scaled
by the scale factor. If the current scale is 2, then the full extent of the map is displayed.

Pan - If the current scale is more than 1, then the MapObject property, Pan is invoked. If there are no active
buttons, then the user has touched the map. Perform the following based on the state of the map: If the Points of
Interest layer is displayed (i.e., there is a layer consisting of points other than the Shields layer), then call
frmIdentify.Identify with the parameters x and y (point touched). If any incidents are displayed (incidents are
displayed in the tracking layer and are identified by NUMBER_INC_RECORDS > 0) then call
DisplayIncidentDetail.

Update Real Time Data This subroutine processes the real time data that has been received. In order to update incident icons, delete the
previously defined incident icons. Next, the latest real time data is copied to a working array, so that the latest
incidents and speeds can be processed. For each Transguide Linkid that contains a speed, the associated
NavTech Linkids and their current color is retrieved. For each NavTech linkid, the current speed is converted to a
color and the color is compared to the color retrieved. If the colors are different, the color is updated. For each
Transguide Linkid that contains a negative incident id, the incident is removed from the incident list. For each
Transguide Linkid that contains incident data, the incident is added to the incident table. Finally if the SA Map is
currently being displayed, the map is refreshed.

Table 199 - Routines called by San Antonio Area Map

Traveler Information Kiosk System Design Document282

4.2.2.2.3 Find Address

The Find Address GUI allows the user to enter an address whose location is to be displayed. The user
selects a street name from a file created from NavTech data and then enters the street number. If the
location is found, it is marked on the map with a dark green asterisk. The structure chart for Find Address
is depicted in Figure 198. A description of the routines called by Find Address is provided in Table 200.

frmFindAdd

cmd
Ascii
Click

cmd
Back
Click

cmd
Cancel
Click

cmd
Display
Click

cmd
Reset
Click

cmd
Select

frmFindAddress
FormLoad

Find
Address

Reinit
Find
Add
Form

cmd
Cancel
GotFocus

Figure 198 - Find Address Structure Chart

Function Description

cmd ASCII Click This subroutine determines which button was selected (letter, number, or space) from the FindAdd
form and finds the street name that matches the current street name or number concatenated with
the value of the selected button. The routine first plays the click sound and resets the last touch
time. Next, determine which button was selected by the user. Index values from 0 to 25
correspond to the 26 letters of the alphabet from A to Z, index values from 26 to 35 correspond to
numeric digits from 0 to 9, and index value 36 corresponds to the space character. Determine
which part of the address (street name or street address) is being built. If the current street name
is blank, then the street name field is being built. Otherwise, the street number is being built. If the
street name field is being built and a character is being input, determine if a street name exists that
begins with the character input. If not, display a warning message to the user that no street begins
with that character and allow the user to try again. Otherwise, add the character input to the street
name field and exit. If the street number field is being built, add the numeric input to the street
number field and exit. If an error occurs, build an error message using the error number and error
message (if known) and send it to LogError.

Traveler Information Kiosk System Design Document283

Function Description

cmd Back Click This subroutine erases the last number entered in the street number field. Make click sound and
reset Last_Touch_Timer. If the length of the street number field is greater than 0, remove the last
number.

cmd Cancel Click This subroutine cancels the Address Lookup function. Make click sound, reset Last Touch Time,
display a message to the user to select any button to continue (or to select any button or icon to
continue), and unload the PtsInterest form.

cmd Cancel GotFocus This subroutine saves the address previously selected by the user and sets the reset string equal
to the street name field.

cmd Display Click Displays icons for the Point of Interest category selected by the user. Make click sound, reset
Last_Touch_Timer, reinitialize the map to remove previously displayed POI icons, and blank the
message to the user. Using the index of the line selected by the user, read into the POI array to
determine the type of POI selected. Create a new layer based on this POI. If the user selected the
category, "Transportation", build a point renderer to display different transportation types by
different icons, display a message to the user to select any button or icon to continue, and unload
the PtsInterest form. If the user selected any category other than "Transportation", build a
geodataset of facilities included in the POI category selected by the user, get the icon font, color,
and style from the POI Layer Info data structure, add the layer to the SA Map, display a message to
the user to select any button or icon to continue, and unload the PtsInterest form. If an error
occurs, build an error message using the error number and error message (if known) and send it to
LogError.

cmd Reset Click This subroutine resets either the street name field or the street number field. Make click sound and
reset Last_Touch_Timer. Determine if the user is resetting the street name or the street number
field. If street name, then reset the street name list to the top and clear the street name field. If the
user is clearing the street number field, clear the street number field. Reset the caption.

cmd Select This subroutine accepts the street name from the user and prepares the form for street number
entry. The Find Address form is divided into 2 parts; the top area is used to allow the user to enter
a street name and the bottom area is used to allow the user to enter an address number. When the
top area is active, the bottom area is disabled, and when the bottom area is active, the top area is
disabled. This routine enables the top portion of the form and clears the bottom portion. Make
click sound and reset Last_Touch_Timer. Save the street name; if the street name is blank,
default to the first street name in the street name list. In order to prepare the form for number entry,
change the instruction label, disable name-selection objects, disable the selection of letters and
space, move the numbers to the bottom of the form, move the dividing line to above the numbers,
move the reset button to the bottom of the form, respace the remaining buttons, enable the
backspace button and display the button.

Find Address This function converts and returns the MapObjects address location object based on the street
address selected by the user. Create a MapObjects AddressMatcher object and correlate its
matching fields ("LeftFromField", "StreetField", etc to those used in the shapefiles
("LREF_ADDRE", "ST_NAME", etc). Index the table (if not already indexed) to allow searching.
Locate the address using MapObject's MatchAddress method. Return the results. If an error
occurs, build an error message using the error number and error message (if known) and send it to
LogError.

frmFindAddress FormLoad The Back and Display buttons are enabled.

Traveler Information Kiosk System Design Document284

Function Description

Reinit Find Add Form This subroutine resets the Find Address Form to allow the user to enter a street name. The Find
Address form is divided into 2 parts; the top area is used to allow the user to enter a street name
and the bottom area is used to allow the user to enter an address number. When the top area is
active, the bottom area is disabled, and when the bottom area is active, the top area is disabled.
This routine enables the top portion of the form and clears the bottom portion. Clear the street
name text field and initialize the street name list to the top position. Enable the alphabetic
characters and space button. Move the numbers area of the form up and move the line that divides
the two portions of the form down so that the numbers are included in the top portion of the form.
Move the reset button to the top portion of the form and re-display the remaining buttons to space
them equally. Enable the backspace and display buttons. Reset the caption. If an error occurs,
build an error message using the error number and error message (if known) and send it to
LogError.

Table 200 - Routines called by Find Address

4.2.2.2.4 Points of Interest List

The Points of Interest List GUI displays the list of Points of Interest from which the user may select and
view on the map. The structure chart for Points of Interest List is depicted in Figure 199. A description of
the routines called by Points of Interest List is provided in Table 201.

frm
Pts
Interest

Create
Point
Renderer

cmd
Cancel
Click

cmd
Down
Click

cmd
Show
List
Click

cmd
Up
Click

frmPtsInterest
Form
Load

cmd
Display
Click

Figure 199 - Points of Interest List Structure Chart

Traveler Information Kiosk System Design Document285

Function Description

cmd Cancel Click This subroutine cancels the Address Lookup function. Make click sound, reset Last Touch Time,
display a message to the user to select any button to continue (or to select any button or icon to
continue), and unload the PtsInterest form.

cmd Display Click Displays icons for the Point of Interest category selected by the user. Make click sound, reset
Last_Touch_Timer, reinitialize the map to remove previously displayed POI icons, and blank the
message to the user. Using the index of the line selected by the user, read into the POI array to
determine the type of POI selected. Create a new layer based on this POI. If the user selected the
category, "Transportation", build a point renderer to display different transportation types by different
icons, display a message to the user to select any button or icon to continue, and unload the
PtsInterest form. If the user selected any category other than "Transportation", build a geodataset of
facilities included in the POI category selected by the user, get the icon font, color, and style from the
POI Layer Info data structure, add the layer to the SA Map, display a message to the user to select
any button or icon to continue, and unload the PtsInterest form. If an error occurs, build an error
message using the error number and error message (if known) and send it to LogError.

cmd Down Click If not at the bottom of the Points of Interest list, advance to the next item on the list. Make click sound,
reset LAST_TOUCH_TIME. If the item currently selected in the list is not the last item, make the next
item active.

cmd Show List Click Displays a list of Point of Interest facility names based on the category selected by the user. Make
click sound, reset Last_Touch_Time, and reinitialize the map to remove any previously displayed POI
icons.

cmd Up Click If not at the top of the Points of Interest list, advance to the previous item on the list. Make click
sound and reset LAST_TOUCH_TIME. If the item currently selected in the list is not the first item,
make the previous item active.

Create Point Renderer This subroutine displays different fonts for transportation based on type (airport, bus station, or train
station). Select font for transportation icons. Create a strings collection and populate it with the
facility codes for airport, bus station, and train station. For each value defined, assign font index,
color, and size.

frmPtsInterest Form Load Add the Points of Interest items to the list box and highlight the first item.

Table 201 - Routines called by Points of Interest List

4.2.2.2.5 Find Point of Interest

The Find Point of Interest GUI displays the Points of Interest list and provides the capability for the user to
scroll through the list and select the desired Point of Interest. The structure chart for Find Point of Interest
is depicted in Figure 200. A description of the routines called by Find Point of Interest is provided in Table
202.

Traveler Information Kiosk System Design Document286

frmFindPOI

cmd
Ascii

cmd
Cancel

cmd
Reset

cmd
Display

frmFindPOI
Form
Unload

Figure 200 - Find Point of Interest Structure Chart

Function Description

cmd Ascii This subroutine determines which button was selected (letter, number, or space) and then finds the first
point of interest that matches the selected button. If no point of interest begins with the selected button, a
warning message is displayed. Make click sound and reset Last_Touch_Timer. Determine which button
was selected by the user. Index values from 0 to 25 correspond to the 26 letters of the alphabet from A
to Z, index values from 26 to 35 correspond to numeric digits from 0 to 9, and index value 36
corresponds to the space character. Build the POI name by concatenating the value of the index to the
POI string.

cmd Cancel This subroutine allows the user to cancel the Select POI function. Make click sound, reset
Last_Touch_Timer, reinitialize the map, and delete any POI icons displayed.

cmd Display This subroutine displays the facilities for one POI category or displays the single POI facility selected by
the user. Make click sound, reset Last_Touch_Timer, and clear instruction label on map. Get facility
name from POI list. Temporarily replace apostrophes in the name with the underscore symbol. This is
done to ensure that an accurate query is performed. This will be reset later. Search the currently
selected POI shapefile for the facility name and put the results in a recordset. (The current POI file is
determined by looking up the POI index in the POI category list). Replace underscores in the name with
apostrophes to restore the facility names. Set the recordset to the first record. If more than one name
was found (multiple facilities for same name, e.g., McDonalds restaurants), display each record as an
icon on the tracking layer, but also create a map layer for later searching. If only one record was found,
display the icon, build the Identify form, and display it. NOTE: The characteristics for the icons to be
displayed are found by looking up the POI form index in the POI_Categories file. If an error occurs, build
an error message using the error number and error message (if known) and send it to LogError.

cmd Reset This subroutine resets the POI string. Make click sound, reset Last_Touch_Timer, reset the POI form to
the top of the list, and clear the POI string.

frmFindPOI Form Unload Reset the default values for the GUI.

Table 202 - Routines called by Find Point of Interest

Traveler Information Kiosk System Design Document287

4.2.2.2.6 Identify GUI

The Identify GUI provides a function that takes the x,y coordinates from the MouseDown event, finds the
features that are at or near that point, and populates the Identify form. The input parameter location is
converted to a MapObject point and the POI layer is checked to see if it is active. If the layer is invisible,
then the actual layer being displayed to the user is the tracking layer; this is used when POI's with the same
name (e.g., McDonald's) are being displayed. If this is the case, then compare the distance between each
point in the active layer with the point that was touched by the user, saving the closest point with each
comparison. After finding the closest point, determine if the point is close enough to have been touched. If
so, flash the point and display the Identify form with the POI name, address, and phone number, as
available. If the layer is displayed on the map as a map layer, create a dataset of records in the POI
shapefile that is displayed, and search for a POI within a specified search tolerance. If one is found, flash
the point and display the Identify form with the POI name, address, and phone number, as available. If an
error occurs, build an error message using the error number and error message (if known) and send it to
LogError. The structure chart for Identify GUI is depicted in Figure 201. A description of the routines
called by Identify GUI is provided in Table 203.

frmIdentify

Identify

cmd
Display
Click

cmd
Get
Me
There

Form
Click

lblAddress
Click

lblName
Click

lblPhone
Click

frmCurrentTraffic

frmRouteInstructions

Figure 201 - Identify GUI Structure Chart

Traveler Information Kiosk System Design Document288

Function Description

cmd Display Click Displays icons for the Point of Interest category selected by the user. Make click sound, reset
Last_Touch_Timer, reinitialize the map to remove previously displayed POI icons, and blank the message to the
user. Using the index of the line selected by the user, read into the POI array to determine the type of POI
selected. Create a new layer based on this POI. If the user selected the category, "Transportation", build a
point renderer to display different transportation types by different icons, display a message to the user to select
any button or icon to continue, and unload the PtsInterest form. If the user selected any category other than
"Transportation", build a geodataset of facilities included in the POI category selected by the user, get the icon
font, color, and style from the POI Layer Info data structure, add the layer to the SA Map, display a message to
the user to select any button or icon to continue, and unload the PtsInterest form. If an error occurs, build an
error message using the error number and error message (if known) and send it to LogError.

cmd Get Me There This routine sets the origin and destination points, invokes the PathFinder routine, and prepares turn-by-turn
instructions for the specified route. Make Click Sound and reset LAST_TOUCH_TIME. If real-time data is
available, determine if the user wants real-time traffic conditions to be considered when building the route.
Inform the user that this will take some extra time. If the user wants to use real-time data, update the speed
table (MakeSpeedTable) and update the impedances (ROUTE_GUIDE updateImpedances). Define the source
and destination points, define the parameters required by ROUTE_GUIDE, and find the path (ROUTE_GUIDE
FindPath). Refresh the tracking layer to display the route and display the turn-by-turn instructions. If an error
occurs, build an error message using the error number and error message (if known) and send it to LogError.

Form Click Make Click Sound, reset LastTouchTime, and unload frmIdentify.

frmCurrentTraffic This GUI is displayed after the user has selected the Get Me There button. The GUI determines whether or not
the user wants to include the current traffic conditions in the route guidance calculations.

frmIdentify This form displays the name and address of either the Point of Interest or address selected by the user.

frmRouteInstructions This GUI lists the turn by turn instructions, after the user requested route has been calculated. In addition, the
route is drawn on the SA Map.

lblAddress Click Make Click Sound, reset LastTouchTime, and unload frmIdentify.

lblName Click Make Click Sound, reset LastTouchTime, and unload frmIdentify.

lblPhone Click Make Click Sound, reset LastTouchTime, and unload frmIdentify.

Table 203 - Routines called by Identify GUI

4.2.2.2.7 Current Traffic GUI

The Current Traffic GUI is displayed after the user has selected the Get Me There button. The GUI
determines whether or not the user wants to include the current traffic conditions in the route guidance
calculations. The structure chart for Current Traffic GUI is depicted in Figure 202. A description of the
routines called by Current Traffic GUI is provided in Table 204.

Traveler Information Kiosk System Design Document289

frmCurrentTraffic

frmCurrentTraffic
No click

frmCurrentTraffic
Yes
click

Figure 202 - Current Traffic GUI Structure Chart

Function Description

frmCurrentTraffic No click Set the response flag to False and unloads the Current Traffic GUI.

frmCurrentTraffic Yes click Set the response flag to True and unloads the Current Traffic GUI.

Table 204 - Routines called by Current Traffic GUI

After the user has selected whether or not to use real time traffic conditions, the route is calculated using
DLL calls developed by Environmental System Research Institute (ESRI). These calls calculate the route,
return a layer that when rendered displays the route on the San Antonio Street Map, and return a list of turn
by turn instructions that are displayed in a list box next to the San Antonio Street Map.

4.2.2.2.8 Airport Data Screen

When selected by the user, the “Airport” button on the Main Menu Screen allows the display of a
predefined zoom area displaying the traffic in the area of the San Antonio International Airport centering
on the airport. The user can select to view Airline Carrier information, Rental Car Agency information, or
Airport Parking information. The structure chart for the Airport Data GUI is depicted in Figure 203. A
description of the routines called by the Airport Data GUI is provided in Table 205.

Traveler Information Kiosk System Design Document290

frmAirport

cmd
Help cmdParking

SetSoundFile

frmAirport
cmdMainMenu

Airport
Form
Load

frmAirport
cmdPrint cmdAirline cmdRentalCars

Thermal
Printer

Process
Print
Time

Process
Usage
Counts

Increment
PaperLow
Count

Airport Map

Unload
Form

Figure 203 - Airport Data Screen Structure Chart

Traveler Information Kiosk System Design Document291

Function Description

Airport Form Load Loads the airport map from the airport shapefile.

cmd Help The button displays help for the specified GUI from which it is selected. The appropriate bitmap
file is retrieved and displayed.

cmdAirline This event is triggered when the user touches the Airlines button; causing the Airline information to
be displayed.

cmdParking This event is triggered when the user touches the Parking button; causing the Parking information
to be displayed.

cmdRentalCars This event is triggered when the user touches the Rental Cars button; causing the Rental Car
information to be displayed.

frmAirport cmdMainMenu When selected, the click soundfile is play, the last touch time is updated, the SA Online Main Menu
is displayed and the Airport GUI is hidden.

frmAirport cmdPrint After sound file is played, set LAST_TOUCH_TIME to current time. If ENABLE_PRINT is true,
the airport map is printed. Otherwise nothing is printed. ProcessPrintTime by checking if the print
button has been selected more than 5 times in the last 30 seconds. IncrementPaperLowCount and
store in status file. ProcessUsageCount by incrementing PRINT_COUNT variable in status file.
Set printer properties such as orientation and length by calling the printer dll (pprtr.dll) and print the
map.

Increment PaperLow Count Increments the paper low counter, contained in the paper low file, every time a print is requested by
the user.

Process Print Time Stores the last print time into the Print Time array and then determines if the print button has
exceeded its threshold (e.g., more that 5 prints in 30 seconds).

Process Usage Counts Saves the current usage counts for Main Menu, SA Map, Airport, Weather, VIA and Route
Guidance to the usage file.

SetSoundFile Passes the sound file, that is called when any click event occurs, as a parameter to the call to the
Windows API PlaySound

Unload Form Visual Basic Event that removes the specified form from the display and closes it. The form and its
fields are no longer accessible until another load or show form is executed.

Table 205 - Routines called by Airport Data Screen

4.2.2.2.9 Airline Carriers

The Airline Carriers GUI displays the airline carrier information contained in the airlines.txt file. The
structure chart for Airline Carriers is depicted in Figure 204. A description of the routines called by
Airline Carriers is provided in Table 206.

Traveler Information Kiosk System Design Document292

frmAirlines

cmd
Help

frmAirlines
cmdMainMenu

frmAirlines
cmdPrevious

frmAirlines
cmdPrint

frmAirlines
Form
Load

Process
Usage
Counts

Process
Print
Time

Printer
DLL
(pprtr)

SetSoundFile

Airline
Carriers
Data
File

Increment
PaperLow
Count

Thermal
Printer

Figure 204 - Airline Carriers Structure Chart

Traveler Information Kiosk System Design Document293

Function Description

cmd Help The button displays help for the specified GUI from which it is selected. The appropriate bitmap file is
retrieved and displayed.

frmAirlines cmdMainMenu After sound file is played, set LAST_TOUCH_TIME to current time, show frmMainMenu, set
lblErrorMsg visibility property to false and unload frmAirlines GUI.

frmAirlines cmdPrevious After sound file is played, set LAST_TOUCH_TIME to current time, show frmAirport GUI, set
lblErrorMsg visibility property to false, and unload frmAirlines GUI.

frmAirlines cmdPrint After sound file is played, set LAST_TOUCH_TIME to current time. If ENABLE_PRINT is true and
grdAirlines contains data continue with printing procedures, otherwise discontinue printing.
ProcessPrintTime by checking if the print button has been selected more than 5 times in the last 30
seconds. IncrementPaperLowCount and store in status file. ProcessUsageCount by incrementing
PRINT_COUNT variable in status file. Set printer properties such as orientation and length by calling
the printer dll (pprtr.dll) and send airlines grid data to the thermal printer for printing.

frmAirlines Form Load Set up grdAirlines parameters. Get and load airline agency data into grdAirlines. If unable to load
airline agency data (open error or file missing) then set lblErrorMsg visibility property to true, close the
data file, and exit subroutine.

Increment PaperLow Count Increments the paper low counter, contained in the paper low file, every time a print is requested by
the user.

Printer DLL (pprtr) Changes thermal printer properties, such as orientation and paper length, through a dll call.

Process Print Time Stores the last print time into the Print Time array and then determines if the print button has
exceeded its threshold (e.g., more that 5 prints in 30 seconds).

Process Usage Counts Saves the current usage counts for Main Menu, SA Map, Airport, Weather, VIA and Route Guidance
to the usage file.

SetSoundFile Passes the sound file, that is called when any click event occurs, as a parameter to the call to the
Windows API PlaySound.

Table 206 - Routines called by Airline Carriers

4.2.2.2.10 Rental Car Agency GUI

The Rental Car Agency GUI displays the Rental Car information contained in the rental.txt file. The
structure chart for Rental Car Agency GUI is depicted in Figure 205. A description of the routines called
by Rental Car Agency GUI is provided in Table 207.

Traveler Information Kiosk System Design Document294

frmRentals

cmd
Help

frmRental
cmdMainMenu

frmRental
cmdPrevious

frmRental
cmdPrint

frmRental
Form
Load

Printer
DLL
(pprtr)

Process
Print
Time

Process
Usage
Counts

SetSoundFile

Rental
Car
Agency
Data
File

Increment
PaperLow
Count

Thermal
Printer

Figure 205 - Rental Car Agency GUI Structure Chart

Traveler Information Kiosk System Design Document295

Function Description

cmd Help The button displays help for the specified GUI from which it is selected. The appropriate bitmap file is
retrieved and displayed.

frmRental cmdMainMenu After sound file is played, set LAST_TOUCH_TIME to current time, show frmMainMenu, set
lblErrorMsg visibility property to false, and hide frmRentals GUI.

frmRental cmdPrevious After sound file is played, set LAST_TOUCH_TIME to current time, show frmAirport GUI, set
lblErrorMsg visibility property to false, and hide frmRentals GUI.

frmRental cmdPrint After sound file is played, set LAST_TOUCH_TIME to current time. If ENABLE_PRINT is true and
grdRentals contains data, continue with printing procedures, otherwise discontinue printing.
ProcessPrintTime by checking if the print button has been selected more than 5 times in the last 30
seconds. IncrementPaperLowCount and store in status file. ProcessUsageCount by incrementing
PRINT_COUNT variable in status file. Set printer properties such as orientation and length by calling
the printer dll (pprtr.dll). Send rental car agency grid data to the thermal printer for printing.

frmRental Form Load Set up grdRentalCars parameters. Get and load rental car agency data into grdRentalCars. If unable
to load rental car agency data (open error or file missing) then set lblErrorMsg visibility property to
true, close the data file and exit the subroutine.

Increment PaperLow Count Increments the paper low counter, contained in the paper low file, every time a print is requested by
the user.

Printer DLL (pprtr) Changes thermal printer properties, such as orientation and paper length, through a dll call.

Process Print Time Stores the last print time into the Print Time array and then determines if the print button has
exceeded its threshold (e.g., more that 5 prints in 30 seconds).

Process Usage Counts Saves the current usage counts for Main Menu, SA Map, Airport, Weather, VIA and Route Guidance
to the usage file.

SetSoundFile Passes the sound file, that is called when any click event occurs, as a parameter to the call to the
Windows API PlaySound.

Table 207 - Routines called by Rental Car Agency GUI

4.2.2.2.11 Airport Parking Fee GUI

The Airport Parking Fee GUI displays the parking data contained in the parking.txt file. The structure
chart for Airport Parking Fee GUI is depicted in Figure 206. A description of the routines called by
Airport Parking Fee GUI is provided in Table 208.

Traveler Information Kiosk System Design Document296

frmParking

cmd
Help

frmParking
cmdMainMenu

frmParking
cmdPrevious

frmParking
cmdPrint

Thermal
Printer

Printer
DLL
(pprtr)

Process
Print
Time

Process
Usage
Counts

SetSoundFile

Increment
PaperLow
Count

frmParking
Form
Load

Parking
Data
File

Figure 206 - Airport Parking Fee GUI Structure Chart

Traveler Information Kiosk System Design Document297

Function Description

cmd Help The button displays help for the specified GUI from which it is selected. The appropriate bitmap file is
retrieved and displayed.

frmParking cmdMainMenu After sound file is played, set LAST_TOUCH_TIME to current time, show frmMainMenu, set
lblErrorMsg visibility property to false, and hide frmParking GUI.

frmParking cmdPrevious After sound file is played, set LAST_TOUCH_TIME to current time, show frmAirport GUI, set
lblErrorMsg visibility property to false, and hide frmParking GUI.

frmParking cmdPrint After sound file is played, set LAST_TOUCH_TIME to current time. If ENABLE_PRINT is true and
grdParking contains data, continue with printing procedures, otherwise discontinue printing.
ProcessPrintTime by checking if the print button has been selected more than 5 times in the last 30
seconds. IncrementPaperLowCount and store in status file. ProcessUsageCount by incrementing
PRINT_COUNT variable in status file. Set printer properties such as orientation and length by calling
the printer dll (pprtr.dll) and send parking fees grid data to the thermal printer for printing.

frmParking Form Load If any errors occur, send error message to error logging routine. Set up grdParking parameters. Get
and load parking data into grdParking. If unable to load parking data (open error or file missing) then
set lblErrorMsg visibility property to true and close data file. Exit subroutine.

Increment PaperLow Count Increments the paper low counter, contained in the paper low file, every time a print is requested by
the user.

Printer DLL (pprtr) Changes thermal printer properties, such as orientation and paper length, through a dll call.

Process Print Time Stores the last print time into the Print Time array and then determines if the print button has
exceeded its threshold (e.g., more that 5 prints in 30 seconds).

Process Usage Counts Saves the current usage counts for Main Menu, SA Map, Airport, Weather, VIA and Route Guidance
to the usage file.

SetSoundFile Passes the sound file, that is called when any click event occurs, as a parameter to the call to the
Windows API PlaySound.

Table 208 - Routines called by Airport Parking Fee GUI

4.2.2.2.12 San Antonio Weather Screen

The San Antonio Weather GUI displays the latest radar map received from the Master Computer and
provides the capability to access the Five Day Forecast and Current Conditions GUIs. The structure chart
for San Antonio Weather Screen is depicted in Figure 207. A description of the routines called by San
Antonio Weather Screen is provided in Table 209.

Traveler Information Kiosk System Design Document298

frmWeather

cmd
Help

frmWeather
cmdMainMenu

Process
Usage
Counts

frmWeather
cmdPrint

Thermal
Printer

Increment
PaperLow
Count

Process
Print
Time

cmdFiveDay

SetSoundFile

Printer
DLL
(pprtr)

cmdCurrentCond

Figure 207 - San Antonio Weather Screen Structure Chart

Traveler Information Kiosk System Design Document299

Function Description

cmd Help The button displays help for the specified GUI from which it is selected. The appropriate bitmap file is
retrieved and displayed.

cmdCurrentCond After sound file is played, set LAST_TOUCH_TIME to current time, show frmCurrentCond , and hide
frmWeather.

cmdFiveDay After sound file is played, set LAST_TOUCH_TIME to current time, show frmFiveDay, and hide
frmWeather.

FrmWeather cmdMainMenu After sound file is played, set LAST_TOUCH_TIME to current time, show frmMainMenu, and hide
frmWeather GUI.

frmWeather cmdPrint After sound file is played, set LAST_TOUCH_TIME to current time. If ENABLE_PRINT is true and
Image1 contains a graphic, continue with printing procedures, otherwise discontinue printing.
ProcessPrintTime by checking if the print button has been selected more than 5 times in the last 30
seconds. IncrementPaperLowCount and store in status file. ProcessUsageCount by incrementing
PRINT_COUNT variable in status file. Set printer properties such as orientation and length by calling
the printer dll (pprtr.dll) and send radar map graphic to the thermal printer for printing.

Increment PaperLow Count Increments the paper low counter, contained in the paper low file, every time a print is requested by
the user.

Printer DLL (pprtr) Changes thermal printer properties, such as orientation and paper length, through a dll call.

Process Print Time Stores the last print time into the Print Time array and then determines if the print button has
exceeded its threshold (e.g., more that 5 prints in 30 seconds).

Process Usage Counts Saves the current usage counts for Main Menu, SA Map, Airport, Weather, VIA and Route Guidance
to the usage file.

SetSoundFile Passes the sound file, that is called when any click event occurs, as a parameter to the call to the
Windows API PlaySound.

Table 209 - Routines called by San Antonio Weather Screen

4.2.2.2.13 Current Conditions GUI

The Current Conditions GUI displays the latest current conditions bitmap received from the Master
Computer. The structure chart for Current Conditions GUI is depicted in Figure 208. A description of the
routines called by Current Conditions GUI is provided in Table 210.

Traveler Information Kiosk System Design Document300

frmCurrentCond

cmd
Help

frmCurrCond
cmdMainMenu

frmCurrCond
cmdPrevious

frmCurrCond
cmdPrint

Process
Print
Time

Printer
DLL
(pprtr)

Process
Usage
Counts

Thermal
Printer

SetSoundFile

Increment
PaperLow
Count

Figure 208 - Current Conditions GUI Structure Chart

Function Description

cmd Help The button displays help for the specified GUI from which it is selected. The appropriate bitmap file
is retrieved and displayed.

frmCurrCond cmdMainMenu After sound file is played, set LAST_TOUCH_TIME to current time, show frmMainMenu GUI, and
hide frmCurrentCond GUI.

frmCurrCond cmdPrevious After sound file is played, set LAST_TOUCH_TIME to current time, show frmWeather GUI, and
hide frmCurrentCond GUI.

frmCurrCond cmdPrint After sound file is played, set LAST_TOUCH_TIME to current time. If ENABLE_PRINT is true and
Image1 contains a graphic, continue with printing procedures, otherwise discontinue printing.
ProcessPrintTime by checking if the print button has been selected more than 5 times in the last 30
seconds. IncrementPaperLowCount and store in status file. ProcessUsageCount by incrementing
PRINT_COUNT variable in status file. Set printer properties such as orientation and length by
calling the printer dll (pprtr.dll) and send current conditions graphic to the thermal printer for printing.

Increment PaperLow Count Increments the paper low counter, contained in the paper low file, every time a print is requested by
the user.

Printer DLL (pprtr) Changes thermal printer properties, such as orientation and paper length, through a dll call.

Process Print Time Stores the last print time into the Print Time array and then determines if the print button has
exceeded its threshold (e.g., more that 5 prints in 30 seconds).

Traveler Information Kiosk System Design Document301

Function Description

Process Usage Counts Saves the current usage counts for Main Menu, SA Map, Airport, Weather, VIA and Route
Guidance to the usage file.

SetSoundFile Passes the sound file, that is called when any click event occurs, as a parameter to the call to the
Windows API PlaySound.

Table 210 - Routines called by Current Conditions GUI

4.2.2.2.14 Five-Day Forecast GUI

The Five-Day Forecast GUI displays the last five-day forecast bitmap received from the Master Computer.
The structure chart for Five-Day Forecast GUI is depicted in Figure 209. A description of the routines
called by Five-Day Forecast GUI is provided in Table 211.

frmFiveDay

cmd
Help

frmFiveDay
cmdMainMenu

frmFiveDay
cmdPrevious

frmFiveDay
cmdPrint

Process
Print
Time

Printer
DLL
(pprtr)

Process
Usage
Counts

Increment
PaperLow
Count

SetSoundFile

Thermal
Printer

Figure 209 - Five Day Forecast GUI Structure Chart

Traveler Information Kiosk System Design Document302

Function Description

cmd Help The button displays help for the specified GUI from which it is selected. The appropriate bitmap file is
retrieved and displayed.

frmFiveDay cmdMainMenu After sound file is played, set LAST_TOUCH_TIME to current time, show frmMainMenu GUI, and
hide frmFiveDay GUI.

frmFiveDay cmdPrevious After sound file is played, set LAST_TOUCH_TIME to current time, show frmWeather GUI, and hide
frmFiveDay GUI.

frmFiveDay cmdPrint After sound file is played, set LAST_TOUCH_TIME to current time. If ENABLE_PRINT is true and
Image1 contains a graphic, continue with printing procedures, otherwise discontinue printing.
ProcessPrintTime by checking if the print button has been selected more than 5 times in the last 30
seconds. IncrementPaperLowCount and store in status file. ProcessUsageCount by incrementing
PRINT_COUNT variable in status file. Set printer properties such as orientation and length by calling
the printer dll (pprtr.dll) and send five day graphic to the thermal printer for printing.

Increment PaperLow Count Increments the paper low counter, contained in the paper low file, every time a print is requested by
the user.

Printer DLL (pprtr) Changes thermal printer properties, such as orientation and paper length, through a dll call.

Process Print Time Stores the last print time into the Print Time array and then determines if the print button has
exceeded its threshold (e.g., more that 5 prints in 30 seconds).

Process Usage Counts Saves the current usage counts for Main Menu, SA Map, Airport, Weather, VIA and Route Guidance
to the usage file.

SetSoundFile Passes the sound file, that is called when any click event occurs, as a parameter to the call to the
Windows API PlaySound.

Table 211 - Routines called by Five Day Forecast GUI

4.2.2.2.15 VIA Transit Screen

The Via Transit GUI provides the ability to access the VIA Transit data. Buttons are provided to access
route schedules, special event information, general information, fare and pass information, and VIATrans
information. The structure chart for VIA Transit Screen is depicted in Figure 210. A description of the
routines called by VIA Transit Screen is provided in Table 212.

Traveler Information Kiosk System Design Document303

frmVIATransit

cmd
Help

frmVIATransit
cmdMainMenu

VIA
Generic
Info
GUI

SetSoundFile

frmVIATransit
Form
Load

Mission
Statement
Data
File

cmdVIARouteSch

Figure 210 - VIA Transit Screen Structure Chart

Traveler Information Kiosk System Design Document304

Function Description

cmd Help The button displays help for the specified GUI from which it is selected. The appropriate bitmap file
is retrieved and displayed.

cmdVIARouteSch After sound file is played, set LAST_TOUCH_TIME to current time, show frmVIARouteSch GUI,
and hide frmVIATransit GUI.

frmVIATransit cmdMainMenu After sound file is played, set LAST_TOUCH_TIME to current time, show frmMainMenu GUI, and
hide frmVIATransit GUI.

frmVIATransit Form Load Get and display the VIA mission statement. If unable to load mission statement (open error or file
missing), then send error message, close the data file, and exit the subroutine.

SetSoundFile Passes the sound file, that is called when any click event occurs, as a parameter to the call to the
Windows API PlaySound

VIA Generic Info GUI This GUI is used to display the VIA information gif files (Fares and Passes, General Information,
Special Events, and VIATrans) to the user. The same GUI is used to display fare and pass
information, general information, special event information, and VIATrans information. After sound
file is played, the LAST_TOUCH_TIME is set to the current time, the VIA Generic Info GUI is
displayed with the selected VIA information, and the frmVIATransit GUI is hidden.

Table 212 - Routines called by VIA Transit Screen

4.2.2.2.16 VIA Bus Stop GUI

The VIA Bus Stop GUI displays a map containing the bus stops surrounding the location of the kiosk and
provides the capability to view routes associated with those bus stops. The structure chart for VIA Bus
Stop GUI is depicted in Figure 211. A description of the routines called by VIA Bus Stop GUI is provided
in Table 213.

Traveler Information Kiosk System Design Document305

frmVIARouteSch

Route
Sched
cmdPrint

VIA
Route
Sched
Form
Load

VIA
Route
Sched
Initialize
Map

Bus
Stop
Create
Label
Render

Bus
Stops
MouseDown

Route
Sched
cmdMainMenu

Route
Sched
cmdPrevious

Process
Print
Time

Increment
PaperLow
Count

Process
Usage
Counts

Print
Bus
Map

Set
BusStop
Info

Route
Sched
cmdViewRoutes

Select
Route
cmdAccept

cmd
Help

SetSoundFile

frmVIASelectRoute

Figure 211 - VIA Bus Stop GUI Structure Chart

Traveler Information Kiosk System Design Document306

Function Description

Bus Stop Create Label Render This routine creates the labels for the bus stop map. The MoPlus Label Placer is used to label
the street names and the font is set to Arial. Finally, the renderer is then setup to display the
most detailed street layout.

Bus Stops MouseDown The event is triggered when the user touches the map and determines which bus stop the user
is selecting. The coordinates of the location the user touched are retrieved and the search
tolerances are set. Using the SearchByDistance Map Objects method, determine if there is a
bus stop with the search area. If a bus stop is found, get the bus stop number and flash the icon
to indicate that it was selected.

cmd Help The button displays help for the specified GUI from which it is selected. The appropriate bitmap
file is retrieved and displayed.

FrmVIASelectRoute Provides a list of bus routes associated with the selected bus stop from which the user can
select one.

Increment PaperLow Count Increments the paper low counter, contained in the paper low file, every time a print is requested
by the user.

Print Bus Map This routine prints the bus stop map that is displayed on the Via Route Schedule GUI. Using the
PPrtr DLL, the printer sets and prints the name of the map, the bus stop map, and the Navigation
Technologies logo.

Process Print Time Stores the last print time into the Print Time array and then determines if the print button has
exceeded its threshold (e.g., more that 5 prints in 30 seconds).

Process Usage Counts Saves the current usage counts for Main Menu, SA Map, Airport, Weather, VIA and Route
Guidance to the usage file.

Route Sched cmdMainMenu This routine invokes the touch sound, updates the last touch time, Shows the SA Online Main
Menu, and Hides the Via Route Schedule form.

Route Sched cmdPrevious This routine plays the touch sound file, updates the last touch time, shows the VIATransit form
and hides the VIA Route Schedule form.

Route Sched cmdPrint This routine prints the bus stop map. The touch sound is invoked and the last touch time is
updated. If printing is enabled, the last print time is updated, the paper low count is incremented,
the print usage count is updated and the bus stop map is printed.

Route Sched cmdViewRoutes This routine displays either the selected route of the Select Route form. If there is only one route
associated with the bus stop, the schedule for that route is retrieved, the Display Route form is
displayed, and the VIA Route Schedule form is hidden. If there is more than one route
associated with the bus stop, build the list of routes that can be selected and display the routes
on the Select Route form.

Traveler Information Kiosk System Design Document307

Function Description

Select Route cmdAccept This routine finds and displays the bus route schedule information. The last touch time is updated
and a message that the route schedule is being processed is displayed. Next, the bus schedule
grids are cleared. Determine the day of the year and search through the service file until the day
is found. Determine if the route follows a typical service schedule or an alternative service
schedule. If the route number is in the header record, then the route follows an alternate service
schedule. Otherwise, the route follows the typical service schedule. Next, set the Select Route
label to the route number. Open the route file and examine the service type. If the service type is
zero, then the route does not provide services for this day. Otherwise, begin to load the route
schedule into two grids. Use the bus stop numbers to retrieve the associated text name from the
Cross Reference array. Use the numbers and names to build a legend for printing and load the
text names as headings in the grids. Load the stop times into the grids. Determine if these are
bus route attributes and if one is found, display the attribute. Finally, determine the directions for
each of the grids and display them. After the grids are completed, the associated bitmap file is
loaded. The SelectRoute list is cleared and the form is hidden. The DisplayRoute form is loaded
and the VIA Route Schedule form is hidden.

Set BusStop Info This routine finds the bus stop text name and associated bus route(s) for the bus stop that was
selected by the user. The name and route(s) are displayed on the Bus Stop Data label. The bus
stop number is used to search the Cross Reference file for a match. When found, build a string
containing the stop name and associated bus routes and assign it to the Bus Stop Data label. If
no match is found, display an error message on the Bus Stop Data label.

SetSoundFile Passes the sound file, that is called when any click event occurs, as a parameter to the call to the
Windows API PlaySound.

VIA Route Sched Form Load This loads the Via Route Schedule Form, including a map of the area surrounding the Kiosk.

VIA Route Sched Initialize Map This function sets up a map of the area surrounding the kiosk. The location of the kiosk and
nearby bus stops are displayed. The map layer that is going to display the area around the kiosk
is prepared and the label rendered is defined. Next, the map layer containing the bus stop icons is
prepared and the layer containing the kiosk location icon is prepared. The size of the search area
for the bus stops is defined. If there are not at least five bus stops in the search area, increase
the area until there are five or more bus stops. Center the kiosk location on the map display and
size the map. Finally, render the map containing the kiosk location and associated bus stops.

Table 213 - Routines called by VIA Bus Stop GUI

4.2.2.2.17 VIA Select Route GUI

The VIA Select Route GUI provides a list of bus routes associated with the selected bus stop from which
the user can select one. The structure chart for VIA Select Route GUI is depicted in Figure 212. A
description of the routines called by VIA Select Route GUI is provided in Table 214.

Traveler Information Kiosk System Design Document308

frmVIASelectRoute

Select
Route
cmdAccept

Unload
BusSchedule

Get
BusStop
Name

Select
Route
cmdCancel

AddToRouteLegend SetSoundFile
Load
DisplayRoute

Figure 212 - VIA Select Route GUI Structure Chart

Function Description

AddToRouteLegend This routine adds the bus stop number and corresponding bus stop name to the route legend grid on the
Display Route form.

Get BusStop Name This function retrieves the bus stop text name from the Cross Reference array using the bus stop number
as the key.

Load DisplayRoute This method loads the Display Route form.

Select Route cmdAccept This routine finds and displays the bus route schedule information. The last touch time is updated and a
message that the route schedule is being processed is displayed. Next, the bus schedule grids are
cleared. Determine the day of the year and search through the service file until the day is found.
Determine if the route follows a typical service schedule or an alternative service schedule. If the route
number is in the header record, then the route follows an alternate service schedule. Otherwise, the route
follows the typical service schedule. Next, set the Select Route label to the route number. Open the route
file and examine the service type. If the service type is zero, then the route does not provide services for
this day. Otherwise, begin to load the route schedule into two grids. Use the bus stop numbers to
retrieve the associated text name from the Cross Reference array. Use the numbers and names to build
a legend for printing and load the text names as headings in the grids. Load the stop times into the grids.
Determine if there are bus route attributes and if one is found, display the attribute. Finally, determine the
directions for each of the grids and display them. After the grids are completed, the associated bitmap file
is loaded. The SelectRoute list is cleared and the form is hidden. The DisplayRoute form is loaded and
the VIA Route Schedule form is hidden.

Select Route cmdCancel This event occurs when the user selects the Cancel button on the Select Route form. The touch
soundfile is played, the last touch time is updated, the bus route list is cleared and the Select Route form
is hidden.

SetSoundFile Passes the sound file, that is called when any click event occurs, as a parameter to the call to the
Windows API PlaySound.

Unload BusSchedule This routine clears the two route schedule grids using the RemoveItem method.

Table 214 - Routines called by VIA Select Route GUI

Traveler Information Kiosk System Design Document309

4.2.2.2.18 VIA Display Route Schedule

The VIA Display Route Schedule GUI displays the route schedule grids and bitmap. The user can also
select to print the route schedule information and/or return to the VIA Route Schedule GUI. The structure
chart for VIA Display Route Schedule is depicted in Figure 213. A description of the routines called by
VIA Display Route Schedule is provided in Table 215.

frmDisplayRoute

Display
Route
cmdPrevious

Display
Route
cmdPrint

Process
Print
Time

Increment
PaperLow
Count

Process
Usage
Counts

SetSoundFile

Figure 213 - VIA Display Route Schedule Structure Chart

Function Description

Display Route cmdPrevious This event is triggered when the user selects the previous button. The touch soundfile is played, the last
touch time is updated, displayed route attributes are cleared, the VIA Route Schedule GUI is shown, and
the Display Route GUI is hidden.

Display Route cmdPrint This event is triggered when the user selects the print button. The touch soundfile is played and the last
touch time is updated. If printing is enabled, then the bus route schedule, the bus route bitmap and the
bus stop legend are printed. In order to prepare for printing the route information, the print time is
updated, the paper low counter is incremented, and the print usage counter is incremented. Using the
PPrtr DLL the two route grids, the route bitrmap, and the route legend are printed.

Increment PaperLow Count Increments the paper low counter, contained in the paper low file, every time a print is requested by the
user.

Process Print Time Stores the last print time into the Print Time array and then determines if the print button has excedded its
threshold (e.g., more that 5 prints in 30 seconds).

Process Usage Counts Saves the current usage counts for Main Menu, SA Map, Airport, Weather, VIA and Route Guidance to
the usage file.

SetSoundFile Passes the sound file, that is called when any click event occurs, as a parameter to the call to the
Windows API PlaySound.

Table 215 - Routines called by VIA Display Route Schedule

Traveler Information Kiosk System Design Document310

4.2.2.2.19 VIA Generic Information GUI

The VIA Generic Information GUI is used to display the VIA information gif files to the user. The GUI is
used to display fare and pass information, general information, special event information, and VIATrans
information. The structure chart for VIA Generic Information GUI is depicted in Figure 214. A
description of the routines called by VIA Generic Information GUI is provided in Table 216.

VIA
Generic
Info
GUI

cmd
Help

frmVIAGeneric
cmdMainMenu cmdPageDown cmdPageUpfrmVIAGeneric

cmdPrevious
frmVIAGeneric
cmdPrint

frmVIAGeneric
Form
Load

Increment
PaperLow
Count

Printer
DLL
(pprtr)

Process
Print
Time

Thermal
Printer

Process
Usage
Counts

Fares
and
Passes
Graphic
File

SetSoundFile

Unload

Figure 214 - VIA Information GUIs Structure Chart

Traveler Information Kiosk System Design Document311

Function Description

cmd Help The button displays help for the specified GUI from which it is selected. The appropriate bitmap
file is retrieved and displayed.

CmdPageDown After sound file is played, set LAST_TOUCH_TIME to current time. If any errors occur, send an
error message to error logging routine. Set lblErrorMsg visibility property to false. Set HScroll1
visibility property to true. If there is another graphic to display then set Picture2 to next graphic
and set cmdPageUp enabled property to true. Also, if it is the last picture to be displayed then set
cmdPageDown enabled property to false. If unable to load next graphic, send an error message,
set Picture2 to no graphic, set lblErrorMsg to "Page (applicable page number) Currently
Unavailable" and visibility property to true, set HScroll1 visibility property to false and continue for
successive pages (if any).

CmdPageUp After sound file is played, set LAST_TOUCH_TIME to current time. If any errors occur, send an
error message to error logging routine. Set lblErrorMsg visibility property to false. Set HScroll1
visibility property to true. If there is another graphic to display then set Picture2 to previous
graphic and set cmdPageDown enabled property to true. Also, if it is the first picture to be
displayed then set cmdPageUp enabled property to false. If unable to load previous graphic, send
an error message, set Picture2 to no graphic, set lblErrorMsg to "Page (applicable page number)
Currently Unavailable" and visibility property to true, set HScroll1 visibility property to false and
continue for successive pages (if any).

FrmVIAGeneric cmdMainMenu After sound file is played, set LAST_TOUCH_TIME to current time, show frmMainMenu, delete
the contents of the file list array to reclaim Windows resources, and unload the VIA Generic Info
GUI.

FrmVIAGeneric cmdPrevious After sound file is played, set LAST_TOUCH_TIME to current time, show frmVIATransit, delete
the contents of the file list array to reclaim Windows resources, and unload the VIA Generic Info
GUI.

FrmVIAGeneric cmdPrint If ENABLE_PRINT is true and Picture2 contains a graphic, continue with printing procedures,
otherwise discontinue printing. ProcessPrintTime by checking if the print button has been
selected more than 5 times in the last 30 seconds. IncrementPaperLowCount and store in status
file. ProcessUsageCount by incrementing PRINT_COUNT variable in status file. Change
Picture2 scalemode to twips(1) for printing only. Set printer properties such as orientation and
length by calling the printer dll (pprtr.dll) and send special events graphic to the thermal printer for
printing. Change Picture2 scalemode back to default, pixel, for display.

FrmVIAGeneric Form Load Setup initial form properties: (1)set scalemode to pixel for frmVIAGeneric, Picture1, and Picture2,
(2)set Picture2 autosize property to true, (3)remove Picture1 and Picture2 borders. Load the
selected VIA graphics into an array for display purposes. If no graphics are found then set
lblErrorMsg to "Information Currently Unavailable", set its visibility property to true, and hide all
graphic controls (cmdPageUp, cmdPageDown, Picture1, Picture2, HScroll1, VScroll1). If only
the first graphic is missing then set lblErrorMsg to "Page 1 is Currently Unavailable" and setup a
default Picture1 and Picture2 size. Otherwise, load first graphic into Picture2. If only one graphic
file is available set cmdPageUp and cmdPageDown enabled property to false. Setup remaining
graphic properties: (1)set Picture1 and Picture2 locations and (2)set HScroll1 and VScroll1
position and Max property to appropriate width and height (if scroll bars are needed).

Increment PaperLow Count Increments the paper low counter, contained in the paper low file, every time a print is requested
by the user.

Printer DLL (pprtr) Changes thermal printer properties, such as orientation and paper length, through a dll call.

Process Print Time Stores the last print time into the Print Time array and then determines if the print button has
exceeded its threshold (e.g., more that 5 prints in 30 seconds).

Process Usage Counts Saves the current usage counts for Main Menu, SA Map, Airport, Weather, VIA and Route
Guidance to the usage file.

Traveler Information Kiosk System Design Document312

Function Description

SetSoundFile Passes the sound file, that is called when any click event occurs, as a parameter to the call to the
Windows API PlaySound.

Unload Visual Basic Function - Unloads the appropriate form from memory and reclaims Windows
resources.

Table 216 - Routines called by VIA Generic Information GUI

4.2.2.2.20 Screen Saver

The Screen Saver function is invoked when the last touch time has exceeded the maximum amount of time
between user touches. The function executes similar to a screen saver in that pictures and videos are
displayed until someone touches the GUI, thus ending the screen saver and displaying the SA Online Main
Menu. The structure chart for Screen Saver is depicted in Figure 215. A description of the routines called
Screen Saver is provided in Table 217.

Screen
Saver

Screen
Saver
Form
Activate

Screen
Saver
Form
Click

Screen
Saver
Flash
Timer

Next
Advertisement
Timer

Figure 215 - Screen Saver Structure Chart

Traveler Information Kiosk System Design Document313

Function Description

Next Advertisement Timer This routine determines if the current advertisement's timer has expired. If the advertisement's time
has expired, then the display of the advertisement is terminated and the next advertisement is loaded
and displayed.

Screen Saver Flash Timer This routine changes the color of the message displayed at the bottom of the screen saver once a
second.

Screen Saver Form Activate This routine enables the next advertisement and flash timers and sets the flash timer interval to one
second.

Screen Saver Form Click This event is triggered when the user touches the GUI. Pictures or movies that are currently being
displayed are stopped and the SA Online Main Menu is displayed.

Table 217 - Routines called by Screen Saver

4.2.2.3 Real Time Data Application

The Real Time Data Application reads, processes and transmit the real time traffic data being broadcast
from the FM STIC. The application reads the real time traffic data protocol from a serial port, which has a
specially modified FM receiver that receives the real time data broadcast. The data is then converted into
Transguide Link Ids and speeds or incident codes. The Transguide Link Ids and associated speed or
incident codes are then transmitted to the GUI for display on the San Antonio Street Map and to be used in
the calculation of routes. For more information about the FM STIC and the real time data protocol,
consult the In-Vehicle Navigation Design Document. The remainder of this section describes the Real
Time Data Application design using structure charts and tables. The primary events that occur and the
actions that trigger these events are depicted in Figure 216 and are described in Table 218.

Traveler Information Kiosk System Design Document314

Real Time
Program Control

1.2.4.1
Real
TIme
Form Load

1.2.4.2
Socket
Client
Connect

1.2.4.3

Heartbeat
Timer

1.2.4.4
GUI Client
Socket
Connection

1.2.4.5

Serial
OnComm

FM STIC Messages
Heartbeat/Error
Message TG Link Data

Socket Connect
Established

Program Start

30 Second
Timer

Socket Connect
Established Data on Serial

Port

Figure 216 –Real Time Data Process Events and Event Triggers

Function Description

30 Second Timer This event is set to occur every thirty seconds. When the event is triggered, the application will
perform the actions specified in the timer.

Data on Serial Port This is an indication that data has arrived on the serial port and needs to be processed.

FM STIC Messages The FM STIC Messages are broadcast by the In-Vehicle Navigation project and the structure of
the messages can be found in the In-Vehicle Navigation Design Document.

GUI Client Socket Connection This routine transmits the Transguide Link Ids and their associated speed or incident codes to the
GUI application.

Heartbeat Timer This event is triggered every thirty seconds to transmit the heartbeat record to the Error Server.

Heartbeat/Error Message A record containing either an application heartbeat or an error message. The record is composed
of a 2 byte identifier, the message, and a record delimiter.

Program Start When the program is initiated, the first action of the application is to load the startup form and
perform the form load functions.

Real Time Form Load This event takes place at program start and displays the real time form used for diagnostic
purposes.

Real Time Program Control The control of the events and activities that can occur while an application is executing.

Serial OnComm This is the event that is triggered when data is available on the serial port. The data is read from
the port and processed by the real time process.

Socket Client Connect This event is triggered when the Error Server accepts the socket request. The socket ready flag is
set to True to indicate that data may now be transmitted over the socket.

Traveler Information Kiosk System Design Document315

Function Description

Socket Connect Established The server application has accepted the socket connection request and the communication
between the programs is initiated.

TG Link Data Data containing the Transguide Link Id and its associated speed or incident code.

Table 218 – Real Time Data Process Event and Event Triggers Description

4.2.2.3.1 Real Time Form Load

The Real Time Form Load routine performs the initialization for the real time data process including
loading the configurable parameters, initializing process variables, and opening the connection to the error
server. The structure chart for Real Time Form Load is depicted in Figure 217. A description of the
routines called by Real Time Form Load is provided in Table 219.

Real
Time
Form Load

ProcessConfigFile

InitRealTimeInitErr

Get
Parameters

MakeCrcTable mapClient.Connect

Perform
Heartbeat

LogErr

Figure 217 - Real Time Form Load Structure Chart

Traveler Information Kiosk System Design Document316

Function Description

Get Parameters The function retrieves the command line parameters passed from Error Server. The function first checks to see if the
application is being run in local or remote mode. If the application is in local mode, the application id is defaulted to
one. If the application is in remote mode, the application id is retrieved from the command line parameters using
Command$ command. The returned command line is parsed. The application id is identified by a "-i" followed by the
application id number. The id is stored in a global variable for use by the Heartbeat process. If the application id is not
found, an error is logged.

InitErr This function sets up the socket connection to the Error Server for error reporting. The remote host IP address and
remote host port number are stored in a Winsock object to identify how Modem Communications will communicate with
the Error Server. Next, the Connect method is used to establish the socket connection between the two programs.
Initerr must wait until the connection is established before proceeding. The Winsock object Connect event will be
triggered when the connection is successfully established. The local Winsock object is then assigned to a global
variable for use by other routines.

InitRealTime Initializes the global variables used by the real time data process including global flags and counters, the list of
processed sequence numbers and list of incidents.

LogErr This function transmits the given message to the Error Server. The message is passed into the function as a
parameter and a record delimiter is appended to the message. The message is then transmitted to the Error Server,
using the Winsock object SendData method. Due to the unknown length of the message, the message is broken into
ten byte segments and transmitted piecemeal until the entire message is sent.

MakeCrcTable Initializes the entries in the reverse CCITT CRC-16 look up table. This table provides the reverse CCITT CRC-16
value for each of the 255 possible byte values and is used by the function CalcCrcWithLookup to determine the CRC
values for individual bytes in a string.

Perform Heartbeat This function is called by the heartbeat timer, when it is time to send a heartbeat message to the Error Server. The
heartbeat message is built and a record delimiter is appended to the end of the record. The message is transmitted to
the Error Server via the Winsock object SendData method.

ProcessConfigFile Reads and assigns from disk file the values of the configurable parameters for the real time data process.

mapClient.Connect Establishes the socket connection to the error logging process.

Table 219 - Routines called by Real Time Form Load

4.2.2.3.2 MakeCrcTable

The MakeCrcTable routine initializes the entries in the reverse CCITT CRC-16 look up table. This table
provides the reverse CCITT CRC-16 value for each of the 255 possible byte values and is used by the
function CalcCrcWithLookup to determine the CRC values for individual bytes in a string. The structure
chart for MakeCrcTable is depicted in Figure 218. A description of the routines called by MakeCrcTable
is provided in Table 220.

Traveler Information Kiosk System Design Document317

MakeCrcTable

LogErrCalcCrc

Figure 218 - MakeCrcTable Structure Chart

Function Description

CalcCrc Calculates the reverse CCITT CRC-16 on the passed byte, resulting in an update to a 16-bit CRC value. Additional data can
be included in the CRC computed by repeatedly calling the routine with the new data and the current value of the accumulator.

LogErr This function transmits the given message to the Error Server. The message is passed into the function as a parameter and a
record delimiter is appended to the message. The message is then transmitted to the Error Server, using the Winsock object
SendData method. Due to the unknown length of the message, the message is broken into ten byte segments and transmitted
piecemeal until the entire message is sent.

Table 220 - Routines called by MakeCrcTable

4.2.2.3.3 Serial OnComm

The Serial OnComm routine reads and processes serial data from the STIC receiver. The function is
invoked on serial port interrupt. Data is read and added to a message buffer which is processed when a
complete message has been received. The function operates as a state machine in which the states include
1) detection of the start of message flag, 2) reading the message byte count field, 3) reading the message
data, and 4) processing the message. The structure chart for Serial OnComm is depicted in Figure 219. A
description of the routines called by Serial OnComm is provided in Table 221.

Serial
OnComm

ProcessRTData

Figure 219 - Serial OnComm Structure Chart

Function Description

Traveler Information Kiosk System Design Document318

Function Description

ProcessRTData Processes a complete message from the STIC receiver. Processing includes 1) validating the message by verifying the
CRC, 2) decoding the message header to determine the message type, 3) decoding the message data to extract the link
speed or incident data contained in the message, 4) transmitting the extracted data to the map client.

Table 221 - Routines called by Serial OnComm

4.2.2.3.4 ProcessRTData

The ProcessRTData routine processes a complete message from the STIC receiver. Processing includes 1)
validating the message by verifying the CRC, 2) decoding the message header to determine the message
type, 3) decoding the message data to extract the link speed or incident data contained in the message, and
4) transmitting the extracted data to the map client. The structure chart for ProcessRTData is depicted in
Figure 220. A description of the routines called by ProcessRTData is provided in Table 222.

ProcessRTData

LogErrProcessSTM MarkInactiveIncsActiveCalcCrcWithLookup

Figure 220 - ProcessRTData Structure Chart

Function Description

CalcCrcWithLookup Calculates the reverse CCITT CRC-16 on the passed string using the CRC look up table generated at system
initialization.

LogErr This function transmits the given message to the Error Server. The message is passed into the function as a
parameter and a record delimiter is appended to the message. The message is then transmitted to the Error Server,
using the Winsock object SendData method. Due to the unknown length of the message, the message is broken into
ten byte segments and transmitted piecemeal until the entire message is sent.

MarkInactiveIncsActive Sets the status of all inactive incidents in the global incident list to active. This routine is called in the event that an
error is detected which prevents processing of an STM in order to prevent deletion of an active incident from the
global incident list.

ProcessSTM Processes a single STIC Transmission Message (STM). Each STM contains one or more Traffic Information
Messages (TIMs). Each TIM contains either link speed or incident data for a number of links or incidents. The array
of STMs which contain the complete set of link speed and incident data is referred to as the STM superframe. Refer
to the Transguide In Vehicle Navigation System High Speed FM Subcarrier Communications Protocol for a complete
description of the STM message format.

This function extracts the header information from the STM, detects the start of a superframe, performs any special
processing required at the beginning of a superframe, and calls the function which processes the TIMs contained
within the STM.

Table 222 - Routines called by ProcessRTData

4.2.2.3.5 ProcessSTM

Traveler Information Kiosk System Design Document319

The ProcessSTM routine processes a single STIC Transmission Message (STM). Each STM contains one
or more Traffic Information Messages (TIMs). Each TIM contains either link speed or incident data for a
number of links or incidents. The array of STMs which contain the complete set of link speed and incident
data is referred to as the STM superframe. Refer to the Transguide In Vehicle Navigation System High
Speed FM Subcarrier Communications Protocol for a complete description of the STM message format.
This function extracts the header information from the STM, detects the start of a superframe, performs
any special processing required at the beginning of a superframe, and calls the function which processes the
TIMs contained within the STM. The structure chart for ProcessSTM is depicted in Figure 221. A
description of the routines called by ProcessSTM is provided in Table 223.

ProcessSTM

SendIncList ProcessTIM MarkExistingIncsActive LogErr

Figure 221 - ProcessSTM Structure Chart

Function Description

LogErr This function transmits the given message to the Error Server. The message is passed into the function as a
parameter and a record delimiter is appended to the message. The message is then transmitted to the Error Server,
using the Winsock object SendData method. Due to the unknown length of the message, the message is broken into
ten byte segments and transmitted piecemeal until the entire message is sent.

MarkExistingIncsActive Searches the global incident list for incidents with the specified sequence number and sets the status of those
incidents to active. This routine is called to set as active the incidents in STMs which have been previously processed
(as indicated by the sequence number) and so are still active.

ProcessTIM Determines the type of TIM (link speed or incident) and, according to the TIM type, calls the appropriate TIM
processing function to extract the data from the TIM.

SendIncList Sends all new incidents and all inactive incidents in the global incident list to the map client. Once sent, inactive
incidents are deleted from the incident list. All other incidents are marked as inactive.

Table 223 - Routines called by ProcessSTM

4.2.2.3.6 SendIncList

The SendIncList routine sends all new incidents and all inactive incidents in the global incident list to the
map client. Once sent, inactive incidents are deleted from the incident list. All other incidents are marked
as inactive. The structure chart for SendIncList is depicted in Figure 222. A description of the routines
called by SendIncList is provided in Table 224.

Traveler Information Kiosk System Design Document320

SendIncList

SendInc

Figure 222 - SendIncList Structure Chart

Function Description

SendInc Formats the data for a single incident into an ASCII string and transmits the data to the map client. The string transmitted
includes the starting and ending longitude, latitude and street level code of the incident location, the incident type code, and the
incident begin time.

Table 224 - Routines called by SendIncList

4.2.2.3.7 ProcessTIM

The ProcessTIM routine determines the type of TIM (link speed or incident) and, according to the TIM
type, calls the appropriate TIM processing function to extract the data from the TIM. The structure chart
for ProcessTIM is depicted in Figure 223. A description of the routines called by ProcessTIM is provided
in Table 225.

ProcessTIM

ProcessIncTIMProcessLinkTIM LogErr

Figure 223 - ProcessTIM Structure Chart

Traveler Information Kiosk System Design Document321

Function Description

LogErr This function transmits the given message to the Error Server. The message is passed into the function as a parameter and
a record delimiter is appended to the message. The message is then transmitted to the Error Server, using the Winsock
object SendData method. Due to the unknown length of the message, the message is broken into ten byte segments and
transmitted piecemeal until the entire message is sent.

ProcessIncTIM Processes an incident data TIM. This includes 1) extracting the data from the location reference header, 2) extracting the
location and data for each incident, and 3) storing the location and data for each incident to the global incident list.

ProcessLinkTIM Processes a link speed data TIM. This includes 1) extracting the data from the location reference header, 2) extracting the
location and speed for each link, and 3) formatting the location and speed data for each link into ASCII strings and
transmitting the strings to the map client. Each string transmitted to the map client contains the data for one link, including
the starting and ending longitude, latitude and street level code of the link, and the speed for the link.

Table 225 - Routines called by ProcessTIM

4.2.2.3.8 ProcessLinkTIM

The ProcessLinkTIM routine processes a link speed data TIM. This includes 1) extracting the data from
the location reference header, 2) extracting the location and speed for each link, and 3) formatting the
location and speed data for each link into ASCII strings and transmitting the strings to the map client.
Each string transmitted to the map client contains the data for one link, including the starting and ending
longitude, latitude and street level code of the link, and the speed for the link. The structure chart for
ProcessLinkTIM is depicted in Figure 224. A description of the routines called by ProcessLinkTIM is
provided in Table 226.

ProcessLinkTIM

ProcessLRHdr ProcessLR LogErr

Figure 224 - ProcessLinkTIM Structure Chart

Traveler Information Kiosk System Design Document322

Function Description

LogErr This function transmits the given message to the Error Server. The message is passed into the function as a parameter
and a record delimiter is appended to the message. The message is then transmitted to the Error Server, using the
Winsock object SendData method. Due to the unknown length of the message, the message is broken into ten byte
segments and transmitted piecemeal until the entire message is sent.

ProcessLR Processes a location reference by determining the location reference type (local or global point or link) and calling the
appropriate processing function to extract the location data for that type.

ProcessLRHdr Extracts the data from location reference header. This data includes the longitude and latitude of the origin location and
the location reference type (either local or global).

Table 226 - Routines called by ProcessLinkTIM

4.2.2.3.9 ProcessIncTIM

The ProcessIncTIM routine processes an incident data TIM. This includes 1) extracting the data from the
location reference header, 2) extracting the location and data for each incident, and 3) storing the location
and data for each incident to the global incident list. The structure chart for ProcessIncTIM is depicted in
Figure 225. A description of the routines called by ProcessIncTIM is provided in Table 227.

ProcessIncTIM

ProcessLRHdr ProcessLR LogErrAddIncToList

Figure 225 - ProcessIncTIM Structure Chart

Traveler Information Kiosk System Design Document323

Function Description

AddIncToList Subroutine adds the passed incident to the global list of active incidents. The incident is added only if there is space available
and the incident is not already in the list.

LogErr This function transmits the given message to the Error Server. The message is passed into the function as a parameter and
a record delimiter is appended to the message. The message is then transmitted to the Error Server, using the Winsock
object SendData method. Due to the unknown length of the message, the message is broken into ten byte segments and
transmitted piecemeal until the entire message is sent.

ProcessLR Processes a location reference by determining the location reference type (local or global point or link) and calling the
appropriate processing function to extract the location data for that type.

ProcessLRHdr Extracts the data from location reference header. This data includes the longitude and latitude of the origin location and the
location reference type (either local or global).

Table 227 - Routines called by ProcessIncTIM

4.2.2.3.10 AddIncToList

The AddIncToList routine adds the passed incident to the global list of active incidents. The incident is
added only if there is space available and the incident is not already in the list. The structure chart for
AddIncToList is depicted in Figure 226. A description of the routines called by AddIncToList is provided
in Table 228.

AddIncToList

IncMatch

Figure 226 - AddIncToList Structure Chart

Function Description

IncMatch Determines if two incidents match by comparing each of the fields for the two incidents. The function returns 1 if all fields in
both incidents match, 0 otherwise.

Table 228 - Routines called by AddIncToList

Traveler Information Kiosk System Design Document324

4.2.2.3.11 ProcessLR

The ProcessLR routine processes a location reference by determining the location reference type (local or
global point or link) and calling the appropriate processing function to extract the location data for that
type. The structure chart for ProcessLR is depicted in Figure 227. A description of the routines called by
ProcessLR is provided in Table 229.

ProcessLR

ProcessLRGlobPoint ProcessLRGlobLink ProcessLRLclPoint ProcessLRLclLink LogErr

Figure 227 - ProcessLR Structure Chart

Function Description

LogErr This function transmits the given message to the Error Server. The message is passed into the function as a parameter
and a record delimiter is appended to the message. The message is then transmitted to the Error Server, using the
Winsock object SendData method. Due to the unknown length of the message, the message is broken into ten byte
segments and transmitted piecemeal until the entire message is sent.

ProcessLRGlobLink Processes a global link location reference. This includes extracting the starting and ending latitude, longitude and street
level and if available the street name for globally referenced link location reference.

ProcessLRGlobPoint Processes a global point location reference. This includes extracting the latitude, longitude, street level and if available
the street name for globally referenced point location reference.

ProcessLRLclLink Processes a local link location reference. This includes extracting the starting and ending latitude, longitude and street
level and if available the street name for a locally referenced link location reference and converting the local start/end
locations to absolute locations.

ProcessLRLclPoint Processes a local point location reference. This includes extracting the local latitude, longitude, street level and if
available the street name for locally referenced point location reference and converting the locally referenced location to
an absolute location.

Table 229 - Routines called by ProcessLR

4.2.2.3.12 ProcessLRGlobPoint

The ProcessLRGlobPoint routine processes a global point location reference. This includes extracting the
latitude, longitude, street level and if available the street name for globally referenced point location
reference. The structure chart for ProcessLRGlobPoint is depicted in Figure 228. A description of the
routines called by ProcessLRGlobPoint is provided in Table 230.

Traveler Information Kiosk System Design Document325

ProcessLRGlobPoint

GetGlobLatLon LogErr

Figure 228 - ProcessLRGlobPoint Structure Chart

Function Description

GetGlobLatLon Extracts the latitude or longitude from a global location reference and converts the value from microdegrees to
Transguide units (10's of microdegrees).

LogErr This function transmits the given message to the Error Server. The message is passed into the function as a parameter
and a record delimiter is appended to the message. The message is then transmitted to the Error Server, using the
Winsock object SendData method. Due to the unknown length of the message, the message is broken into ten byte
segments and transmitted piecemeal until the entire message is sent.

Table 230 - Routines called by ProcessLRGlobPoint

4.2.2.3.13 ProcessLRGlobLink

The ProcessLRGlobLink routine processes a global link location reference. This includes extracting the
starting and ending latitude, longitude and street level and if available the street name for globally
referenced link location reference. The structure chart for ProcessLRGlobLink is depicted in Figure 229.
A description of the routines called by ProcessLRGlobLink is provided in Table 231.

ProcessLRGlobLink

LogErrGetGlobLatLon

Figure 229 - ProcessLRGlobLink Structure Chart

Traveler Information Kiosk System Design Document326

Function Description

GetGlobLatLon Extracts the latitude or longitude from a global location reference and converts the value from microdegrees to Transguide
units (10's of microdegrees).

LogErr This function transmits the given message to the Error Server. The message is passed into the function as a parameter
and a record delimiter is appended to the message. The message is then transmitted to the Error Server, using the
Winsock object SendData method. Due to the unknown length of the message, the message is broken into ten byte
segments and transmitted piecemeal until the entire message is sent.

Table 231 - Routines called by ProcessLRGlobLink

4.2.2.3.14 ProcessLRLclPoint

The ProcessLRLclPoint routine processes a local point location reference. This includes extracting the
local latitude, longitude, street level and if available the street name for locally referenced point location
reference and converting the locally referenced location to an absolute location. The structure chart for
ProcessLRLclPoint is depicted in Figure 230. A description of the routines called by ProcessLRLclPoint is
provided in Table 232.

ProcessLRLclPoint

LogErrGetLclLatLon

Figure 230 - ProcessLRLclPoint Structure Chart

Function Description

GetLclLatLon Extracts the latitude or longitude from a local location reference, converts the value from microdegrees to Transguide units
(10's of microdegrees), and converts the locally referenced value to an absolute location.

LogErr This function transmits the given message to the Error Server. The message is passed into the function as a parameter
and a record delimiter is appended to the message. The message is then transmitted to the Error Server, using the
Winsock object SendData method. Due to the unknown length of the message, the message is broken into ten byte
segments and transmitted piecemeal until the entire message is sent.

Table 232 - Routines called by ProcessLRLclPoint

Traveler Information Kiosk System Design Document327

4.2.2.4 Modem Communications Application

The Modem Communication Application communicates with the Kiosk Master Computer through a
modem to receive data files (Via, Airport, Weather, and Screensaver) and transmits status. The application
waits for an incoming phone call. When an incoming phone call is detected, the application establishes a
communication connection with the Kiosk Master Computer. Once the connection is established, the
Modem Communications and the Kiosk Master Computer exchange data. Figure 231 depicts the events
that occur within the Modem Communications Application and Table 233 provides a description of these
events and their triggers.

1.2.2.1
Modem
Comm
Form Load

1.2.2.2

Heartbeat
Timer

1.2.2.3
Modem
Comm
OnComm

Modem Comm
Program Control

1.2.2.4
Socket
Client
Connect

Heartbeat/Error
Message

Incoming Phone
Call

FU Statistics
File

30 Second
Timer

FU Data Files

Program Start

Connection
Request Accepted

Figure 231 – Modem Communications Events and Event Triggers

Function Description

Modem Comm
Program Control

The control of the events and activities that can occur while an application is executing.

30 Second Timer This event is set to occur every thirty seconds. When the event is triggered, the application will perform the actions
specified in the timer.

Connection
Request Accepted

This event occurs when the server accepts the socket connection; thus enabling communications between the two
applications.

Incoming Phone
Call

Action that occurs when an incoming phone call is detected on the modem.

Program Start When the program is initiated, the first action of the application is to load the startup form and perform the form load
functions.

FU Data Files These files are received from the Master Computer and placed into the production directories. These files includes Transit
files, Weather files, Airport files, and Screen Saver files.

Traveler Information Kiosk System Design Document328

Function Description

FU Statistics File Contains the current status of the Field Unit and its applications.

Heartbeat/Error
Message

A record containing either an application heartbeat or an error message. The record is composed of a 2 byte identifier, the
message, and a record delimiter.

Heartbeat Timer This event is triggered every thirty seconds to transmit the heartbeat record to the Error Server.

Modem Comm
Form Load

This event occurs when the application is initially started.

Traveler Information Kiosk System Design Document329

Function Description

Modem Comm
OnComm

When this event occurs, the event value is returned by the OnComm Event. This value is used to determine the event or
error that has occurred. This list below are the values and their meaning that can occur:
 Eventbreak - Break Signal Received
 EventCDTO - Carrier Detect Timeout
 EventCTSTO - CTS Timeout
 EventDSRTO - DSR Timeout
 EventFrame - Framing Error
 EventOverrun - Data Lost
 EventRxOver - Receive buffer overflow
 EventRxParity - Parity Error
 EventTxFull - Transmit buffer full
 EventDCB - Unexpected error retrieving DCB
 EvCD - Change in CD line
 EvCTS - Change in CTS line
 EvDSR - Change in DSR line
 EvRing - Change in Ring Indicator
 EvReceive - Received Threshold number of characters; Threshold number is determined by

 the Threshold property.
 EvSend - Send Threshold number of characters in the transmit buffer; Send Threshold number is

 determined by the Send Threshold property.
 EvEOF - An EOF character was detected in the input stream

All events values should be detected, however not all of the event values will have meaning. For the values that are not
being processed, log a message with the error handler that the event occurred. For events that are processed, the event
and what actions occur are described below:

 EvCD - Display the current time, set the flags that control the incoming file, heartbeat file,
 and down loaded data, and the CRC down load flags to false.

 EvRing - Display the incoming phone call message and the current time
 EvReceive - The is the primary event that will get triggered, since this is how the incoming data files will be

 processed. When this event is triggered, read the data from the buffer and process it a byte at
 a time.

If a Start of Message byte (ASCII 01) is detected, this could mean that a filename is being downloaded, a
heartbeat requested is being downloaded, or data is being written to a file. Set the appropriate tracking flags to indicate
these possibilities.

If an End of Message byte (ASCII 04) is detected, then a file download, a CRC download, a heartbeat file
upload, or an incoming filename downloaded may be in process. If a file is being downloaded, close the file. If the CRC
has been downloaded, use the PX Extract function (PKExtractFile2File) and adjust the CRC to match an Unsigned Long
that is computed on the Master Computer. Next, compare the downloaded CRC with the computed CRC. If these CRCs
match, send a file received successful to the Master Compute; otherwise send a file received unsuccessful to the Master
Computer. If the heartbeat file is being uploaded, open the heartbeat file, read the data, and transmit it to the Master
Computer. If the heartbeat file does not exist, create a default file and transmit the default file to the Master Computer. If
there is an incoming filename, display the name of the file. Finally, reset the processing flags.

If a DLE Pending (Hex 10) is detected, this indicates the next byte needs have one added to it. This is done to
prevent the data bytes from being misinterpreted.

If the byte is not one of the above cases, it is assumed that is must be data. The number of bytes read is
incremented by one. If a start of message has been received, then the processing flags are tested to determined what is
being processed. If the data is about to be downloaded, a temporary file is opened that will contain the data and the
downloaddata flag is set to true. If a new filename is about to be downloaded, the variable that will contain the filename is
set to null. and the incoming filename flag is set to true. If a CRC is about to be downloaded, set the variable that will
contain the CRC value to null and the CRC download flag to true. If the heartbeat file is about to be uploaded, the upload
heartbeat flag is set to true. If the byte is not one of the above values, an error has occurred and it is ignored. If a start of
message is not received, then write the byte to the temporary file or concatenate the byte to the filename or concatenate the
byte to the CRC string based on the values of the processing flags.

EvSend - The number of Receive Threshold bytes is recorded.
Ev EOF - The character is ignored.

If the character is not one of the above event values, an informational error is recorded and the character is ignored.

Socket Client
Connect

This event is triggered when the Error Server accepts the socket request. The socket ready flag is set to True to indicate
that data may now be transmitted over the socket.

Traveler Information Kiosk System Design Document330

Table 233 - Modem Communications Events and Event Triggers Descriptions

4.2.2.4.1 Modem Comm Form Load

The Modem Comm Form Load event occurs when the application is initially started to perform
initialization activities. These activities are:

• Process the configuration file

• Get the command line parameters

• Initialize the Field Unit Status Array

• Connect to the Error Server if errors are being logged remotely

• Setup the communications port for the modem
Ø Use the communications port, baud rate, parity, data, and stop bits read from the configuration

file
Ø Set the input mode to binary
Ø Set the comm control to read the entire buffer
Ø Set the buffer size to 1024 bytes (the larger this value the more memory required)
Ø Open the port
Ø Set the receive threshold to 1 byte (the larger this value the more memory required)
Ø Set the transmit threshold to 0 bytes (the larger this value the more memory required)
Ø Send the attention command to the modem
Ø Set the modem volume to off
Ø Reset the modem
Ø Initialize to factory setting (including answering after one ring)

• Perform an initial heartbeat

• Log a successful startup message.

The structure chart for Modem Comm Form Load is depicted in Figure 232. A description of the routines
called by Modem Comm Form Load is provided in Table 234.

Traveler Information Kiosk System Design Document331

Modem
Comm
Form
Load

Initialize
FU Row
Array

InitErr
Process
Config
File

Get
Parameters

Perform
Heartbeat LogErr

Figure 232 - Modem Comm Form Load Structure Chart

Function Description

Get Parameters The function retrieves the command line parameters passed from Error Server. The function first checks to see if the
application is being run in local or remote mode. If the application is in local mode, the application id is defaulted to one. If
the application is in remote mode, the application id is retrieved from the command line parameters using Command$
command. The returned command line is parsed. The application id is identified by a "-i" followed by the application id
number. The id is stored in a global variable for use by the Heartbeat process. If the application id is not found, an error is
logged.

InitErr This function sets up the socket connection to the Error Server for error reporting. The remote host IP address and remote
host port number are stored in a Winsock object to identify how Modem Communications will communicate with the Error
Server. Next, the Connect method is used to establish the socket connection between the two programs. Initerr must wait
until the connection is established before proceeding. The Winsock object Connect event will be triggered when the
connection is successfully established. The local Winsock object is then assigned to a global variable for use by other
routines.

Initialize FU Row
Array

If the Field Unit Statistics do not exist, the field unit stats array is used to load the file. This array is initialized to default
values by this routine. Each array element is loaded with the name of the record and a default count of zero.

LogErr This function transmits the given message to the Error Server. The message is passed into the function as a parameter
and a record delimiter is appended to the message. The message is then transmitted to the Error Server, using the
Winsock object SendData method. Due to the unknown length of the message, the message is broken into ten byte
segments and transmitted piecemeal until the entire message is sent.

Perform Heartbeat This function is called by the heartbeat timer, when it is time to send a heartbeat message to the Error Server. The
heartbeat message is built and a record delimiter is appended to the end of the record. The message is transmitted to the
Error Server via the Winsock object SendData method.

Process Config File This function opens the configuration file, reads in the configuration items into an array, and closed the file. The format of
each line is a text identifier of the item followed by a colon and the value for that item. Each item is then loaded into the
appropriate variable for use.

Table 234 - Routines called by Modem Comm Form Load

Traveler Information Kiosk System Design Document332

4.2.2.4.2 Heartbeat Timer

The Heartbeat Timer event is set to trigger every thirty seconds to transmit a heartbeat message to the error
server The structure chart for Heartbeat Timer is depicted in Figure 233. A description of the routines
called by Heartbeat Timer is provided in Table 235.

Heartbeat
Timer

Perform
Heartbeat

Figure 233 - Heartbeat Timer Structure Chart

Function Description

Perform Heartbeat This function is called by the heartbeat timer, when it is time to send a heartbeat message to the Error Server. The
heartbeat message is built and a record delimiter is appended to the end of the record. The message is transmitted to the
Error Server via the Winsock object SendData method.

Table 235 - Routines called by Heartbeat Timer

4.2.3 Build Translation Table (MapMatch)

The MapMatch application provides a GUI that allows the user to develop the Translation Table used by
the Kiosk Field Units to make the conversion from Transguide Link Ids to NavTech LinkIds. The GUI
provides two maps of the San Antonio area. One map is constructed of NavTech Links and the other map
is constructed of Transguide Links. The user selects a Transguide Link on the Transguide map and then
selects the associated NavTech Links from the NavTech map. MapMatch stores the association between
the Transguide Link and the NavTech Links. The subsections below provide the design of MapMatch.
Each subsection contains a structure chart and table describing the structure chart routines.

Traveler Information Kiosk System Design Document333

4.2.3.1 MapMatch

The MapMatch routine defines all environment variables and initiates the first draw of all four windows.
The structure chart for MapMatch is depicted in Figure 234. A description of the routines called by
MapMatch is provided in Table 236.

Traveler Information Kiosk System Design Document334

MapMatch

Drawscrn

Rightclk

Leftclk

Oldlnks

ZoomMap

PanMap

DrawDots

Drawname

LoadRght

Saveall

Loadall

MakeTab

Loadtab

MergeMap

MergeTabLoadLeft

Optimize

Figure 234 - MapMatch Structure Chart

Traveler Information Kiosk System Design Document335

Function Description

DrawDots Changes the endpoint display attribute of the slave and/or master maps and redraws the map windows.

Drawname Changes the name display attribute of the slave and/or master maps and redraws the map windows.

Drawscrn Draws all four windows and contents. Defines the callback functions for the controls in the Map Controls window as well as the
map windows.

Leftclk Changes the selected master map link as a response to a mouse click on master map. Highlights the selected master map link
and removes highlighting from the previous master map link. Highlights the associated slave map links and removes highlighting
from the previously associated slave map links. Updates the Link Status display.

Loadall Loads a .mat file saved previously by SAVEALL. Redraws the all four windows.

LoadLeft Uses LoadMap to load the master map data from a user specified file.

LoadRght Uses LoadMap to load slave map data from a user specified file.

Loadtab Loads associations between the master and slave map from a previously created map association look-up table.

MakeTab Creates the look-up table of link associations.

MapMatch Defines all environment variables and initiates the first draw of all four windows

MergeMap Merges the contents of two ASCII map files discarding duplicate entries.

MergeTab Creates the look-up table of link associations.

Oldlnks Associates the currently selected master map link with the same slave map links as the previously selected master map link.

Optimize Optimizes MatLab workspace memory using the MatLab "pack" function.

PanMap Changes the map view by shifting the axes. Allows the user to pan left, right, up, and down.

Rightclk Dassociates or disassociates the selected slave map link with the selected master map link as a response to a mouse click on
slave map. The selected slave map link is either highlighted or unhighlighted depending on its current statue. Updates the Link
Status window.

Saveall Creates a binary .mat file that contains the values of all the current environment variables.

ZoomMap Changes the map view by scaling the axes. Allows the user to zoom in, zoom out, zoom to show all map links, zoom to show all
selected links, or zoom the slave map to the same view as the master map.

Table 236 - Routines called by MapMatch

4.2.3.2 DrawScrn

The DrawScrn routine draws all four windows and contents. Defines the callback functions for the
controls in the Map Controls window as well as the map windows. The structure chart for DrawScrn is
depicted in Figure 235. A description of the routines called by DrawScrn is provided in Table 237.

Traveler Information Kiosk System Design Document336

Drawscrn

DrawMap Leftclk

DispLinks

LinkDir ArrowPlot

Figure 235 - DrawScrn Structure Chart

Traveler Information Kiosk System Design Document337

Function Description

ArrowPlot Draws a line with an arrowhead.

DispLinks Draws all the contents of the Link Status window. Displays information on the selected links and generates a selected link
vector plot.

DrawMap Draws the contents of a map window and defines the callback functions that are executed as a response to a mouse click on a
map segment.

Leftclk Changes the selected master map link as a response to a mouse click on master map. Highlights the selected master map link
and removes highlighting from the previous master map link. Highlights the associated slave map links and removes
highlighting from the previously associated slave map links. Updates the Link Status display.

LinkDir Computes the relative direction of a slave map link to a master map link.

Table 237 - Routines called by DrawScrn

4.2.3.3 RightClk

The RightClk routine associates or disassociates the selected slave map link with the selected master map
link as a response to a mouse click on slave map. Highlights or removes highlighting from the selected
slave map link. Updates the Link Status window. The structure chart for RightClk is depicted in Figure
236. A description of the routines called by RightClk is provided in Table 238.

Rightclk

DispLinks

Figure 236 - RightClk Structure Chart

Function Description

DispLinks Draws all the contents of the Link Status window. Displays information on the selected links and
generates a selected link vector plot.

Table 238 - Routines called by RightClk

Traveler Information Kiosk System Design Document338

4.2.3.4 Oldlnks

The Oldlnks routine associates the currently selected master map link with the same slave map links as the
previously selected master map link. The structure chart for Oldlnks is depicted in Figure 237. A
description of the routines called by Oldlnks is provided in Table 239.

Oldlnks

Rightclk

Figure 237 - Oldlnks Structure Chart

Function Description

Rightclk Associates or disassociates the selected slave map link with the selected master map link as a
response to a mouse click on slave map. The selected slave map link is either highlighted or
unhighlighted depending on its current state. Updates the Link Status window.

Table 239 - Routines called by Oldlnks

4.2.3.5 Drawdots

The Drawdots routine changes the endpoint display attribute of the slave and/or master maps and redraws
the map windows. The structure chart for Drawdots is depicted in Figure 238. A description of the
routines called by Drawdots is provided in Figure 238.

Traveler Information Kiosk System Design Document339

DrawDots

DrawMap Leftclk

Figure 238 - Drawdots Structure Chart

Function Description

DrawMap Draws the contents of a map window and defines the callback functions that are executed as a response to a mouse click on a
map segment.

Leftclk Changes the selected master map link as a response to a mouse click on master map. Highlights the selected master map link
and removes highlighting from the previous master map link. Highlights the associated slave map links and removes
highlighting from the previously associated slave map links. Updates the Link Status display.

Table 240 - Routines called by Drawdots

4.2.3.6 LoadLeft

The LoadLeft routine uses LoadMap to load the master map data from a user specified file. The structure
chart for LoadLeft is depicted in Figure 239. A description of the routines called by LoadLeft is provided
in Table 241.

Traveler Information Kiosk System Design Document340

LoadLeft

Warn LoadMap ClrMatch Drawscrn

Figure 239 - LoadLeft Structure Chart

Function Description

ClrMatch Clears all link associations between the master and slave maps.

Drawscrn Draws all four windows and contents. Defines the callback functions for the controls in the Map Controls window as well as
the map windows.

LoadMap Loads map data from an ASCII file.

Warn Creates a warning message window.

Table 241 - Routines called by LoadLeft

4.2.3.7 Loadmap

The Loadmap routine loads map data from an ASCII file. The structure chart for Loadmap is depicted in
Figure 240. A description of the routines called by Loadmap is provided in Table 242.

Traveler Information Kiosk System Design Document341

LoadMap

ZoomMap

Figure 240 - Loadmap Structure Chart

Function Description

ZoomMap Changes the map view by scaling the axes. Allows the user to zoom in, zoom out,
zoom to show all map links, zoom to show all selected links, or zoom the slave map to
the same view as the master map.

Table 242 - Routines called by Loadmap

4.2.3.8 LoadRght

The LoadRght routine uses LoadMap to load slave map data from a user specified file. The structure chart
for LoadRght is depicted in Figure 241. A description of the routines called by LoadRght is provided in
Table 243.

Traveler Information Kiosk System Design Document342

LoadRght

Warn LoadMap ClrMatch Drawscrn

Figure 241 - LoadRght Structure Chart

Function Description

ClrMatch Clears all link associations between the master and slave maps.

Drawscrn Draws all four windows and contents. Defines the callback functions for the controls in the Map Controls window as well as the
map windows.

LoadMap Loads map data from an ASCII file.

Warn Creates a warning message window.

Table 243 - Routines called by LoadRght

4.2.3.9 Loadall

The Loadall routine loads a .mat file saved previously by SAVEALL. Redraws the all four windows. The
structure chart for Loadall is depicted in Figure 242. A description of the routines called by Loadall is
provided in Table 244.

Traveler Information Kiosk System Design Document343

Loadall

Drawscrn

Figure 242 - Loadall Structure Chart

Function Description

Drawscrn Draws all four windows and contents. Defines the callback functions for the controls in the Map
Controls window as well as the map windows.

Table 244 - Routines called by Loadall

4.2.3.10 MakeTab

The MakeTab routine creates the look-up table of link associations. The structure chart for MakeTab is
depicted in Figure 243. A description of the routines called by MakeTab is provided in Table 245.

MakeTab

LinkDirLeftclk

Figure 243 - MakeTab Structure Chart

Traveler Information Kiosk System Design Document344

Function Description

Leftclk Changes the selected master map link as a response to a mouse click on master map. Highlights
the selected master map link and removes highlighting from the previous master map link.
Highlights the associated slave map links and removes highlighting from the previously associated
slave map links. Updates the Link Status display.

LinkDir Computes the relative direction of a slave map link to a master map link.

Table 245 - Routines called by MakeTab

4.2.3.11 Loadtab

The Loadtab routine loads associations between the master and slave map from a previously created map
association look-up table. The structure chart for Loadtab is depicted in Figure 244. A description of the
routines called by Loadtab is provided in Table 246.

Loadtab

ClrMatch HashAdd

HashFcn

Figure 244 - Loadtab Structure Chart

Function Description

ClrMatch Clears all link associations between the master and slave maps.

HashAdd Adds an entry into a hash table.

HashFcn Computes an index to a hash table from an input string.

Table 246 - Routines called by Loadtab

Traveler Information Kiosk System Design Document345

4.2.3.12 Drawname

The Drawname routine draws the contents of a map window and defines the callback functions that are
executed as a response to a mouse click on a map segment. The structure chart for Drawname is depicted
in Figure 245. A description of the routines called by Drawname is provided in Table 247.

Drawname

DrawMap Leftclk

Figure 245 - Drawname Structure Chart

Function Description

Drawname Changes the name display attribute of the slave and/or master maps and redraws the map windows.

Leftclk Changes the selected master map link as a response to a mouse click on master map. Highlights the selected master map
link and removes highlighting from the previous master map link. Highlights the associated slave map links and removes
highlighting from the previously associated slave map links. Updates the Link Status display.

Table 247 - Routines called by Drawname

4.2.3.13 MergeMap

The MergeMap routine merges the contents of two ASCII map files discarding duplicate entries. The
structure chart for MergeMap is depicted in Figure 246. A description of the routines called by MergeMap
is provided in Table 248.

MergeMap

HashAdd HashFind

Figure 246 - MergeMap Structure Chart

Traveler Information Kiosk System Design Document346

Function Description

HashAdd Adds an entry into a hash table.

HashFind Searches a hash table for an entry.

Table 248 - Routines called by MergeMap

4.2.3.14 Optimize

The Optimize routine optimizes MatLab workspace memory using the MatLab "pack" function. The
structure chart for Optimize is depicted in Figure 247. A description of the routines called by Optimize is
provided in Table 249.

Optimize

Warn

Figure 247 - Optimize Structure Chart

Function Description

Warn Creates a warning message window.

Table 249 - Routines called by Optimize

Traveler Information Kiosk System Design Document347

5. Traceability Matrix

The traceability for the Kiosk Traveler Information System is presented in this section. It lists the
requirements of the system that were presented in Section 3 of this document. Along with each requirement
is the source of the requirement, the design element it was assigned to, the level at which it will be tested,
and the method that will be used to verify the requirement.

This table will be used throughout the design, development, and test of the system to ensure that the
requirements have been met. It will continually be updated as requirements and design elements are
refined. During development of the Acceptance Test Plan (ATP), sections of the test plan will be
referenced in the TEST LEVEL column of this table to cross-reference to the ATP.

The columns of the traceability table have the following meanings:

• Requirement Number: A unique identifier (with embedded level) requirement is assigned
• Requirement: A brief description of the requirement
• Source: A paragraph reference in RFO, proposal, or other source for this requirement
• Design Element: The design element to which the requirement is allocated
• Test Case(s): The test cases from the Acceptance Test Plan that test the requirement

The Traceability Matrix begins on the following page.

Traveler Information Kiosk Preliminary Design Document348

Requirement
Number

Requirement Source Design Element

KSK-PY-1 The Kiosk Master Computer shall be a Sun Microsystems Ultra
SPARCStation with the following configuration:

• 167 MHZ SPARC (RISC) CPU,
• 4.2 Gigabyte hard disk,
• 128 Megabytes RAM,
• Floppy Disk,
• CD-ROM,
• Turbo GX+ Graphics,
• 20 Inch color monitor,
• 8 port modem server (SCSI) attached,
• Dual Ethernet Interface, and
• Dual SCSI Channels.

 P-2.3.2.4.1 N/A

 KSK-PY-2 The Indoor and Outdoor Kiosk Field Unit computers shall have, at a
minimum, the following configuration:

• Windows 95,
• 120 MHz processor clock speed,
• 32 MB RAM,
• 1.6 GB hard disk drive,
• 3.5 inch 1.44 MB floppy drive,
• 8X CD-ROM drive,
• 1 RS-232 asynchronous communication port,
• 1 bi-directional parallel port,
• 101 key enhanced keyboard,
• 2 button mouse, and
• an internal modem.

 P-2.3.2.4.2 N/A

Traveler Information Kiosk Preliminary Design Document349

Requirement
Number

Requirement Source Design Element

 KSK-PY-4 The Indoor Kiosk shall include the following:

• Antenna/receiver assembly,
• Processor with keyboard,
• Touch-screen monitor,
• Speakers,
• Printer,
• Power strip,
• Cooling fan,
• UL & FCC certification,
• Rated to operate at an ambient temperature range from 60 to 85 degrees

Fahrenheit,
• Rated to operate at a non-condensing humidity range from 35 to 80

percent relative humidity.

 P-2.3.2.4.3 N/A

 KSK-PY-5 The Outdoor Kiosk shall include the following:

• Antenna/receiver assembly,
• Processor with keyboard,
• Touch-screen monitor,
• Speakers,
• Printer,
• Modem,
• Heating/cooling system,
• UL & FCC certification,
• Rated to operate at an ambient temperature range from -10 to 115

degrees Fahrenheit,
• Rated to operate at a non-condensing humidity range from 20 to 100

percent relative humidity.

 P-2.3.2.4.3 N/A

Traveler Information Kiosk Preliminary Design Document350

Requirement
Number

Requirement Source Design Element

 KSK-PY-6 The Indoor Kiosk enclosure shall be rated at the following environment
specifications:
• Ambient temperature range of 60 to 85 degrees Fahrenheit.
• Non-condensing humidity range from 35 to 80 percent relative humidity.

 P-2.3.2.2.3.1 N/A

 KSK-PY-7 The Outdoor Kiosk enclosure shall be rated at the following environment
specifications:

• Ambient temperature range of –10 to 115 degrees Fahrenheit.
• Non-condensing humidity range from 20 to 100 percent relative humidity.

P-2.3.2.2.3.2 N/A

KSK-IF-1 The Kiosk System shall interface with the Data Server. P-2.3.1 4.2.1.5
4.2.1.7

KSK-IF-1.1a The Kiosk System shall be capable of submitting the San Antonio area
weather conditions to the Data Server.

P-2.3.1 4.2.1.7

KSK-IF-1.1b The Kiosk System shall be capable of submitting the San Antonio area
weather forecast to the Data Server.

P-2.3.1 4.2.1.7

KSK-IF-1.1c The Kiosk System shall be capable of submitting the current San Antonio
area radar map to the Data Server.

P-2.3.1 4.2.1.7

KSK-IF-1.1d The Kiosk System shall be capable of retrieving the San Antonio area
weather conditions from the Data Server.

P-2.3.1 4.2.1.5
4.2.1.6

KSK-IF-1.1e The Kiosk System shall be capable of retrieving the San Antonio area
weather forecast from the Data Server.

P-2.3.1 4.2.1.5
4.2.1.6

Traveler Information Kiosk Preliminary Design Document351

Requirement
Number

Requirement Source Design Element

KSK-IF-1.1f The Kiosk System shall be capable of retrieving the current San Antonio area
radar map from the Data Server.

P-2.3.1 4.2.1.5

KSK-IF-1.2a The Kiosk System shall be capable of submitting airline and airport terminal
information to the Data Server.

P-2.3.1 4.2.1.3

KSK-IF-1.2b The Kiosk System shall be capable of submitting airport rental agency
information to the Data Server.

P-2.3.1 4.2.1.3

KSK-IF-1.2c The Kiosk System shall be capable of submitting airport parking lot
information to the Data Server.

P-2.3.1 4.2.1.3

KSK-IF-1.2d The Kiosk System shall be capable of retrieving airline and airport terminal
information from the Data Server.

P-2.3.1 4.2.1.5

KSK-IF-1.2e The Kiosk System shall be capable of retrieving airport rental agency
information from the Data Server.

P-2.3.1 4.2.1.5
4.2.1.6

KSK-IF-1.2f The Kiosk System shall be capable of retrieving airport parking lot
information from the Data Server.

P-2.3.1 4.2.1.5
4.2.1.6

KSK-IF-1.3a The Kiosk System shall be capable of submitting route schedules to the Data
Server.

P-2.3.1 4.2.1.7

KSK-IF-1.3b The Kiosk System shall be capable of submitting standard and special fares
to the Data Server.

P-2.3.1 4.2.1.7

KSK-IF-1.3c The Kiosk System shall be capable of submitting park & ride locations to the
Data Server.

P-2.3.1 4.2.1.7

Traveler Information Kiosk Preliminary Design Document352

Requirement
Number

Requirement Source Design Element

KSK-IF-1.3d The Kiosk System shall be capable of submitting special bus events and the
associated schedules to the Data Server.

P-2.3.1 4.2.1.7

KSK-IF-1.3e The Kiosk System shall be capable of submitting VIA handicapped bus
dispatch (VIATrans) services to the Data Server.

P-2.3.1 4.2.1.7

KSK-IF-1.3f The Kiosk System shall be capable of submitting general VIA information to
the Data Server.

P-2.3.1 4.2.1.7

KSK-IF-1.3g The Kiosk System shall be capable of submitting graphical displays of
selected bus routes data to the Data Server.

P-2.3.1 4.2.1.7

KSK-IF-1.3h The Kiosk System shall be capable of retrieving route schedules from the
Data Server.

P-2.3.1 4.2.1.5
4.1.2.6

KSK-IF-1.3i The Kiosk System shall be capable of retrieving standard and special fares
from the Data Server.

P-2.3.1 4.2.1.5
4.1.2.6

KSK-IF-1.3j The Kiosk System shall be capable of retrieving park & ride locations from
the Data Server.

P-2.3.1 4.2.1.5
4.1.2.6

KSK-IF-1.3k The Kiosk System shall be capable of retrieving special bus events and the
associated schedules from the Data Server.

P-2.3.1 4.2.1.5
4.1.2.6

KSK-IF-1.3l The Kiosk System shall be capable of retrieving VIA handicapped bus
dispatch (VIATrans) services from the Data Server.

P-2.3.1 4.2.1.5
4.1.2.6

KSK-IF-1.3m The Kiosk System shall be capable of retrieving general VIA information
from the Data Server.

P-2.3.1 4.2.1.5
4.1.2.6

Traveler Information Kiosk Preliminary Design Document353

Requirement
Number

Requirement Source Design Element

KSK-IF-1.3n The Kiosk System shall be capable of retrieving displays of selected bus
routes data from the Data Server.

P-2.3.1 4.2.1.5
4.1.2.6

KSK-IF-2 The Kiosk System shall interface with the In-Vehicle Navigation system data
stream being transmitted utilizing the STIC communication system for real-
time traffic conditions data.

P-2.3.2.2.6 4.2.2.3

KSK-IF-2.1 The Kiosk Field Unit shall receive the real-time traffic condition data
broadcast from the STIC communication network.

P-2.3.2.2.9 4.2.2.3.3

KSK-IF-3 The Kiosk System shall interface with the weather data source. P-2.3.2.2.4 4.2.1.7

KSK-IF-3.1a The Kiosk System shall be capable of retrieving the San Antonio area
weather conditions from the weather data source.

P-2.3.2.2.7 4.2.1.7.5

KSK-IF-3.1b The Kiosk System shall be capable of retrieving the San Antonio area
weather forecast from the weather data source.

P-2.3.2.2.7 4.2.1.7.5

KSK-IF-3.1c The Kiosk System shall be capable of retrieving the current San Antonio area
radar map data from the weather data source.

P-2.3.2.2.7 4.2.1.7.5

KSK-IF-4 The Kiosk System shall interface with the airport data source. P-2.3.2.2.4 4.2.1

KSK-IF-4.1 The Kiosk Master Computer shall be capable of receiving airport terminal,
airport rental agency, and airport parking lot data from the airport data
source.

P-2.3.2.2.7 4.2.1.5
4.2.1.7

KSK-IF-5 The Kiosk System shall interface with the VIA data source. P-2.3.2.2.4 4.2.1.7

Traveler Information Kiosk Preliminary Design Document354

Requirement
Number

Requirement Source Design Element

KSK-IF-5.1a The Kiosk Master Computer shall be capable of receiving route schedules
from the VIA data source.

P-2.3.2.2.7 4.2.1.7

KSK-IF-5.1b The Kiosk Master Computer shall be capable of receiving standard and
special fares from the VIA data source.

P-2.3.2.2.7 4.2.1.7

KSK-IF-5.1c The Kiosk Master Computer shall be capable of receiving park & ride
locations from the VIA data source.

P-2.3.2.2.7 4.2.1.7

KSK-IF-5.1d The Kiosk Master Computer shall be capable of receiving special bus events
and the associated schedules from the VIA data source.

P-2.3.2.2.7 4.2.1.7

KSK-IF-5.1e The Kiosk Master Computer shall be capable of receiving VIA handicapped
bus dispatch (VIATrans) services from the VIA data source.

P-2.3.2.2.7 4.2.1.7

KSK-IF-5.1f The Kiosk Master Computer shall be capable of receiving general VIA
information from the VIA data source.

P-2.3.2.2.7 4.2.1.7

KSK-IF-5.1g The Kiosk Master Computer shall be capable of receiving graphical displays
of selected bus routes from the VIA data source.

P-2.3.2.2.7 4.2.1.7

KSK-IF-6 The Kiosk System shall interface with screen saver data source(s). P-2.3.2.2.4 4.2.1

KSK-IF-6.1 The Kiosk Master Computer shall be capable of receiving screen saver files. P-2.3.2.2.7 4.2.1.3
4.2.1.5

KSK-IF-7 The Kiosk System shall interface with the Kiosk Field Units. P-2.3.1 4.2.1.6

Traveler Information Kiosk Preliminary Design Document355

Requirement
Number

Requirement Source Design Element

KSK-IF-7.1a The Kiosk Master Computer shall be capable of transmitting the San Antonio
area weather conditions to the Kiosk Field Units.

P-2.3.2.2.7 4.2.1.6.12

KSK-IF-7.1b The Kiosk Master Computer shall be capable of transmitting the San Antonio
area weather forecast to the Kiosk Field Units.

P-2.3.2.2.7 4.2.1.6.12

KSK-IF-7.1c The Kiosk Master Computer shall be capable of transmitting the current San
Antonio area radar map data to the Kiosk Field Units.

P-2.3.2.2.7 4.2.1.6.12

KSK-IF-7.2a The Kiosk Master Computer shall be capable of transmitting airport terminal
data to the Kiosk Field Units.

P-2.3.2.2.7 4.2.1.6.12

KSK-IF-7.2b The Kiosk Master Computer shall be capable of transmitting airport rental
agency data to the Kiosk Field Units.

P-2.3.2.2.7 4.2.1.6.12

KSK-IF-7.2c The Kiosk Master Computer shall be capable of transmitting airport parking
lot data to the Kiosk Field Units.

P-2.3.2.2.7 4.2.1.6.12

KSK-IF-7.3a The Kiosk Master Computer shall be capable of transmitting route schedules
to the Kiosk Field Units.

P-2.3.2.2.7 4.2.1.6.12

KSK-IF-7.3b The Kiosk Master Computer shall be capable of transmitting standard and
special fares, park & ride locations to the Kiosk Field Units.

P-2.3.2.2.7 4.2.1.6.12

KSK-IF-7.3c The Kiosk Master Computer shall be capable of transmitting special bus
events and the associated schedules to the Kiosk Field Units.

P-2.3.2.2.7 4.2.1.6.12

KSK-IF-7.3d The Kiosk Master Computer shall be capable of transmitting VIA
handicapped bus dispatch (VIATrans) services to the Kiosk Field Units.

P-2.3.2.2.7 4.2.1.6.12

Traveler Information Kiosk Preliminary Design Document356

Requirement
Number

Requirement Source Design Element

KSK-IF-7.3e The Kiosk Master Computer shall be capable of transmitting general VIA
information to the Kiosk Field Units.

P-2.3.2.2.7 4.2.1.6.12

KSK-IF-7.3f The Kiosk Master Computer shall be capable of transmitting graphical
displays of selected bus routes data to the Kiosk Field Units.

P-2.3.2.2.7 4.2.1.6.12

KSK-IF-7.3g The Kiosk Master Computer shall be capable of transmitting park & ride
locations to the Kiosk Field Units.

P-2.3.2.2.7 4.2.1.6.12

KSK-IF-7.4 The Kiosk Master Computer shall be capable of transmitting screen saver
files to the Kiosk Field Units.

P-2.3.2.2.7 4.1.2.7.12

KSK-IF-8 The Kiosk System shall interface with the general public through a
touchscreen, using a Graphical User Interface.

P-2.3.1 4.2.2.2

KSK-IF-8.1 The Kiosk Field Unit shall provide touchscreen interaction for users to
interface with the Map Display.

P-2.3.2.2.8 4.2.2.2

KSK-IF-8.2 The Kiosk Field Unit shall provide touchscreen interaction for users to
interface with the Transit Display.

P-2.3.2.2.8 4.2.2.2

KSK-IF-8.3 The Kiosk Field Unit shall provide touchscreen interaction for users to
interface with the Airport Display.

P-2.3.2.2.8 4.2.2.2

KSK-IF-8.4 The Kiosk Field Unit shall provide touchscreen interaction for users to
interface with the Weather Display.

R-27.1.5 4.2.2.2

Traveler Information Kiosk Preliminary Design Document357

Requirement
Number

Requirement Source Design Element

KSK-IF-8.5 The Kiosk Field Unit shall provide touchscreen interaction for users to
interface with the Route Guidance Display.

P-2.3.2.2.8 4.2.2.2

KSK-FN-1 The Kiosk System shall display the real-time traffic conditions of the
highways/roadways monitored by TransGuide.

P-2.3.2.2.8 4.2.2.2.2

KSK-FN-1.2 The Kiosk Field Unit shall be capable of displaying real-time traffic data
using a San Antonio Map Display.

P-2.3.2.2.8 4.2.2.2.2

KSK-FN-1.3 The Kiosk Field Unit map shall display traffic conditions using color-coding. P-2.3.2.2.8
R-27.1.2

4.2.2.2.2

KSK-FN-1.4 The Kiosk Field Unit map shall display incidents and lane closures utilizing
icons.

P-2.3.2.2.8 4.2.2.2.2

KSK-FN-1.5 The Kiosk Field Unit shall provide additional information about an incident
or lane closure when the respective icon is touched.

P-2.3.2.2.8 4.2.2.2.2

KSK-FN-1.7 The Kiosk Field Unit map shall display current airport traffic conditions for
instrumented sections of highway around the San Antonio International
Airport.

P-2.3.2.2.8 4.2.2.2.2

KSK-FN-1.8 The Kiosk Field Unit map shall identify city streets, residential streets, and
highways.

P-2.3.2.2.8 4.2.2.2.2

KSK-FN-1.9 The Kiosk Field Unit map shall have the capability to zoom in and out of the
San Antonio Street Map Display utilizing touch screen input.

P-2.3.2.2.8 4.2.2.2.2

KSK-FN-1.10 The Kiosk Field Unit map shall have the capability to pan the San Antonio
Street Map Display utilizing touch screen input.

P-2.3.2.2.8 4.2.2.2.2

Traveler Information Kiosk Preliminary Design Document358

Requirement
Number

Requirement Source Design Element

KSK-FN-1.11 The Kiosk Field Unit map shall display icons indicating locations of
automated teller machines (ATMs), shopping centers, restaurants, gas
stations, tourist attractions, hospitals, schools, parks, airports, and bus stops.

P-2.3.2.2.8 4.2.2.2.2

KSK-FN-1.12 The Kiosk Field Unit San Antonio Street Map Display software shall
integrate data from the Navigation Technologies San Antonio Region
database with real-time data from the Data Server.

P-2.3.2.2.8 4.2.2.2.2

KSK-FN-1.13 The Kiosk Field Unit map real-time traffic conditions shall be updated at least
every five (5) minutes.

R-27.3.3 4.2.2.2.2

KSK-FN-2 The Kiosk System shall display weather data. P-2.3.2.2.8 4.2.2.2.1

KSK-FN-2.1 The Kiosk Field Unit shall display the current San Antonio weather
conditions.

P-2.3.2.2.8 4.2.2.2.13

KSK-FN-2.2 The Kiosk Field Unit shall display the local San Antonio forecast. P-2.3.2.2.8 4.2.2.2.14

KSK-FN-2.3 The Kiosk Field Unit shall display a San Antonio area radar map. P-2.3.2.2.8 4.2.2.2.12

KSK-FN-2.4 The Kiosk Field Unit current weather conditions shall be updated when
updates are provided by the weather data source.

P-2.3.2.2.8 4.2.1.6.9
4.2.1.7.4
4.2.2.1.3

KSK-FN-2.5 The Kiosk Field Unit San Antonio area radar map shall be updated when
updates are provided by the weather data source.

P-2.3.2.2.8 4.2.1.6.9
4.2.1.7.4
4.2.2.1.3

KSK-FN-2.6 The Kiosk Field Unit local San Antonio forecast shall be updated when
updates are provided by the weather data source.

P-2.3.2.2.8 4.2.1.6.9
4.2.1.7.4
4.2.2.1.3

Traveler Information Kiosk Preliminary Design Document359

Requirement
Number

Requirement Source Design Element

KSK-FN-3 The Kiosk System shall display airport data. P-2.3.2.2.8 4.2.2.2.8

KSK-FN-3.1 The Kiosk Field Unit shall display the traffic conditions for the sections of
instrumented highway that surround the airport.

R-27.3.3 4.2.2.2.2

KSK-FN-3.2 The Kiosk Field Unit shall display a listing of local airline names, their phone
numbers and the terminal in which they are located.

P-2.3.2.2.8 4.2.2.2.9

KSK-FN-3.3 The Kiosk Field Unit shall display a listing of local rental car agencies and
their phone numbers located at the San Antonio International Airport.

P-2.3.2.2.8 4.2.2.2.10

KSK-FN-3.4 The Kiosk Field Unit shall display a listing of the location and cost of airport
parking lots.

P-2.3.2.2.8 4.2.2.2.11

KSK-FN-4 The Kiosk System shall display VIA data. P-2.3.2.2.8 4.2.2.2.15

KSK-FN-4.1 The Kiosk Field Unit shall display route schedules and graphical displays of
the routes that are available.

P-2.3.2.2.8 4.2.2.2.18

KSK-FN-4.2 The Kiosk Field Unit shall provide scheduled times for major bus stops on a
selected route.

P-2.3.2.2.8 4.2.2.2.18

KSK-FN-4.3 The Kiosk Field Unit shall display a description of standard and special fares. P-2.3.2.2.8 4.2.2.2.19

KSK-FN-4.4 The Kiosk Field Unit shall display a description of park & ride locations. P-2.3.2.2.8 4.2.2.2.19

KSK-FN-4.5 The Kiosk Field Unit shall display a description of special bus events and the
associated schedules.

P-2.3.2.2.8 4.2.2.2.19

Traveler Information Kiosk Preliminary Design Document360

Requirement
Number

Requirement Source Design Element

KSK-FN-4.6 The Kiosk Field Unit shall display information about VIA handicapped bus
dispatch (VIATrans) services.

P-2.3.2.2.8 4.2.2.2.19

KSK-FN-4.7 The Kiosk Field Unit shall display general VIA information. VIA 4.2.2.2.19

KSK-FN-5 The Kiosk System shall display screen saver (advertisements) files when the
Kiosk is not being accessed by a user.

P-2.3.2.2.8 4.2.2.2.20

KSK-FN-5.1a The Kiosk Master Computer shall accept bitmap (.bmp) files for the
displaying of graphical displays on the Kiosk Field Unit.

R-27.3.2 4.2.2.2.20

KSK-FN-5.1b The Kiosk Master Computer shall accept wave (.wav) files for the playing of
audio files on the Kiosk Field Unit.

R-27.3.2 4.2.2.2.20

KSK-FN-5.1c The Kiosk Master Computer shall accept audio video interleaved (.avi) files
for playing video clips on the Kiosk Field Unit.

R-27.3.2 4.2.2.2.20

KSK-FN-5.2 The Kiosk Field Units shall be capable of receiving screen saver files from
the Master Computer and updating the existing screen saver.

P-2.3.1 4.2.2.1.3.4

KSK-FN-5.3 The Kiosk Field Units shall be capable of executing the screen saver. P-2.3.1 4.2.2.2.20

KSK-FN-6 The Kiosk System shall provide system diagnostics. P-2.3.2.2.8 4.2.2.1.5

KSK-FN-6.1 A Kiosk Master Computer Diagnostic Status GUI shall be implemented that
displays the last known status of the Kiosk Field Units.

P-2.3.2.2.7 4.2.1.2

KSK-FN-6.2 The Kiosk Master Computer shall automatically interrogate the Kiosk Field
Units.

P-2.3.2.2.7 4.2.1.6.14

Traveler Information Kiosk Preliminary Design Document361

Requirement
Number

Requirement Source Design Element

KSK-FN-6.3 The Kiosk Master Computer shall provide the capability to manually
interrogate individual Kiosk Field Units.

P-2.3.2.2.7 4.2.1.6.21

KSK-FN-6.4 The Kiosk Master Computer shall store the interrogation status results. P-2.3.2.2.7 4.2.1.6.18

KSK-FN-6.6 The Kiosk Master Computer shall have the capability to download data and
screen saver files.

P-2.3.2.2.7 4.2.1.6.12

KSK-FN-6.7 The Kiosk Master Computer shall upload Kiosk Field Unit usage statistics. P-2.3.2.2.7 4.2.1.6.14

KSK-FN-6.7a The Kiosk Master Computer shall upload Kiosk Field Unit statistics on the
number of times the Kiosk is used.

P-2.3.2.2.7 4.2.1.6.14

KSK-FN-6.7b The Kiosk Master Computer shall upload Kiosk Field Unit statistics on the
number of times the San Antonio Map is accessed.

P-2.3.2.2.7 4.2.1.6.14

KSK-FN-6.7c The Kiosk Master Computer shall upload Kiosk Field Unit statistics on the
number of times Airport information is accessed.

P-2.3.2.2.7 4.2.1.6.14

KSK-FN-6.7d The Kiosk Master Computer shall upload Kiosk Field Unit statistics on the
number of times Weather information is accessed.

P-2.3.2.2.7 4.2.1.6.14

KSK-FN-6.7e The Kiosk Master Computer shall upload Kiosk Field Unit statistics on the
number of times VIA Transit information is accessed.

P-2.3.2.2.7 4.2.1.6.14

KSK-FN-6.7f The Kiosk Master Computer shall upload Kiosk Field Unit statistics on the
number of times Route Guidance is accessed.

P-2.3.2.2.7 4.2.1.6.14

Traveler Information Kiosk Preliminary Design Document362

Requirement
Number

Requirement Source Design Element

KSK-FN-6.9 The Kiosk Field Unit shall be capable of reporting status to the Kiosk Master
Computer.

P-2.3.2.2.8 4.2.2.1.5

KSK-FN-6.10 The Kiosk Field Unit diagnostic software shall accept non-real-time file
updates from the Kiosk Master Computer.

P-2.3.2.2.8 4.2.2.1.3

KSK-FN-6.12 The Kiosk Field Unit shall keep usage statistics. P-2.3.2.2.8 4.2.2.1.5

KSK-FN-6.12a The Kiosk Field Unit shall keep statistics on the number of times the Kiosk is
used.

P-2.3.2.2.8 4.2.2.1.5

KSK-FN-6.12b The Kiosk Field Unit shall keep statistics on the number of times the San
Antonio Map is accessed.

P-2.3.2.2.8 4.2.2.1.5

KSK-FN-6.12c The Kiosk Field Unit shall keep statistics on the number of times Airport
information is accessed.

P-2.3.2.2.8 4.2.2.1.5

KSK-FN-6.12d The Kiosk Field Unit shall keep statistics on the number of times Weather
information is accessed.

P-2.3.2.2.8 4.2.2.1.5

KSK-FN-6.12e The Kiosk Field Unit shall keep statistics on the number of times VIA Transit
information is accessed.

P-2.3.2.2.8 4.2.2.1.5

KSK-FN-6.12f The Kiosk Field Unit shall keep statistics on the number of times Route
Guidance information is accessed.

P-2.3.2.2.8 4.2.2.1.5

KSK-FN-7 The Kiosk System shall provide route guidance. P-2.3.2.2.8 4.2.2.2.6
4.2.2.2.7

Traveler Information Kiosk Preliminary Design Document363

Requirement
Number

Requirement Source Design Element

KSK-FN-7.1 The Kiosk Field Units shall convert the real-time traffic condition data stream
into data that can be interpreted by the Navigation Technologies database and
the Route Guidance application.

R-27.3.3 4.2.2.2.2

KSK-FN-7.2 The Kiosk Field Unit shall be capable of displaying route guidance using the
Navigation Technologies database.

R-27.3.3 4.2.2.2.7

KSK-FN-7.3 The Kiosk Field Unit shall provide a graphical display of the route from the
kiosk's location to the selected destination.

P-2.3.2.2.8 4.2.2.2.7

KSK-FN-7.4 The Kiosk Field Unit shall allow the user to select a route from the Kiosk
Field Unit's location to a selected Point of Interest.

P-2.3.2.2.8 4.2.2.2.6

KSK-FN-7.5 The Kiosk Field Unit shall allow the user to select their destination from a list
of the points of interest retrieved from the Navigation Technologies database.

P-2.3.2.2.8 4.2.2.2.5

KSK-FN-7.6 The Kiosk Field Unit shall allow the user to enter the address of the
destination.

P-2.3.2.2.8 4.2.2.2.3

KSK-FN-7.7 The Kiosk Field Unit shall utilize a color-coded line segment on the San
Antonio Street Map to indicate the calculated route.

P-2.3.2.2.8 4.2.2.2.7

KSK-FN-7.8 The Kiosk Field Unit shall utilize real-time speed information to calculate
travel time to the selected destination.

P-2.3.2.2.8 4.2.2.2.7

KSK-FN-7.9 The Kiosk Field Unit shall display the estimated travel time and speed for the
selected route.

P-2.3.2.2.8 4.2.2.2.7

Traveler Information Kiosk Preliminary Design Document364

Requirement
Number

Requirement Source Design Element

KSK-FN-7.10 The Kiosk Field Unit shall display turn-by-turn instructions for a calculated
route.

P-2.3.2.2.8 4.2.2.2.7

KSK-FN-8 The Kiosk System shall be capable of printing user selected items. P-2.3.2.2.8 4.2.2.2

KSK-FN-8.2 The Kiosk Field Unit shall be capable of printing the route map and
instructions.

P-2.3.2.2.8 4.2.2.2.7

KSK-FN-8.3 The Kiosk Field Unit shall be capable of printing the transit information. P-2.3.2.4.3 4.2.2.2.18
4.2.2.2.19

KSK-FN-8.4 The Kiosk Field Unit shall be capable of printing the airport information. P-2.3.2.4.2 4.2.2.2.9
4.2.2.2.10
4.2.2.2.11

KSK-FN-8.5 The Kiosk Field Unit shall be capable of printing the local weather
conditions, the local forecast and the radar map.

P-2.3.2.4.2 4.2.2.2.12
4.2.2.2.13
4.2.2.2.14

KSK-FN-9 The Kiosk Field Unit shall provide help to assist the user in the operation of
the Kiosk application.

P-2.3.2.2.8 4.2.2.2

Traveler Information Kiosk Preliminary Design Document365

Requirement
Number

Requirement Source Design Element

KSK-FN-9.1 The Kiosk Field Unit shall provide Help buttons to provide information on
how to use the GUI currently displayed.

P-2.3.2.2.8 4.2.2.2

KSK-FN-10 The Kiosk System shall provide monitoring and restarting of its processes. P-2.3.2.2.7 4.2.2

KSK-FN-10.2 The Master Computer subsystem shall provide monitoring and restarting of
its applications.

P-2.3.2.2.7 4.2.2.14

KSK-FN-10.3 The Kiosk Field Unit subsystem unattended applications shall automatically
startup at boot-up.

P-2.3.2.2.7 N/A

KSK-FN-10.4 The Kiosk Field Unit subsystem shall provide monitoring and restarting of its
applications.

P-2.3.2.2.7 4.2.2.14

