
In-Vehicle Navigation System
Model Deployment Initiative

Design Document
Version 1.0

January 7, 1998

SwRI Project No. 10-8684
P.O. No. 7-70030

Req. No. 60115-7-70030

Prepared For:

Texas Department of Transportation
TransGuide

3500 NW Loop 410
San Antonio, Texas 78229

Prepared by:

Southwest Research Institute
P.O. Drawer 28510

San Antonio, Texas 78228

In-Vehicle Navigation System Design Documenti

Approval Page

____________________________________ ______________________
In-Vehicle Navigation Project Manager Date

____________________________________ ______________________
SwRI MDI Project Manager Date

____________________________________ ______________________
Communications Engineering Dept. Director Date

____________________________________ ______________________
TxDOT Approval Date

In-Vehicle Navigation System Design Documentii

Acronym List

ATMS Advanced Traffic Management System
AVI Automatic Vehicle Identification
DGPS Differential GPS
DS MDI Data Server
GPS Global Positioning System
ITS Intelligent Transportation System
IVN In-Vehicle Navigation
LR Location Reference
MCS Master Computer Software
MDI Model Deployment Initiative
PCB Printed Circuit Board
STIC Subcarrier Traffic Information Channel
STM STIC Transmission Message
SwRI Southwest Research Institute
TIM Traffic Information Message
TMC Traffic Management Center
TOC TransGuide Operations Center
TxDOT Texas Department of Transportation

In-Vehicle Navigation System Design Documentiii

Table of Contents

1. INTRODUCTION...1

1.1 PURPOSE OF SYSTEM..1
1.2 OPERATIONAL CONCEPT ..1
1.3 SYSTEM OBJECTIVES..4
1.4 REFERENCED DOCUMENTS ...4

2. EXTERNAL INTERFACES ..5

3. SYSTEM REQUIREMENTS...6

3.1 SYSTEM LEVEL REQUIREMENTS..6
3.2 MASTER COMPUTER REQUIREMENTS ..6
3.3 IVN UNIT REQUIREMENTS ...6
3.4 MASTER COMPUTER SOFTWARE REQUIREMENTS...7

4. SYSTEM DESIGN..9

4.1 SYSTEM ARCHITECTURE ..9
4.1.1 IVN Master Computer ..9
4.1.2 STIC Message Encoder ..10
4.1.3 STIC Receiver ..11
4.1.4 IVN Unit...12

4.2 IVN MASTER COMPUTER SOFTWARE DESIGN ...13
4.2.1 External Interfaces...14
4.2.2 System Design ..16

4.2.2.1 Startup ..17
4.2.2.2 Main Loop...17
4.2.2.3 Shutdown ..19
4.2.2.4 Signal Handlers ...20

4.2.3 Subsystem Design...20
4.2.3.1 Initialization ..21
4.2.3.2 Initialization of Data Structures ...29
4.2.3.3 Modem Control ...38
4.2.3.4 Real Time Data Update ...42
4.2.3.5 STIC Message Transmission..44
4.2.3.6 Shut Down ..52
4.2.3.7 Signal Handlers ...52

4.2.4 Data Structures ..54
4.2.4.1 IVN Communication Protocol Data Structures ...54
4.2.4.2 STIC Message Encoder Communication Protocol Data Structures ..58

5. REQUIREMENTS TRACEABILITY ...60

In-Vehicle Navigation System Design Documentiv

List of Figures

FIGURE 1. OPERATIONAL CONCEPT ...3
FIGURE 2. IVN SYSTEM EXTERNAL INTERFACES ...5
FIGURE 3. IVN MCS EXTERNAL INTERFACES ...14
FIGURE 4. IVN MAIN PROCEDURE ..16
FIGURE 5. IVN INITIALIZATION AND STARTUP...17
FIGURE 6. IVN MAIN LOOP ..18
FIGURE 7. IVN SHUTDOWN ..19
FIGURE 8. IVN SIGNAL HANDLERS ...20
FIGURE 9. IVN INITIALIZATION ..21
FIGURE 10. INITIALIZE GENERAL SIGNAL HANDLER ...22
FIGURE 11. OPEN LOG FILE ..23
FIGURE 12. INITIALIZE PARAMETERS...23
FIGURE 13. INITIALIZE KILL SIGNAL HANDLER ..24
FIGURE 14. LOAD SEQUENCE NUMBER ..24
FIGURE 15. INITIALIZE STATUS GUI SHARED MEMORY..25
FIGURE 16. INITIALIZE PROCESS STATUS SHARED MEMORY ...25
FIGURE 17. INITIALIZE EQUIPMENT STATUS...26
FIGURE 18. UPDATE STATUS...26
FIGURE 19. CONNECT TO DATA SERVER..27
FIGURE 20. CONNECT TO REAL TIME DATA ..27
FIGURE 21. CREATE TRANSGUIDE LINK ID FILE ..28
FIGURE 22. INITIALIZE HEARTBEAT TIMER ..28
FIGURE 23. CREATE TIMER...29
FIGURE 24. SET TIMER ...29
FIGURE 25. CREATE LINK SPEED DATA ...30
FIGURE 26. ALLOCATE LINK SPEED DATA ARRAY ...30
FIGURE 27. INITIALIZE LINK SPEED DATA ARRAY..31
FIGURE 28. CREATE INCIDENT DATA...31
FIGURE 29. ALLOCATE INCIDENT DATA ARRAY...32
FIGURE 30. INITIALIZE INCIDENT DATA ARRAY ...32
FIGURE 31. CREATE LINK SPEED STM ARRAY ..33
FIGURE 32. ALLOCATE LINK SPEED STM ARRAY ..33
FIGURE 33. INITIALIZE LINK SPEED STM ARRAY...34
FIGURE 34. INITIALIZE LINK SPEED TIM DATA..34
FIGURE 35. INITIALIZE LINK SPEED TIM HEADER..35
FIGURE 36. INITIALIZE STM HEADER..35
FIGURE 37. CREATE INCIDENT STM ARRAY..36
FIGURE 38. ALLOCATE INCIDENT STM ARRAY ...36
FIGURE 39. INITIALIZE INCIDENT STM ARRAY..37
FIGURE 40. INITIALIZE INCIDENT TIM DATA...37
FIGURE 41. INITIALIZE INCIDENT TIM HEADER ...38
FIGURE 42. CHECK MODEM CONNECTION ...38
FIGURE 43. DIAL MODEM ...39
FIGURE 44. RESET MODEM ...40
FIGURE 45. COMMAND MODEM ..40
FIGURE 46. READ MODEM REPLY ...41
FIGURE 47. WAIT FOR MODEM CONNECTION...41
FIGURE 48. UPDATE REAL TIME DATA ..42
FIGURE 49. UPDATE LINK SPEED STM ARRAY ..43
FIGURE 50. UPDATE INCIDENT STM ARRAY ...43
FIGURE 51. ADD NEW INCIDENTS ...44

In-Vehicle Navigation System Design Documentv

FIGURE 52. SEND STM ARRAY...44
FIGURE 53. PACK LINK SPEED STM ARRAY ..45
FIGURE 54. PACK LINK SPEED STM ..45
FIGURE 55. INSERT ZERO BYTES ...46
FIGURE 56. PACK INCIDENT STM ARRAY ...46
FIGURE 57. PACK INCIDENT STM ...47
FIGURE 58. STIC MESSAGE..48
FIGURE 59. SEND STIC MESSAGE ..49
FIGURE 60. BUILD STIC MESSAGE ...49
FIGURE 61. READ STIC RESPONSE..50
FIGURE 62. FIND STIC START OF MESSAGE ..50
FIGURE 63. VERIFY STIC RESPONSE CRC...51
FIGURE 64. SHUT DOWN IVN ...52
FIGURE 65. GENERAL SIGNAL HANDLER..53
FIGURE 66. KILL SIGNAL HANDLER...53
FIGURE 67. SEND HEARTBEAT ..54

In-Vehicle Navigation System Design Document1

1. Introduction
Real-time in-vehicle navigation is a significant traveler information service added to the
TransGuide system during the Model Deployment Initiative (MDI). The TransGuide In-Vehicle
Navigation (IVN) system includes an IVN unit that provides travelers with route guidance, vehicle
position, and regional points of interest information. Units currently available on the market utilize
a database of transit times for each road segment to calculate the shortest travel time from where
the vehicle is located to a point the driver inputs as the destination. These databases are static, as
they contain typical transit times that by definition cannot account for real-time congestion caused
by traffic accidents, rush hours, public events, etc. The MDI implementation of IVN addresses this
shortcoming by providing the units with real-time traffic data. The system includes the
infrastructure necessary to deliver the real-time information to vehicles in the San Antonio area and
the initial deployment of 590 IVN units that utilize the real-time traffic data.

1.1 Purpose of System

The purpose of the IVN system is to communicate real-time traffic information maintained at the
TransGuide Traffic Management Center (TMC) to travelers in the San Antonio metropolitan area
and present the information in a manner useful for making navigation decisions.

1.2 Operational Concept

Several types of traffic speed information are collected by the TransGuide system: actual highway
traffic speed collected by loop detectors; actual highway and arterial traffic speed collected by the
automatic vehicle identification (AVI) detection system; predicted arterial traffic speed based on
observation of traffic over a period of time; traffic incident information collected by the San
Antonio Police Department; daily scheduled road/lane closures; and railway crossing information.
This information is stored and maintained by the MDI Data Server (DS) at the TransGuide TMC.

The IVN System consists of the following four major components:

• IVN master computer,
• Subcarrier Traffic Information Channel (STIC) message encoder,
• STIC receiver,
• In-vehicle navigation unit.

The IVN master computer obtains information from the Data Server and formats the information
into efficient messages. The master computer then communicates the data over a dial-up modem
connection to the STIC message encoder.

The STIC message encoder and STIC receiver comprise a commercially available data broadcast
system. The STIC message encoder is located in the transmission room of a commercial FM radio
station. The encoder receives messages from the master computer and encodes them into a
baseband signal that is modulated and broadcast as a sub-carrier to the FM radio signal. The FM
subcarrier may coexist with other subcarriers on the same FM radio signal.

The STIC receiver and a commercially available in-vehicle navigation unit are installed in vehicles
in the San Antonio metropolitan area. The STIC receiver receives the FM radio signal and decodes
the subcarrier. The STIC receiver passes the messages to the navigation unit over a serial data link.

The navigation unit decodes the messages, displays the real-time information along with the map
data to the traveler(s) in the vehicle, and calculates the quickest route to a traveler-entered
destination using the real-time and map data.

In-Vehicle Navigation System Design Document2

The operational concept is illustrated in Figure 1.

Figure 1. Operational Concept

In-Vehicle Navigation System Design Document4

1.3 System Objectives

Three objectives of the IVN system are:

• to enable San Antonio area travelers to reach destinations more quickly by avoiding
traffic congestion,

• to reduce San Antonio area traffic congestion by guiding travelers through
uncongested roadways, and

• to increase and demonstrate the effectiveness of the TransGuide ITS.

1.4 Referenced Documents

The following documents are referenced by this design document.

• Texas Department of Transportation, Request for Offer (RFO) for the Model Deployment
Initiative System Integration, 60115-7-70030, Specification No. TxDOT 795-SAT-01,
October, 1996.

• Southwest Research Institute, Proposal for the 6015-7-70030: Request for Offer, Model
Deployment Initiative System Integration, SwRI Proposal No. 10-20342, November, 1996.

• Southwest Research Institute, In-Vehicle Navigation System Model Deployment Initiative
Preliminary Design Document, Version 1.0, February 14, 1997.

• Southwest Research Institute, TransGuide In-Vehicle Navigation System High Speed FM
Subcarrier Communications Protocol, Version 1.0, May 29, 1997.

• Southwest Research Institute, In-Vehicle Navigation System Model Deployment Initiative
Version Description Document, Version 1.0.

• Southwest Research Institute, Automated Vehicle Identification System Model Deployment
Initiative Design Document, Version 1.0.

• Scientific-Atlanta, Subcarrier Traffic Information Channel Interface Control Document,
Revision A.

In-Vehicle Navigation System Design Document5

2. External Interfaces
The IVN system externally interfaces with the MDI Data Server, public switched telephone
network, an FM radio station, and many vehicles. These interfaces are illustrated in Figure 2. A
detailed description of each interface is included in Section 4.

M a s t e r C o m p u t e r S T I C M e s s a g e S T I C R e c e i v e r /
 E n c o d e r I V N U n i t

I V N S y s t e m

M D I
D a t a S e r v e r

Publ ic
S w i t c h e d

T e l e p h o n e
N e tw o r k

FM
Radio

Stat ion

V e h i c l e

Figure 2. IVN System External Interfaces

In-Vehicle Navigation System Design Document6

3. System Requirements
The following IVN system requirements are derived from the Request for Offer for the Model
Deployment Initiative System Integration written by TxDOT and the Proposal for the Request for
Offer for the Model Deployment System Integration written by SwRI.

3.1 System Level Requirements

IVN-1 The system shall communicate the following types of real-time traffic information to
moving vehicles:

• link speed data,
• incident information.

IVN-2 The real-time traffic information shall be derived from the Data Server.

IVN-3 The system shall communicate the real-time traffic information using the Subcarrier
Traffic Information Channel (STIC) system that consists of a message encoder/FM
subcarrier generator and FM subcarrier receivers.

IVN-4 The system shall utilize commercially available IVN units to display the real-time
traffic information to travelers.

IVN-5 The system shall utilize the IVN units of at least two manufacturers.

3.2 Master Computer Requirements

The following requirements are subordinate to requirement IVN-2.

IVN-2.1 Software running on an IVN master computer shall be used to extract real time
information from the Data Server.

IVN-2.2 The IVN master computer shall be a Sun Microsystems Ultra SPARCStation with
the following components:

• 167 MHz SPARC (RISC) CPU,
• 128 MB RAM,
• 4.2 GB hard disk space,
• Floppy disk drive,
• Sun CD-ROM drive,
• Turbo GX+ graphics,
• 20” color monitor,
• 8 port modem server (SCSI attached),
• Dual ethernet interfaces, and
• Dual SCSI channels.

IVN-2.3 The master computer shall be located in the TransGuide Operations Center.

3.3 IVN Unit Requirements

The following requirements are subordinate to requirement IVN-4.

IVN-4.1 The IVN unit shall be composed of the following components:
• microprocessor,
• reconfigurable LCD color display,
• removable media for data storage,

In-Vehicle Navigation System Design Document7

• gyroscopic sensor, and
• GPS receiver.

IVN-4.2 The IVN unit shall accept real-time traffic data input from the STIC receiver.

IVN-4.3 The IVN unit shall provide a means for the traveler to enter a destination of the
following types:

• address,
• intersection,
• place or point of interest, and
• previous destination.

IVN-4.4 The IVN unit shall calculate the shortest time route, based on the real-time
information from the STIC receiver, from the current location of the vehicle to the
traveler-entered destination.

IVN-4.5 The IVN unit shall communicate the route information using a map display, guide
display, and audible prompting.

IVN-4.6 The IVN unit guide display shall present the following information:
• distance to an upcoming turn, and
• direction of an upcoming turn.

IVN-4.7 The IVN unit shall provide the following audible prompts:
• warning of an upcoming turn, and
• indication to make a turn.

IVN-4.8 The IVN unit map display shall show the current location of the vehicle and the
calculated route on an annotated map of the surroundings.

IVN-4.9 The information used to generate the map display shall be derived from the San
Antonio, Texas Metropolitan Area database supplied by Navigation Technologies.

3.4 Master Computer Software Requirements

The IVN master computer software (MCS) requirements in this section are subordinate to
requirement IVN-2.1. These requirements are derived from software design decisions described in
Section 4.2 and were used to guide the development of software subcomponents.

IVN-2.1.1 The IVN MCS shall transmit IVN process status information to the Data Server
every 60 seconds.

IVN-2.1.2 The IVN MCS shall extract link ID information from the Data Server Realtime
Subsystem.

IVN-2.1.3 The IVN MCS shall extract link location information from the Data Server Realtime
Subsystem.

IVN-2.1.4 The IVN MCS shall extract link speed information from the Data Server Realtime
Subsystem.

IVN-2.1.5 The IVN MCS shall extract incident information from the Data Server Realtime
Subsystem.

IVN-2.1.6 The IVN MCS shall transmit link speed information to the STIC message encoder
every 60 seconds.

In-Vehicle Navigation System Design Document8

IVN-2.1.7 The IVN MCS shall transmit incident information to the STIC message encoder
every 60 seconds.

IVN-2.1.8 The IVN MCS shall transmit locally referenced link speed information to the STIC
message encoder in accordance with the messaging protocol defined in the
TransGuide In-Vehicle Navigation System High Speed FM Subcarrier
Communications Protocol.

IVN-2.1.9 The IVN MCS shall transmit globally referenced link speed information to the STIC
message encoder in accordance with the messaging protocol defined in the
TransGuide In-Vehicle Navigation System High Speed FM Subcarrier
Communications Protocol.

IVN-2.1.10 The IVN MCS shall transmit locally referenced incident information to the STIC
message encoder in accordance with the messaging protocol defined in the
TransGuide In-Vehicle Navigation System High Speed FM Subcarrier
Communications Protocol.

IVN-2.1.11 The IVN MCS shall transmit globally referenced incident information to the STIC
message encoder in accordance with the messaging protocol defined in the
TransGuide In-Vehicle Navigation System High Speed FM Subcarrier
Communications Protocol.

IVN-2.1.12 The IVN MCS shall generate a table of TransGuide link information that includes
link ID, starting coordinate, ending coordinate, and street name.

IVN-2.1.13 The IVN MCS shall provide a display of the process status, which shall be updated
every 60 seconds.

IVN-2.1.14 The IVN MCS shall be capable of being started and stopped through the IVN process
status GUI.

IVN-2.1.15 The IVN MCS shall provide a display of the status of communication to peripheral
systems with which it exchanges data.

IVN-2.1.16 The IVN MCS shall log informational messages, warning messages, and error
messages to a status log file.

In-Vehicle Navigation System Design Document9

4. System Design
The system design is described in the following two sections. The system architecture section
includes a description of the hardware components and their installation and interconnection. The
software design section describes the design of the master computer software.

4.1 System Architecture

The system architecture is documented in a set of engineering drawings that accompany this design
document. Reduced size copies of these drawings are included in Appendix A as a reference for the
reader. This section of the design document provides a description of the system architecture that is
illustrated in the drawing package.

The system consists of four sub-systems: the IVN master computer, the STIC message encoder, the
STIC receiver, and the IVN unit. Drawing number 8684-5000 is a system level block diagram that
indicates the associated drawing and location for each of the four sub-systems.

4.1.1 IVN Master Computer

The IVN master computer executes software that extracts real-time traffic information from the
Data Server. The software encapsulates the real-time traffic data into messages that are delivered
by the STIC transmission system to the IVN unit. The format and content of the messages adhere
to the communications protocol described in the TransGuide In-Vehicle Navigation System High
Speed FM Subcarrier Communications Protocol document. The software sends the real-time
traffic information messages to the STIC message encoder using a modem server and standard
dial-up telephone line. The IVN master computer software design is described in Section 4.2.

The IVN master computer is located in the “computer room” of the TxDOT TransGuide
Operations Center (TOC). The master computer and associated components are mounted in a 23”
equipment rack. Drawing number 8684-5003 shows the equipment part numbers, rack
configuration, interconnection of components, and external connections. This drawing also shows
the components of the Automated Vehicle Identification (AVI) system master computer. Refer to
the Automated Vehicle Identification Model Deployment Initiative Design Document for further
information about that computer.

The IVN master computer is a Sun Microsystems Ultra SPARCStation with the following
components:

• 167 MHz SPARC (RISC) CPU,
• 128 MB RAM,
• Two 2.1 GB hard disks,
• Floppy disk drive,
• CD-ROM drive,
• Turbo GX+ graphics interface,
• 20” color monitor,
• Dual ethernet interfaces,
• Dual SCSI channels, and
• 16 port modem server (SCSI attached).

The IVN master computer external electrical interfaces include an ethernet connection, modem
connection, and power connections. The IVN master computer communicates with the Data Server
over an ethernet network shared by other workstations at TransGuide. The IVN master computer

In-Vehicle Navigation System Design Document10

communicates with the STIC message encoder over a dial-up modem connection that is achieved
by connecting a standard switched telephone line to the modem server. The IVN master computer,
monitor, and modem server each obtain electrical power from a standard 110VAC 60Hz power
outlet.

Additional information on the detailed operation and maintenance of the Sun SPARCStation,
monitor, and modem server may be obtained from the operator manuals which accompany those
pieces of commercial equipment.

4.1.2 STIC Message Encoder

The STIC message encoder, manufactured by Scientific-Atlanta, receives the messages sent by the
IVN master computer over the modem connection, and depending on the command from the master
computer, the encoder adds or deletes messages from a message queue. The encoder modulates the
messages in the queue into a baseband signal that is centered at 72 Khz and outputs this baseband
signal to the FM exciter of the radio station. The FM exciter adds the baseband signal from the
STIC encoder to the regular audio program and other subcarriers. The composite signal is then
modulated by the FM transmitter and broadcast over the entire San Antonio metropolitan area.

The STIC message encoder optimizes the data transmission throughput by embedding forward
error correction information in the messages. A 15-byte Reed-Soloman forward error correction
code accompanies every 228 bytes of broadcast data. In addition, the encoder continuously cycles
through the message queue, rebroadcasting messages that are not deleted by the master computer.
This rebroadcast also improves transmission success.

The encoder is located at the Tower of the Americas in the radio transmission room of KTFM
102.7FM. The encoder and associated components are mounted in a 19” equipment rack. Drawing
number 8684-5004 shows the equipment part numbers, rack configuration, interconnection of
components, and external connections.

The STIC message encoder is a rack mountable environmentally hardened IBM compatible PC
with the following components:

• 486 66MHz CPU,
• 28.8kbps internal modem,
• STIC subcarrier modulator ISA board,
• GPS receiver,
• GPS antenna,
• hard disk drive,
• 3.5” floppy drive,
• Built-in monitor,
• rack mount keyboard, and
• rack mount surge protector.

The STIC message encoder external electrical interfaces include a subcarrier output, modem
connection, and power connection. The subcarrier output is connected to an SCA input of the FM
exciter of the radio station by a coaxial cable. The encoder communicates with the IVN master
computer by connecting the internal modem to the public switched telephone network. The STIC
message encoder obtains electrical power from a standard 110VAC 60Hz power outlet provided by
the accompanying surge protector.

The software that is executed by the STIC message encoder was also provided by Scientific-
Atlanta; however, SwRI enhanced this software by adding a batch file that configures the message

In-Vehicle Navigation System Design Document11

encoder for proper and reliable operation. When the message encoder is booted, the batch file
automatically configures the modem and starts the STIC message encoder software. The In-
Vehicle Navigation System Model Deployment Initiative Version Description Document describes
the proper configuration of the message encoder including the message encoder software and SwRI
added batch file.

The message encoder software has only one tunable parameter. This parameter controls the
magnitude of the 72Khz subcarrier signal. This parameter can be used to adjust the injection level
or “deviation” of the subcarrier. This parameter is modified by typing an uppercase “G” at the
message encoder keyboard and using the up and down arrow keys for the adjustment. A deviation
of 10% is recommended by Scientific-Atlanta for optimum performance. This is the signal level
that the message encoder is currently injecting into the KTFM broadcast signal.

The message encoder also includes a GPS antenna and receiver that is used by the encoder to
generate differential GPS data. This DGPS data is broadcast in the subcarrier along with the
traffic data, but as a different data stream. The DGPS data is separated from the traffic data by the
STIC receiver in the vehicle and is not processed by the IVN units. This feature of the STIC
message encoder is not used by the IVN system.

Additional information on the detailed operation and maintenance of the STIC message encoder
may be obtained from the accompanying documentation supplied by Scientific-Atlanta.

4.1.3 STIC Receiver

The STIC receiver, also manufactured by Scientific-Atlanta, continuously searches all FM radio
frequencies for a station broadcasting the STIC subcarrier signal. When the receiver tunes to
102.7FM, it finds the STIC subcarrier and begins to receive the messages broadcast by the
message encoder. The receiver uses the forward error correction codes transmitted by the encoder
to correct transmission errors. After error correction, the receiver sends the messages to the IVN
unit over an RS-232 serial data link.

The time required by the STIC receiver to search through the FM frequencies can vary. The
receiver is specially designed to find 102.7FM quickly, and in the presence of a strong FM signal,
the receiver will begin to decode data within 30 seconds. If the receiver loses lock due to a weak
FM signal, it will regain lock within 30 seconds from the time that the FM signal is re-established.
In the event that the broadcast signal moves to another frequency, the search will be much slower.
The STIC receiver could require as long as 3 minutes to find a subcarrier on a frequency other than
102.7FM.

The STIC receiver’s ability to lock onto the broadcast signal is dependent upon the quality of the
signal at the receiver input. Several factors can affect the signal quality. The strength of the
receiver input signal is greatly dependent upon the type of antenna used, the mounting of that
antenna, and antenna position. For good reception of the STIC subcarrier, it is important that a
quality antenna is used and is properly installed, including a connection to a sufficient ground
plane.

For convenience and aesthetics, it is often desirable to input the same signal from the existing
vehicle FM antenna to both the STIC receiver and existing FM radio using a power splitter. This
approach, however, results in reduced signal strength to the STIC receiver and can affect the
receiver’s ability to lock onto the broadcast signal.

The location of the receiver is also an important factor for reception. Although the KTFM signal
approaches an omnidirectional coverage pattern, the signal does not cover the San Antonio area

In-Vehicle Navigation System Design Document12

uniformly. The primary lobe of the KTFM signal is centered in a southwesterly direction from the
Tower of Americas, and reception of the STIC subcarrier will be best on that side of the city. In
addition, the specific electromagnetic environment of any particular site may affect data reception.
This is especially true of sites that are within large structures containing metal (such as commercial
buildings and parking garages) or in the “shadow” of such structures. At sites where reception is
difficult, moving the receiver antenna by only a few feet can make the difference between good and
bad data reception.

In any case, the reception of the STIC subcarrier should not be compared with the reception of the
KTFM audio program using a FM radio. The carrier signal that contains the audio program is ten
times stronger than the STIC subcarrier. The audio program is also closer to the FM pilot signal,
which greatly improves reception. For these reasons, the STIC receiver will not receive data in
some places where the audio program is clearly received.

The STIC receiver is typically mounted in a vehicle adjacent to the controller of the IVN unit.
Drawings 8684-5001 and 8684-5002 are installation drawings that show typical installations of the
receiver and IVN units in a passenger vehicle.

The electrical interfaces of the STIC receiver include an FM antenna, data, power, and ground
connection. The receiver either shares the signal from an existing FM antenna with the radio using
a power divider, or is connected directly to a dedicated FM antenna. For data communication, an
RS-232 cable connects to a 9 pin RS-232 connector on the receiver and similar connector on the
IVN unit interface. Also required are switched power and ground connections that are typically
made with vehicle ignition circuit.

The STIC receiver also decodes the DGPS data broadcast by the message encoder. The DGPS
data is output on two unused pins of the RS-232 serial link; however, this data is not processed by
the IVN units.

Additional information on the detailed operation and maintenance of the STIC receiver may be
obtained from the accompanying documentation supplied by Scientific-Atlanta.

4.1.4 IVN Unit

The IVN unit is one of two commercially available products. Alpine Electronics Research of
America and Zexel USA each supply a navigation unit capable of receiving and using real-time
traffic data from the IVN system.

Both the Alpine and Zexel navigation units include a controller and display head. The controller
houses a microprocessor, GPS receiver, removable PCMCIA hard disk or CD-ROM, and
gyroscopic sensor. The display head on the Zexel IVN unit has keys that the traveler may use to
enter information. The display head on the Alpine unit has an infrared sensor and is accompanied
by a handheld remote control that provides the traveler a means for data input.

The IVN units accept the real-time traffic messages from the STIC receiver. The messages are
unwrapped by the navigation unit software, and the real-time information is incorporated into a
map database maintained by the units. The navigation units display the map database information
and real-time data to travelers on the LCD display.

Both the Zexel and Alpine IVN units have graphical user interfaces that allow destination input by
address, intersection, point of interest, or previous destination. The Alpine unit also allows the
traveler to select a destination by map input.

In-Vehicle Navigation System Design Document13

The IVN units calculate a route from the current location of the vehicle to the traveler-entered
destination. The traveler may select a computation of the shortest time route or the route that
includes the least use of freeways. The IVN units calculate the shortest time route using the real-
time information broadcast by the IVN system. Additionally, the Alpine IVN unit provides route
calculations for the fewest turns and least tollways.

The IVN units present the real-time traffic and route information using a map display, guide
display, and audible messaging. The map display shows a map of the area around the present
location of the vehicle. The map display includes geometry of roadways, street names, and an icon
indicating the current location of the vehicle. The traveler may zoom in or out to achieve the level
of detail in the display that he requires. The map display highlights the roads appearing at the
current zoom level that are on the calculated route and highlights areas of traffic congestion by
color coding road segments.

The guide display provides turn-by-turn navigation directions to the traveler. The guide display
indicates the direction of an upcoming turn with a large arrow pointing in the direction of the turn.
The guide display also presents the distance to the upcoming turn as determined by the calculated
route and vehicle position.

The IVN units generate audible messages in the form of a voice prompt indicating the distance and
direction of an upcoming turn. When a turn is pending, another audible prompt signals the driver to
make the turn.

The IVN units determine the location and heading of the vehicle using a GPS receiver, a
gyroscopic sensor, and map matching. The GPS receiver provides coarse position information that
is compared to map data, then the measured position is “snapped” to the map using map matching.
The gyroscopic sensor provides accurate vehicle heading information to the IVN units.

The electrical interfaces of the IVN units include GPS antenna, 9 pin RS-232, speed pulse, back-
up light, ignition, power, and ground connections. The connecting cable of the GPS antenna, which
accompanies the IVN unit, plugs into a jack on the IVN unit CPU. For traffic message
communication, an RS-232 cable connects to a 9 pin RS-232 connector on an interface to the IVN
unit and similar connector on the STIC receiver. The IVN unit has a wire harness that taps into the
vehicle speed pulse near the powertrain control module. In addition, the IVN unit wire harness taps
into the back-up light, ignition, power, and ground in the most convenient place near the unit. The
location of these connections vary greatly from vehicle to vehicle. Drawings 8684-5001 and 8684-
5002 are installation drawings that show typical installations of the IVN units and STIC receiver in
a passenger vehicle.

Additional information on the detailed operation and maintenance of the IVN units may be obtained
from the accompanying documentation supplied by Alpine and Zexel.

4.2 IVN Master Computer Software Design

The function of the IVN Master Computer Software (MCS) is to extract real-time data from the
MDI Data Server and transmit the data to the STIC message encoder, which broadcasts the data
via FM radio to the receivers and IVN units in vehicles. The IVN MCS runs on a Sun
Microsystems Ultra SPARCStation. The hardware components of the computer system are
described in Section 4.1.1. The configuration of the IVN Master Computer and MCS are
described in the In-Vehicle Navigation System Model Deployment Initiative Version Description
Document. The architecture of the IVN MCS is described in the following sections and includes
descriptions of the external interfaces, the high level system design, the low level functional
decomposition, and the format of the primary data structures.

In-Vehicle Navigation System Design Document14

4.2.1 External Interfaces

The IVN MCS runs as a single UNIX process. This process has five external interfaces as
depicted in the figure below.

1

IVN

Data
Server

Real
Time
Data
Subsystem

STIC
Message
Encoder

Status
GUI

Status
Log

Heartbeat
Data

Incident Data
Equipment
Status Data

Formatted Link
Speed Data

Process Status
Data

Link Speed
Data

Formatted
Incident Data

Log Messages

Figure 3. IVN MCS External Interfaces

The external entities to which the IVN process communicates include the Data Server which is a
process running on another workstation, the Real Time Data Subsystem which is a process running
on the IVN Master Computer, the Status GUI which is a process running on the IVN Master
Computer, the Status Log which is a text file maintained on the IVN Master Computer fixed disk,
and the STIC message encoder which is a PC installed at an FM radio station. These are described
further in the following table.

In-Vehicle Navigation System Design Document15

External Entity Description
Data Server The Data Server is the central repository of information generated and maintained by the MDI

subsystems. The IVN process sends its process status information to the Data Server at regular
intervals.

Real Time Data
Subsystem

The Real Time Data Subsystem provides the current speed and location for each of the TransGuide
links. It also provides the type, start time, and location of each currently active incident.

Status GUI The status GUI process is the graphical user interface which provides the visual description of the IVN
process. The status GUI indicates the overall process status and also provides a detailed status of the
peripheral equipment with which the IVN process communicates. The IVN process can also be started
or stopped through the status GUI.

Status Log The Status Log is a text file stored on the IVN Master Computer fixed disk drive which contains
timestamped log messages for the IVN process. A log file for each day of the week is maintained and
files are kept for the current week. The status log can be viewed with a text editor.

STIC Message
Encoder

The STIC message encoder is a PC installed in the transmission room of a commercial FM radio station.
The STIC message encoder incorporates hardware and software designed to
receive messages from the IVN Master Computer and encode them into a baseband signal that is
modulated and broadcast as a sub-carrier to the FM radio signal. The STIC message encoder
communicates to the IVN Master Computer via dial-up modem.

The data flows between the IVN process and the external entities to which it communicates are
described in the following table.

Data Flow Description
Equipment Status
Data

The IVN equipment status data describes the status of communication to external devices including the
Real Time Data Subsystem, the modem, and the STIC message encoder. The status of each device is
defined to be either OKAY, ERROR, or UNKNOWN. The IVN equipment status information is
transmitted to the Status GUI process through shared memory.

Formatted Incident
Data

The formatted incident data includes the incident type code (major collision, minor collision, etc.), the
incident location (latitude, longitude and level or link ID), and the incident start time of each active
incident formatted according to the IVN communication protocol. The IVN process transmits the incident
data to the STIC Message Encoder through dial-up modem interface as defined by the STIC
communication protocol.

Formatted Link
Speed Data

The formatted link speed data includes the current speed (in meters per second) and the location
(starting and ending latitude, longitude and level) of each of the active TransGuide links formatted
according to the IVN communication protocol. The IVN process transmits the link speed data to the
STIC Message Encoder through dial-up modem interface as defined by the STIC communication
protocol.

Hearbeat Data The Heartbeat Data is the IVN process status which is transmitted to the Data Server at regular intervals.
The IVN process status is defined to be either OKAY, WARNING, or ERROR. The Heartbeat Data is
transmitted to the Data Server via a socket interface.

Incident Data The incident data includes the incident source code (ATMS, SAPD, etc.), the type code (major collision,
minor collision, etc.), the incident location (latitude, longitude and level or link ID), and the incident start
time of each currently active TransGuide incident. The data is communicated to the IVN process
through a socket interface.

Link Speed Data The link speed data includes the current speed (in miles per hour) and the location (starting and ending
latitude, longitude and level) of each of the TransGuide links. The data is communicated to the IVN
process through a socket interface.

Log Messages Log messages are text strings which are written optionally to the status log file and/or the standard
output. The log messages include the message type (debug, informational, warning, or error), the
message timestamp, the module (function) reporting the message, and the message text.

Process Status
Data

The IVN process status data includes the current IVN process status which is defined to be either
OKAY, WARNING, or ERROR. The IVN process information is transmitted to the Status GUI process
through a shared memory interface.

In-Vehicle Navigation System Design Document16

4.2.2 System Design

The IVN software runs as a single process. This process has four distinct components or stages of
operation as described below: startup, main loop, shut down, and asynchronous signal handling.

main

1

2

3

4

Start Up

Main Loop

Shut Down

Signal Handlers

Figure 4. IVN Main Procedure

Component Description
Startup Process initialization and startup operations for main loop.
Main Loop Main loop which continuously reads and transmits real time data to STIC.
Shutdown Process shutdown operations and program exit.
Signal Handling Asynchronous signal handlers.

In-Vehicle Navigation System Design Document17

4.2.2.1 Startup

The startup procedure includes the IVN process initialization operations and the allocation and
initialization of the data structures for maintaining the real time data and communicating it to the
STIC system.

1

InitializeIVN

DayOfWeekNow

DefinedLinkIDs

AccessActiveIncidents

CreateLinkData CreateIncData

LogWarn

LogDebug

CreateIncStmFrame

SetProcessStatus

CreateLinkStmFrame

Figure 5. IVN Initialization and Startup

Function Description
AccessActiveIncidents Real Time Data library function. Returns a pointer to the list of currently active TransGuide incidents.
CreateIncData Creates a local copy of the TransGuide incident data.
CreateIncStmFrame Creates the array of incident STMs which contain the incident type and location for a predefined

number of incidents, formatted according to the IVN communication protocol.
CreateLinkData Creates a local copy of the TransGuide link data.
CreateLinkStmFrame Creates the array of link speed STMs which contain the link speed and location for each of the

TransGuide links, formatted according to the IVN communication protocol.
DayOfWeekNow Returns the current day of week.
DefinedLinkIDs Real Time Data library function. Returns a pointer to the list of TransGuide link IDs.
InitializeIVN Performs the operations required to initialize the IVN process.
LogDebug Logs debug messages to the status log and/or standard output.
LogWarn Logs warning messages to the status log and/or standard output.
SetProcessStatus Sets the IVN process status to the specified state (OKAY, WARNING, or ERROR).

4.2.2.2 Main Loop

Upon completion of the startup procedure, the IVN process begins executing the main loop. The
main loop is the normal operational mode of the IVN process. The basic operations performed by

In-Vehicle Navigation System Design Document18

the main loop include reading and updating the real time data, formatting the data according to the
IVN communication protocol, and transmitting the formatted data to the STIC system. The main
loop runs continuously until it is stopped by the user (by termination signal) or a fatal error occurs.

2

SticMessage

IvnProcessStopped

SetWatchDog

ResetSequenceNumber

RenumberStmFrame

CheckModemConnection

UpdateRealTimeData LogRealTimeData

SetFirstStm

SendStmFrame

InitIncData

UpdateLinkStmFrame

UpdateIncStmFrame

DayOfWeekNow

LogInfo

AccessActiveIncidents LogDebug

LogWarn

SetProcessStatus

Figure 6. IVN Main Loop

In-Vehicle Navigation System Design Document19

Function Description
AccessActiveIncidents Real Time Data library function. Returns a pointer to the list of currently active TransGuide

incidents.
CheckModemConnection Checks the connection between the IVN and STIC modems and establishes the connection if it

is down.
DayOfWeekNow Returns the current day of week.
InitIncData Initializes the local copy of the TransGuide incident data array with the current incident data and

determines which incidents are locally referenced and which are globally referenced.
IvnProcessStopped Returns true if the IVN process has been stopped.
LogDebug Logs debug messages to the status log and/or standard output.
LogInfo Logs informational messages to the status log and/or standard output.
LogRealTimeData Logs the current values of the real time link speed and incident data to the status log and/or

standard output.
LogWarn Logs warning messages to the status log and/or standard output.
RenumberStmFrame Re-numbers the STM sequence numbers in an STM array.
ResetSequenceNumber Resets the STM sequence number counter.
SendStmFrame Transmits either a link or incident STM data array to the STIC system.
SetFirstStm Sets a field in the header of an STM to mark it as the first STM in the superframe of STMs.
SetProcessStatus Sets the IVN process status to the specified state (OKAY, WARNING, or ERROR).
SetWatchDog Sets the IVN process watchdog timer flag.
SticMessage Issues a message to the STIC system and reads and verifies the STIC response.
UpdateIncStmFrame Updates the incident STM array with the current incident data.
UpdateLinkStmFrame Updates the link speed STM array with the current link speed data.
UpdateRealTimeData Refreshes the real time data and checks the timestamp of the data to verify that live data is being

received.

4.2.2.3 Shutdown

The shutdown procedure is executed upon termination of the main loop, either due to user
command or fatal error. The shutdown procedure consists of closing communication connections,
updating the process status, and exiting the program.

3

ShutdownIVN exit

Figure 7. IVN Shutdown

Function Description
exit C library function.
ShutdownIVN Performs the operations required to gracefully shut down the IVN process.

In-Vehicle Navigation System Design Document20

4.2.2.4 Signal Handlers

The IVN signal handlers capture and respond to the asynchronous signals received by the IVN
process. Special handlers are defined for the Data Server heartbeat timer signal and process
termination signal which are the assigned signals for the IVN process. Unassigned signals are
handled by a general purpose signal handler.

4

GeneralSignalHandler KillSignalHandler SendHeartBeat

Figure 8. IVN Signal Handlers

Function Description
GeneralSignalHandler Catches and handles unassigned signals.
KillSignalHandler Catches and handles the SIGTERM signal which causes the IVN process to gracefully shutdown.
SendHeartBeat Timer handler for Data Server heartbeat timer. Transmits the IVN process status to the Data

Server.

4.2.3 Subsystem Design

The subsystem design describes the lower level component functions of the IVN software.

In-Vehicle Navigation System Design Document21

4.2.3.1 Initialization

The IVN initialization procedure executes once at startup and performs a number of functions
including assigning signal handlers, loading configurable parameters, opening the status log, and
initializing communication interfaces. The initialization procedure and its component functions are
described below.

InitializeIVNInitGeneralSignalHandler

InitIVNParams

LogSetAttr

OpenLogFile

LogInfo

SerialSetAttr

ModemSetAttr

SticSetAttr InitKillSignalHandler crc_init

UpdateStatus

ConnectToDataServer

ConnectToRealTimeData

StopIvnProcess

CreateTGLinkFile

InitHeartBeat

LoadSequenceNumber

InitStatus

Figure 9. IVN Initialization

In-Vehicle Navigation System Design Document22

Function Description
ConnectToDataServer Establishes the socket connection to the Data Server process.
ConnectToRealTimeData Establishes the socket connection to the Real Time Data process and refreshes the real time

data.
crc_init Initializes the CRC tables.
CreateTGLinkFile Creates a text file on disk which contains the IDs and locations of each TransGuide link.
InitGeneralSignalHandler Assigns the handler for catching unassigned signals.
InitHeartBeat Initializes the heartbeat timer and assigns the heartbeat timer handler.
InitIVNParams Loads and assigns the values of the IVN configurable parameters from disk file.
InitKillSignalHandler Assigns the function to catch and handle the SIGTERM signal.
InitStatus Creates and initializes the shared memory used to communicate to the status GUI.
LoadSequenceNumber Loads and assigns the last used STM sequence number from disk file.
LogInfo Logs informational messages to the status log and/or standard output.
LogSetAttr Sets the message logging attributes.
ModemSetAttr Sets the modem control function attributes.
OpenLogFile Opens the status log file.
SerialSetAttr Sets the serial I/O function attributes.
SticSetAttr Sets the STIC communication attributes.
StopIvnProcess Sets a flag to indicate that the IVN process has been stopped.
UpdateStatus Updates the status GUI shared memory.

InitGeneralSignalHandler

exitPrintsigset

Figure 10. Initialize General Signal Handler

Function Description
exit C library function.
Print Prints message to standard output.
sigset C library function.

In-Vehicle Navigation System Design Document23

OpenLogFile

sl_new Print SetProcessStatus StopIvnProcess

Figure 11. Open Log File

Function Description
Print Prints message to standard output.
SetProcessStatus Sets the IVN process status to the specified state (OKAY, WARNING, or ERROR).
sl_new Status Logger library function. Creates a new instance of a status log file.
StopIvnProcess Sets a flag to indicate that the IVN process has been stopped.

InitIVNParams

ConfigParams Print SetProcessStatus StopIvnProcess

Figure 12. Initialize Parameters

Function Description
ConfigParams Loads and assigns parameters from disk file.
Print Prints message to standard output.
SetProcessStatus Sets the IVN process status to the specified state (OKAY, WARNING, or ERROR).
StopIvnProcess Sets a flag to indicate that the IVN process has been stopped.

In-Vehicle Navigation System Design Document24

InitKillSignalHandler

signal LogError SetProcessStatus StopIvnProcess

Figure 13. Initialize Kill Signal Handler

Function Description
LogError Logs error messages to the status log and/or standard output.
SetProcessStatus Sets the IVN process status to the specified state (OKAY, WARNING, or ERROR).
signal C library function.
StopIvnProcess Sets a flag to indicate that the IVN process has been stopped.

LoadSequenceNumber

fopen fread LogError SetProcessStatus StopIvnProcess fc lose LogWarn

Figure 14. Load Sequence Number

Function Description
fclose C library function.
fopen C library function.
fread C library function.
LogError Logs error messages to the status log and/or standard output.
LogWarn Logs warning messages to the status log and/or standard output.
SetProcessStatus Sets the IVN process status to the specified state (OKAY, WARNING, or ERROR).
StopIvnProcess Sets a flag to indicate that the IVN process has been stopped.

In-Vehicle Navigation System Design Document25

InitStatus

config_shm_mgr InitProcStatus InitEquipStatus

Figure 15. Initialize Status GUI Shared Memory

Function Description
config_shm_mgr Shared Memory Management library function. Initializes the shared memory manager library.
InitEquipStatus Creates and initializes equipment status shared memory.
InitProcStatus Creates and initializes process status shared memory.

InitProcStatus

segment_exists attach_to_segment create_segment LogError SetProcessStatus

StopIvnProcessstrncpy

Figure 16. Initialize Process Status Shared Memory

Function Description
attach_to_segment Shared Memory Management library function. Attaches to an existing shared memory segment.
create_segment Shared Memory Management library function. Creates a new shared memory segment.
LogError Logs error messages to the status log and/or standard output.
segment_exists Shared Memory Management library function. Returns true if the specified shared memory segment

exists.
SetProcessStatus Sets the IVN process status to the specified state (OKAY, WARNING, or ERROR).
StopIvnProcess Sets a flag to indicate that the IVN process has been stopped.
strncpy C library function.

In-Vehicle Navigation System Design Document26

InitEquipStatus

StopIvnProcesssegment_exists

attach_to_segment create_segment LogError SetProcessStatus

Figure 17. Initialize Equipment Status

Function Description
attach_to_segment Shared Memory Management library function. Attaches to an existing shared memory segment.
create_segment Shared Memory Management library function. Creates a new shared memory segment.
LogError Logs error messages to the status log and/or standard output.
segment_exists Shared Memory Management library function. Returns true if the specified shared memory segment

exists.
SetProcessStatus Sets the IVN process status to the specified state (OKAY, WARNING, or ERROR).
StopIvnProcess Sets a flag to indicate that the IVN process has been stopped.

UpdateStatus

write_segment LogError SetProcessStatus StopIvnProcesstime

Figure 18. Update Status

Function Description
LogError Logs error messages to the status log and/or standard output.
SetProcessStatus Sets the IVN process status to the specified state (OKAY, WARNING, or ERROR).
StopIvnProcess Sets a flag to indicate that the IVN process has been stopped.
time C library function.
write_segment Shared Memory Management library function. Writes data to the specified shared memory segment.

In-Vehicle Navigation System Design Document27

ConnectToDataServer

ds_init LogDebug LogWarn SetProcessStatusds_close

Figure 19. Connect to Data Server

Function Description
ds_close Data Server library function. Closes the connection to the Data Server.
ds_init Data Server library function. Establishes the connection to the Data Server.
LogDebug Logs debug messages to the status log and/or standard output.
LogWarn Logs warning messages to the status log and/or standard output.
SetProcessStatus Sets the IVN process status to the specified state (OKAY, WARNING, or ERROR).

Connec tToRealTimeData

AttachToRealTimeData RefreshRealTimeData LogDebug LogWarn SetProcessStatus

Figure 20. Connect To Real Time Data

Function Description
AttachToRealTimeData Real Time Data library function. Establishes the connection to the real time data stream.
LogDebug Logs debug messages to the status log and/or standard output.
LogWarn Logs warning messages to the status log and/or standard output.
RefreshRealTimeData Real Time Data library function. Refreshes the link real time data with the current values.
SetProcessStatus Sets the IVN process status to the specified state (OKAY, WARNING, or ERROR).

In-Vehicle Navigation System Design Document28

CreateTGLinkFile

fopen

DefinedLink IDs rint fprintf

fc lose

LogError SetProcessStatus StopIvnProcess

Figure 21. Create TransGuide Link ID File

Function Description
DefinedLinkIDs Real Time Data library function. Returns a pointer to the list of TransGuide link IDs.
fclose C library function.
fopen C library function.
fprintf C library function.
LogError Logs error messages to the status log and/or standard output.
rint C library function.
SetProcessStatus Sets the IVN process status to the specified state (OKAY, WARNING, or ERROR).
StopIvnProcess Sets a flag to indicate that the IVN process has been stopped.

InitHeartBeat

CreateTimer SetTimer

Figure 22. Initialize Heartbeat Timer

Function Description
CreateTimer Creates a timer and assigns a handler for the timer.
SetTimer Sets timer expiration and interval.

In-Vehicle Navigation System Design Document29

CreateTimer

timer_c reate signal LogError SetProcessStatus StopIvnProcess

Figure 23. Create Timer

Function Description
LogError Logs error messages to the status log and/or standard output.
SetProcessStatus Sets the IVN process status to the specified state (OKAY, WARNING, or ERROR).
signal C library function.
StopIvnProcess Sets a flag to indicate that the IVN process has been stopped.
timer_create C library function.

SetTimer

timer_settime StopIvnProcessLogError SetProcessStatus

Figure 24. Set Timer

Function Description
LogError Logs error messages to the status log and/or standard output.
SetProcessStatus Sets the IVN process status to the specified state (OKAY, WARNING, or ERROR).
StopIvnProcess Sets a flag to indicate that the IVN process has been stopped.
Timer_settime C library function.

4.2.3.2 Initialization of Data Structures

Upon completion of initialization and prior to execution of the main loop, the IVN process
allocates and initializes the data structures required for maintaining the real time data, formatting it
per the IVN protocol and transmitting it to the STIC system. The four data structures required for
this include: a local copy of the real time TransGuide link ID array, a local copy of the TransGuide
incident array, the link speed STIC Transmission Message (STM) array, and the incident STM
array.

In-Vehicle Navigation System Design Document30

The local copy of the link ID array is a duplicate of the TransGuide link ID array with an
additional field included with each link entry. This field is the link location computed according to
the IVN communication protocol. To reduce the data required for a location reference, the
protocol computes link locations as relative values from an origin location. If a link is not within
the required range from the origin to be defined as a relative location, the absolute location of the
link is recorded. The location references for the links (relative or absolute) must be determined
before the link data can be formatted per the IVN communication protocol. The local link ID array
includes the TransGuide link ID data and the computed location reference for each link. The
functions which create the local link data array are described below.

CreateLinkData

AllocLinkData InitLinkData

Figure 25. Create Link Speed Data

Function Description
AllocLinkData Allocates memory for the local copy of the TransGuide link data array.
InitLinkData Initializes the local copy of the TransGuide link data array with the current link data and determines and

computes the link location reference (either local or global).

AllocLinkData

calloc LogError SetProcessStatus StopIvnProcess

Figure 26. Allocate Link Speed Data Array

Function Description
calloc C library function.
LogError Logs error messages to the status log and/or standard output.
SetProcessStatus Sets the IVN process status to the specified state (OKAY, WARNING, or ERROR).
StopIvnProcess Sets a flag to indicate that the IVN process has been stopped.

In-Vehicle Navigation System Design Document31

InitLinkData

ComputeLinkLocation LogError SetProcessStatus StopIvnProcess

Figure 27. Initialize Link Speed Data Array

Function Description
ComputeLinkLocation Determines the link's location reference (either local or global) and calculates either the locally or

globally referenced latitude and longitude.
LogError Logs error messages to the status log and/or standard output.
SetProcessStatus Sets the IVN process status to the specified state (OKAY, WARNING, or ERROR).
StopIvnProcess Sets a flag to indicate that the IVN process has been stopped.

The local copy of the incident array is a duplicate of the TransGuide incident array with an
additional field included with each incident entry. This field is the incident location computed
according to the IVN communication protocol. To reduce the data required for a location
reference, the protocol computes incident locations as relative values from an origin location. If an
incident is not within the required range from the origin to be defined as a relative location, the
absolute location of the incident is recorded. The location references for the incidents (relative or
absolute) must be determined before the incident data can be formatted per the IVN communication
protocol. The local incident array includes the TransGuide incident data and the computed location
reference for each incident. The functions which create the local incident data array are described
below.

CreateIncData

Alloc IncData InitIncData

Figure 28. Create Incident Data

Function Description
AllocIncData Allocates memory for the local copy of the TransGuide incident data array.
InitIncData Initializes the local copy of the TransGuide incident data array with the current incident data and determines

and computes the incident location reference (either local or global).

In-Vehicle Navigation System Design Document32

AllocIncData

calloc LogError SetProcessStatus StopIvnProcess

Figure 29. Allocate Incident Data Array

Function Description
Calloc C library function.
LogError Logs error messages to the status log and/or standard output.
SetProcessStatus Sets the IVN process status to the specified state (OKAY, WARNING, or ERROR).
StopIvnProcess Sets a flag to indicate that the IVN process has been stopped.

InitIncData

ComputePointLocation LogError SetProcessStatus StopIvnProcess

Figure 30. Initialize Incident Data Array

Function Description
ComputePointLocation Determines the point's location reference (either local or global) and calculates either the locally or

globally referenced latitude and longitude.
LogError Logs error messages to the status log and/or standard output.
SetProcessStatus Sets the IVN process status to the specified state (OKAY, WARNING, or ERROR).
StopIvnProcess Sets a flag to indicate that the IVN process has been stopped.

The link speed STM array is an array of data structures (STMs) which contain the link speed data
formatted per the IVN communication protocol. Each STM contains the information for a single
Traffic Information Message (TIM). Each TIM contains the link speed data for a number of
TransGuide link IDs. The details of the format of the STM and TIM are described in the
TransGuide In-Vehicle Navigation System High Speed FM Subcarrier Communications Protocol.
The link speed STM array is created at startup, and is updated to reflect changes in link speed
when the TransGuide real time link speed data is updated. The functions which create the link
speed STM array are described below.

In-Vehicle Navigation System Design Document33

CreateLinkStmFrame

AllocLinkStmFrame InitLinkStmFrame

Figure 31. Create Link Speed STM Array

Function Description
AllocLinkStmFrame Allocates memory for the link speed STM data array.
InitLinkStmFrame Initializes the values of the fields of each STM in the link speed STM data array as defined by the IVN

communication protocol.

AllocLinkStmFrame

calloc LogError SetProcessStatus StopIvnProcess

Figure 32. Allocate Link Speed STM Array

Function Description
calloc C library function.
LogError Logs error messages to the status log and/or standard output.
SetProcessStatus Sets the IVN process status to the specified state (OKAY, WARNING, or ERROR).
StopIvnProcess Sets a flag to indicate that the IVN process has been stopped.

In-Vehicle Navigation System Design Document34

InitLinkStmFrame

InitLinkTimData InitLinkTimHeader InitStmHeaderLinkStmDataSize

Figure 33. Initialize Link Speed STM Array

Function Description
InitLinkTimData Initializes the data fields of a link speed TIM as defined by the IVN communication protocol.
InitLinkTimHeader Initializes the header fields of a link speed TIM as defined by the IVN communication protocol.
InitStmHeader Initializes the header data fields in a link speed or incident STM as defined by the IVN communication

protocol.
LinkStmDataSize Returns the size of the link STM data in bytes.

InitLinkTimData

InitLocalLink InitGlobalLink GetLinkSpeed strncpy

Figure 34. Initialize Link Speed TIM Data

Function Description
GetLinkSpeed Returns the current speed for the specified TransGuide link ID.
InitGlobalLink Initializes the fields in a globally referenced link location as defined by the IVN communication protocol.
InitLocalLink Initializes the fields in a locally referenced link location as defined by the IVN communication protocol.
strncpy C library function.

In-Vehicle Navigation System Design Document35

InitLinkTimHeader

InitLRHeaderMinuteOfDayNow

Figure 35. Initialize Link Speed TIM Header

Function Description
InitLRHeader Initializes the fields in a location reference header as defined by the IVN communication protocol.
MinuteOfDayNow Returns the current minute of the day.

InitStmHeader

DayOfWeekNow NextSequenceNumbermemcpy sizeof

Figure 36. Initialize STM Header

Function Description
DayOfWeekNow Returns the current day of week.
memcpy C library function.
NextSequenceNumber Returns next available STM sequence number.
sizeof C library function.

The incident STM array is an array of data structures (STMs) which contains the incident data
formatted per the IVN communication protocol. Each STM contains the information for a single
Traffic Information Message (TIM). Each TIM contains the incident data for a number of
TransGuide incidents. The details of the format of the STM and TIM are described in the
TransGuide In-Vehicle Navigation System High Speed FM Subcarrier Communications Protocol.
The incident STM array is created at startup, and is updated to reflect changes in incidents when
the TransGuide real time incident data is updated. The functions which create the incident STM
array are described below.

In-Vehicle Navigation System Design Document36

CreateIncStmFrame

AllocIncStmFrame InitIncStmFrame

Figure 37. Create Incident STM Array

Function Description
AllocIncStmFrame Allocates memory for the incident STM data array.
InitIncStmFrame Initializes the values of the fields in the incident STM data array as defined by the IVN communication

protocol.

AllocIncStmFrame

calloc LogError SetProcessStatus StopIvnProcess

Figure 38. Allocate Incident STM Array

Function Description
calloc C library function.
LogError Logs error messages to the status log and/or standard output.
SetProcessStatus Sets the IVN process status to the specified state (OKAY, WARNING, or ERROR).
StopIvnProcess Sets a flag to indicate that the IVN process has been stopped.

In-Vehicle Navigation System Design Document37

InitIncStmFrame

InitStmHeaderInitIncTimHeaderInitIncTimData IncStmDataSizeIncLRSeqType

Figure 39. Initialize Incident STM Array

Function Description
IncLRSeqType Returns the location reference type of the incident location.
IncStmDataSize Returns the size of the incident STM data in bytes.
InitIncTimData Initializes the data fields of an incident TIM as defined by the IVN communication protocol.
InitIncTimHeader Initializes the header fields of an incident TIM as defined by the IVN communication protocol.
InitStmHeader Initializes the header data fields in a link speed or incident STM as defined by the IVN communication

protocol.

InitIncTimData

InitLocalLink

InitGlobalLink InitLocalPoint InitGlobalPoint

GetLinkData MinuteOfDay

SetProcessStatus

LogWarn

Figure 40. Initialize Incident TIM Data

Function Description
GetLinkData Returns the link data for the specified TransGuide link ID.
InitGlobalLink Initializes the fields in a globally referenced link location as defined by the IVN communication protocol.
InitGlobalPoint Initializes the fields in a globally referenced point location as defined by the IVN communication protocol.
InitLocalLink Initializes the fields in a locally referenced link location as defined by the IVN communication protocol.
InitLocalPoint Initializes the fields in a locally referenced point location as defined by the IVN communication protocol.
LogWarn Logs warning messages to the status log and/or standard output.
MinuteOfDay Returns current minute of the day.
SetProcessStatus Sets the IVN process status to the specified state (OKAY, WARNING, or ERROR).

In-Vehicle Navigation System Design Document38

InitIncTimHeader

InitLRHeaderMinuteOfDayNow

Figure 41. Initialize Incident TIM Header

Function Description
InitLRHeader Initializes the fields in a location reference header as defined by the IVN communication protocol.
MinuteOfDayNow Returns the current minute of the day.

4.2.3.3 Modem Control

The IVN process communicates to the STIC message encoder via dial-up modem. The connection
between the IVN modem and the STIC modem is checked on each iteration of the main loop and is
re-established if the connection is down. The functions which control the operation of the modem
are described below.

CheckModemConnectionModemConnected

GetModemStatus

LogWarn SetModemStatus c lose LogInfo

ModemDial

IvnProcessStopped

Figure 42. Check Modem Connection

Function Description
close C library function.
GetModemStatus Returns modem equipment status.
IvnProcessStopped Returns true if the IVN process has been stopped.
LogInfo Logs informational messages to the status log and/or standard output.
LogWarn Logs warning messages to the status log and/or standard output.
ModemConnected Returns true if the IVN modem is connected to a remote modem.
ModemDial Issues modem commands to dial and connect to a remote modem and waits for the connection to

complete.
SetModemStatus Sets the modem equipment status.

In-Vehicle Navigation System Design Document39

ModemDial

SetWatchDog

ModemCommand

ModemReset

SetProcessStatus

StopIvnProcess

ModemWaitForConnect

LogError

strncatstrncpy c loseModemBaud

Figure 43. Dial Modem

Function Description
close C library function.
LogError Logs error messages to the status log and/or standard output.
ModemBaud Returns the modem baud rate command for the specified baud rate.
ModemCommand Issues a command to the modem and reads and verifies modem reply.
ModemReset Opens modem serial port, resets modem and returns file descriptor for serial port.
ModemWaitForConnect Waits for modem to connect to remote modem.
SetProcessStatus Sets the IVN process status to the specified state (OKAY, WARNING, or ERROR).
SetWatchDog Sets the IVN process watchdog timer flag.
StopIvnProcess Sets a flag to indicate that the IVN process has been stopped.
strncat C library function.
strncpy C library function.

In-Vehicle Navigation System Design Document40

ModemReset

LogWarn

OpenPort Delay WriteMin c lose

LogDebug

ModemCommand

Figure 44. Reset Modem

Function Description
close C library function.
Delay Delays for a specified number of seconds.
LogDebug Logs debug messages to the status log and/or standard output.
LogWarn Logs warning messages to the status log and/or standard output.
ModemCommand Issues a command to the modem and reads and verifies modem reply.
OpenPort Opens a serial port and configures the serial communication parameters.
WriteMin Writes a minimum number of bytes of data to a serial port.

ModemCommand

strcmp

strncmp SetWatchDog Flush WriteMin

strncat

ModemReply

LogDebug

LogWarn

Figure 45. Command Modem

Function Description
Flush Flushes a serial port.
LogDebug Logs debug messages to the status log and/or standard output.
LogWarn Logs warning messages to the status log and/or standard output.
ModemReply Reads and verifies a reply to a modem command.
SetWatchDog Sets the IVN process watchdog timer flag.
strcmp C library function.
strncat C library function.
strncmp C library function.
WriteMin Writes a minimum number of bytes of data to a serial port.

In-Vehicle Navigation System Design Document41

ModemReplymemset

SystemTime

SetWatchDog ElapsedTime Read

LogWarn

strstr

Figure 46. Read Modem Reply

Function Description
ElapsedTime Returns the elapsed time in seconds from a specified start time.
LogWarn Logs warning messages to the status log and/or standard output.
memset C library function.
Read Reads data from a serial port.
SetWatchDog Sets the IVN process watchdog timer flag.
strstr C library function.
SystemTime Returns the current system time.

ModemWaitForConnect

SystemTime

ElapsedTime SetWatchDog ModemConnected LogDebug

LogWarn

Figure 47. Wait for Modem Connection

Function Description
ElapsedTime Returns the elapsed time in seconds from a specified start time.
LogDebug Logs debug messages to the status log and/or standard output.
LogWarn Logs warning messages to the status log and/or standard output.
ModemConnected Returns true if the IVN modem is connected to a remote modem.
SetWatchDog Sets the IVN process watchdog timer flag.
SystemTime Returns the current system time.

In-Vehicle Navigation System Design Document42

4.2.3.4 Real Time Data Update

On each iteration of the main loop the TransGuide real time data is refreshed with the current
values, and the STM data arrays are updated to reflect any changes. For the link speed STM
array, the update only involves modifying the speed fields in the TIMs for any links which had a
change in speed. For the incident STM array, the update involves deleting from the TIMs incidents
which no longer exist and adding to the TIMs any new incidents. The functions which perform the
update of the real time data are described below.

UpdateRealTimeData

RefreshRealTimeData SetRealtimeStatus

RealTimeLastUpdateConnec tToRealTimeData LogWarn

Figure 48. Update Real Time Data

Function Description
ConnectToRealTimeData Establishes the socket connection to the Real Time Data process (if necessary) and refreshes

the real time data.
LogWarn Logs warning messages to the status log and/or standard output.
RealTimeLastUpdate Real Time Data library function. Returns the last update time for the specified type of real time

data.
RefreshRealTimeData Real Time Data library function. Refreshes the link real time data with the current values.
SetRealtimeStatus Updates the real time data equipment status.

In-Vehicle Navigation System Design Document43

UpdateLinkStmFrame

InitStmHeader

GetLinkSpeed MinuteOfDayNow LogWarn SetProcessStatus

AccessLinkID

Figure 49. Update Link Speed STM Array

Function Description
AccessLinkID Real Time Data library function. Returns the data for the specified TransGuide link ID.
GetLinkSpeed Returns the current speed for the specified TransGuide link ID.
InitStmHeader Initializes the header data fields in a link speed or incident STM as defined by the IVN communication

protocol.
LogWarn Logs warning messages to the status log and/or standard output.
MinuteOfDayNow Returns the current minute of the day.
SetProcessStatus Sets the IVN process status to the specified state (OKAY, WARNING, or ERROR).

UpdateIncStmFrame

RemoveOldIncidents LogExistingIncidents AddNewIncidents

Figure 50. Update Incident STM Array

Function Description
AddNewIncidents Adds new incidents to the incident STM data array.
LogExistingIncidents Identifies incidents which already exist in the incident STM array.
RemoveOldIncidents Removes incidents which no longer exist from the incident STM array.

In-Vehicle Navigation System Design Document44

AddNewIncidents

IncLRSeqType InitIncTimData InitIncTimHeader InitStmHeader LogDebug

Figure 51. Add New Incidents

Function Description
IncLRSeqType Returns the location reference type of the incident location.
InitIncTimData Initializes the data fields of an incident TIM as defined by the IVN communication protocol.
InitIncTimHeader Initializes the header fields of an incident TIM as defined by the IVN communication protocol.
InitStmHeader Initializes the header data fields in a link speed or incident STM as defined by the IVN communication

protocol.
LogDebug Logs debug messages to the status log and/or standard output.

4.2.3.5 STIC Message Transmission

On each iteration of the main loop after the real time data has been updated, the modified STM
arrays are transmitted to the STIC message encoder via the modem. The main steps required to
transmit the STMs to the STIC include: packing the STM data arrays to remove white space,
formatting the STM data into transmission packets per the STIC communication protocol, and
transmitting the packets to the STIC via the modem. The functions which transmit the STM data
arrays to the STIC message encoder are described below.

SendStmFrame

SetWatchDog PackLinkStmFrame PackIncStmFrame SticMessage LogDebug

Figure 52. Send STM Array

Function Description
LogDebug Logs debug messages to the status log and/or standard output.
PackIncStmFrame Invokes the incident STM packing function for each STM in the incident STM data array.
PackLinkStmFrame Invokes the link speed STM packing function for each STM in the link speed STM data array.
SetWatchDog Sets the IVN process watchdog timer flag.
SticMessage Issues a message to the STIC system and reads and verifies the STIC response.

In-Vehicle Navigation System Design Document45

PackLinkStmFrame

PackLinkStm LogError SetProcessStatus StopIvnProcess

Figure 53. Pack Link Speed STM Array

Function Description
LogError Logs error messages to the status log and/or standard output.
PackLinkStm Packs a link speed STM, stores the packed data to the STIC transmission buffer, computes and

appends the CRC to the packed data, and performs the zero byte insertion on the packed data.
SetProcessStatus Sets the IVN process status to the specified state (OKAY, WARNING, or ERROR).
StopIvnProcess Sets a flag to indicate that the IVN process has been stopped.

PackLinkStm

CopyBytes

PackLinkTimHeader PackLinkTimDataNumberOfActiveLinks crc_msg_rev_ccitt

SwapBytes

InsertZeroBytessizeof

Figure 54. Pack Link Speed STM

Function Description
CopyBytes Copies specified number of bytes from source to destination buffer, checking for overflow.
crc_msg_rev_ccitt Calculates the reverse CCITT crc on a data buffer.
InsertZeroBytes Inserts a zero (0) byte after the occurrence of the first two bytes of the start of message flag (SOM)

in the data field of an STM to eliminate false SOMs.
NumberOfActiveLinks Returns the number of active links in a link speed TIM.
PackLinkTimData Packs the data fields in a link speed TIM and copies the packed data to the STIC transmission

buffer.
PackLinkTimHeader Packs the fields in the header of a link speed TIM and copies the packed data to the STIC

transmission buffer.
sizeof C library function.
SwapBytes Swaps the bytes in word.

In-Vehicle Navigation System Design Document46

InsertZeroBytes

memcmp memmove LogError SetProcessStatus StopIvnProcess

Figure 55. Insert Zero Bytes

Function Description
LogError Logs error messages to the status log and/or standard output.
memcmp C library function.
memmove C library function.
SetProcessStatus Sets the IVN process status to the specified state (OKAY, WARNING, or ERROR).
StopIvnProcess Sets a flag to indicate that the IVN process has been stopped.

PackIncStmFrame

StopIvnProcessLogError SetProcessStatusPackIncStm

Figure 56. Pack Incident STM Array

Function Description
LogError Logs error messages to the status log and/or standard output.
PackIncStm Packs an incident STM, stores the packed data to the STIC transmission buffer, computes and appends

the CRC to the packed data, and performs the zero byte insertion on the packed data.
SetProcessStatus Sets the IVN process status to the specified state (OKAY, WARNING, or ERROR).
StopIvnProcess Sets a flag to indicate that the IVN process has been stopped.

In-Vehicle Navigation System Design Document47

PackIncStm InsertZeroBytes

CopyBytes

sizeof

PackIncTimHeader PackIncTimData crc_msg_rev_ccitt

SwapBytes

Figure 57. Pack Incident STM

Function Description
CopyBytes Copies specified number of bytes from source to destination buffer, checking for overflow.
crc_msg_rev_ccitt Calculates the reverse CCITT crc on a data buffer.
InsertZeroBytes Inserts a zero (0) byte after the occurrence of the first two bytes of the start of message flag (SOM) in

the data field of an STM to eliminate false SOMs.
PackIncTimData Packs the data fields in an incident TIM and copies the packed data to the STIC transmission buffer.
PackIncTimHeader Packs the fields in the header of an incident TIM and copies the packed data to the STIC transmission

buffer.
sizeof C library function.
SwapBytes Swaps the bytes in a word.

In-Vehicle Navigation System Design Document48

SticMessage

SetWatchDog

SendSticMessage

ReadSticResponse VerifySticResponseCrc LogWarn LogErrorSetSticStatus

StopIvnProcess

SetProcessStatus

Figure 58. STIC Message

Function Description
LogError Logs error messages to the status log and/or standard output.
LogWarn Logs warning messages to the status log and/or standard output.
ReadSticResponse Reads a response message from the STIC system.
SendSticMessage Formats and transmits a message to the STIC system.
SetProcessStatus Sets the IVN process status to the specified state (OKAY, WARNING, or ERROR).
SetSticStatus Sets the STIC equipment status.
SetWatchDog Sets the IVN process watchdog timer flag.
StopIvnProcess Sets a flag to indicate that the IVN process has been stopped.
VerifySticResponseCrc Validates the CRC of the STIC response message.

In-Vehicle Navigation System Design Document49

SendSticMessage

LogData

BuildSticMessage

LogDataBuf Flush SystemTime SetWatchDog ElapsedTime

Write

LogWarn

Figure 59. Send STIC Message

Function Description
BuildSticMessage Builds a message formatted according to the STIC communication protocol.
ElapsedTime Returns the elapsed time in seconds from a specified start time.
Flush Flushes a serial port.
LogData Logs process data to the status log and/or the standard output.
LogDataBuf Logs a data buffer to the status log and/or the standard output.
LogWarn Logs warning messages to the status log and/or standard output.
SetWatchDog Sets the IVN process watchdog timer flag.
SystemTime Returns the current system time.
Write Writes data to a serial port.

BuildSticMessage

memcpy SticMessageLen crc_msg_rev_crc16sizeof

Figure 60. Build STIC Message

Function Description
Crc_msg_rev_crc16 Calculates the reverse crc 16 crc on a data buffer.
memcpy C library function.
Sizeof C library function.
SticMessageLen Returns the length of a specified STIC message type.

In-Vehicle Navigation System Design Document50

ReadSticResponse

FindSticSOM SticResponseDataLen ReadMinsizeof LogWarn

Figure 61. Read STIC Response

Function Description
FindSticSOM Detects the start of message flag in a STIC response.
LogWarn Logs warning messages to the status log and/or standard output.
ReadMin Reads a minimum number of bytes of data from a serial port.
sizeof C library function.
SticResponseDataLen Returns the data length for the specified STIC response message.

FindSticSOM

SystemTime

SetWatchDog ElapsedTime Read memcmp memmove LogWarn

Figure 62. Find STIC Start of Message

Function Description
ElapsedTime Returns the elapsed time in seconds from a specified start time.
LogWarn Logs warning messages to the status log and/or standard output.
memcmp C library function.
memmove C library function.
Read Reads data from a serial port.
SetWatchDog Sets the IVN process watchdog timer flag.
SystemTime Returns the current system time.

In-Vehicle Navigation System Design Document51

VerifySticResponseCrc

sizeof

memcpy

SticResponseDataLen SwapBytes crc_msg_rev_crc16 LogDataBuf

LogData

LogWarn

Figure 63. Verify STIC Response CRC

Function Description
crc_msg_rev_crc16 Calculates the reverse crc 16 crc on a data buffer.
LogData Logs process data to the status log and/or the standard output.
LogDataBuf Logs a data buffer to the status log and/or the standard output.
LogWarn Logs warning messages to the status log and/or standard output.
memcpy C library function.
sizeof C library function.
SticResponseDataLen Returns the data length for the specified STIC response message.
SwapBytes Swaps the bytes in word.

In-Vehicle Navigation System Design Document52

4.2.3.6 Shut Down

Upon exiting the main loop, due either to receipt of a termination signal or the occurrence of a fatal
error, the IVN process shutdown procedure is executed. The shutdown procedure updates the
process status, closes communication interfaces, and exits the process. The functions which
perform the shutdown are described below.

ShutdownIVN

LogInfo SetProcessState UpdateStatus ds_send_heartbeat ds_c lose

Figure 64. Shut Down IVN

Function Description
ds_close Data Server library function. Closes the connection to the Data Server.
ds_send_heartbeat Data Server library function. Sends the process status to the Data Server.
LogInfo Logs informational messages to the status log and/or standard output.
SetProcessState Sets the process state field of the process status structure.
UpdateStatus Updates the status GUI shared memory.

4.2.3.7 Signal Handlers

The IVN signal handlers capture and handle asynchronous software signals. The IVN process
includes three signal handlers. A general signal handler captures unassigned signals. Depending
on the signal received, the unassigned signals are either ignored or cause the process to be shut
down on fatal error. The kill signal handler captures the process termination signal and causes the
IVN process to gracefully shut down. The heartbeat timer handler captures the signal generated by
the heartbeat timer and issues a status update to the Data Server and the status GUI.

GeneralSignalHandler

LogInfo exit abort

In-Vehicle Navigation System Design Document53

Figure 65. General Signal Handler

Function Description
abort C library function.
exit C library function.
LogInfo Logs informational messages to the status log and/or standard output.

KillSignalHandler

LogDebug ModemStopConnect SticStopMessage StopIvnProcess

Figure 66. Kill Signal Handler

Function Description
LogDebug Logs debug messages to the status log and/or standard output.
ModemStopConnect Interrupts a modem dial connection if in progress.
SticStopMessage Stops a STIC message transmission if in progress.
StopIvnProcess Sets a flag to indicate that the IVN process has been stopped.

In-Vehicle Navigation System Design Document54

SendHeartBeatCheckWatchDog

ResetWatchDog

ds_send_heartbeat

LogDebug

ConnectToDataServer LogWarn SetProcessStatus signal

LogError

StopIvnProcess

UpdateStatus

IvnProcessStopped

Figure 67. Send Heartbeat

Function Description
CheckWatchDog Checks for expiration of the IVN watchdog timer.
ConnectToDataServer Establishes the socket connection to the Data Server process.
ds_send_heartbeat Data Server library function. Sends the process status to the Data Server.
IvnProcessStopped Returns true if the IVN process has been stopped.
LogDebug Logs debug messages to the status log and/or standard output.
LogError Logs error messages to the status log and/or standard output.
LogWarn Logs warning messages to the status log and/or standard output.
ResetWatchDog Resets the IVN watchdog timer.
SetProcessStatus Sets the IVN process status to the specified state (OKAY, WARNING, or ERROR).
signal C library function.
StopIvnProcess Sets a flag to indicate that the IVN process has been stopped.
UpdateStatus Updates the status GUI shared memory.

4.2.4 Data Structures

A number of data structures are defined within the IVN MCS. The most significant are those
associated with the IVN communication protocol and the STIC message encoder communication
protocol.

4.2.4.1 IVN Communication Protocol Data Structures

The IVN communications protocol defines the format of the real time traffic data that is broadcast
to the STIC receivers and IVN units. This protocol defines a highly compressed data format in
order to minimize the volume of data transmitted. The protocol has three primary message layers:
the STIC Transmission Messages (STMs), the Traffic Information Messages (TIMs), and the

In-Vehicle Navigation System Design Document55

Location References (LRs). Data structures defined within the IVN MCS correspond almost
directly to the message components of the IVN communications protocol. The major components
of these data structures are described below, from the highest to lowest level message layer. For a
detailed description of each field within the structures, refer to the TransGuide In-Vehicle
Navigation System High Speed FM Subcarrier Communications Protocol.

The highest level data structures are the STMs shown below. STM data structures are defined for
both the link speed data and the incident data. Each STM contains a header and a defined number
of Traffic Information Messages (TIMs). For the IVN implementation, only a single TIM is
contained within each STM. Arrays (frames) of link speed and incident STMs comprise the
formatted real time data which is transmitted to the STIC message encoder. The complete set of
STMs which contain all link speeds and all incidents is referred to as the STIC superframe.

typedef struct { /* Link STM */
 STMHEADER stmheader;
 LINKTIM linktim[LNKTIMSPERSTM];
} LINKSTM;

typedef struct { /* Incident STM */
 STMHEADER stmheader;
 INCIDENTTIM inctim[INCTIMSPERSTM];
} INCIDENTSTM;

The format of the STM header is shown below. The start flag is a unique byte sequence used to
flag the start of the STM data stream. The sequence number uniquely identifies the STM. Once
an STM is created, the STM sequence number changes only when the data within the STM is
modified, or at midnight of each day when all STM sequence numbers are reset. This allows
receivers to ignore STMs which have been previously processed on a given day.

typedef struct { /* STM header */
 STMFLAG startflag;
 USHORT bytecount;
 USIGN daycode:3;
 USIGN sequence:13;
} STMHEADER;

TIMs are defined for both link speed and incident data. Each TIM contains a header and either the
speed data for a defined number of links or the incident data for defined number of incidents.

typedef struct { /* Link TIM */
 LINKTIMHEADER timheader;
 LINKTIMDATA data[LNKSPERTIM];
} LINKTIM;

typedef struct { /* Incident TIM */
 INCIDENTTIMHEADER timheader;
 INCIDENTTIMDATA data[INCSPERTIM];
} INCIDENTTIM;

TIMHEADER structures are defined for both link speed and incident TIMS. The TIM header
contains information that is common to the links or incidents contained within the TIM. Although
the structure of the link speed and incident TIM headers differ somewhat, they both include a
location reference header for the TIM data and the number of data items contained in the TIM.

typedef struct { /* Link TIM header */
 UCHAR msgcode;

In-Vehicle Navigation System Design Document56

 USIGN :5;
 USIGN msgtime:11;
 USIGN fmtcode:3;
 USIGN numsegments:5;
 LRHEADER lrheader;
 UCHAR numlinks;
} LINKTIMHEADER;

typedef struct { /* Incident TIM header */
 UCHAR msgcode;
 USHORT msgtime;
 LRHEADER lrheader;
 UCHAR numincidents;
} INCIDENTTIMHEADER;

The LRHEADER defines the location of the origin used for relative location referencing of links
and incidents. The locations of the links and incidents within a TIM are expressed as offsets from
this origin unless the distance from the origin requires an absolute location reference. The
lrseqtype field defines the location reference type of the TIM. The origin data is a bit field which
contains the longitude and latitude of the origin in compressed format.

typedef struct { /* Location reference header */
 USIGN lrmscode:4;
 USIGN lrtype:4;
 USIGN lrseqtype:1;
 USIGN lrseqid:2;
 USIGN datum:3;
 USIGN origintype:2;
 ORIGINDATA origindata;
} LRHEADER;

Each TIMDATA structure contains the link speed or incident data for a single link or incident. For
link speed TIMs this includes the link location, the link speed, and the TransGuide link ID. For
incident TIMs this includes the incident type, the incident location, start time, end time (not
currently used), the TransGuide link ID, and a unique incident ID code. Note that the TransGuide
link ID fields and incident ID field in these data structures are used by the IVN process but are not
part of the IVN protocol and are not included in the data transmitted to the STIC message encoder.

typedef struct { /* Link TIM data */
 LOCATION location;
 UCHAR speed;
 TGLinkID linkid;
} LINKTIMDATA;

typedef struct { /* Incident TIM data */
 UCHAR incidenttype;
 LOCATION location;
 USHORT begintime;
 USHORT endtime;
 TGLinkID linkid;
 int incidentid;
} INCIDENTTIMDATA;

The LOCATION data structure is a union of data structures defining each of the four possible
location reference types: local point, local link, global point, and global link. Only one of these
types is valid for a particular location and is indicated by the LR header lrtype field.

typedef union { /* Location information */
 LOCALPOINT localpoint;
 GLOBALPOINT globalpoint;

In-Vehicle Navigation System Design Document57

 LOCALLINK locallink;
 GLOBALLINK globallink;
} LOCATION;

Each of the four location data structure types is shown below. The LOCAL location data
structures define longitudes and latitudes that are locally referenced from the origin stored in the
location reference header. The GLOBAL location data structures use global referencing for
longitudes and latitudes, which are recorded as absolute locations. The POINT location data
structures define the location of a point and include a single latitude, longitude and street level
code. Points are used only to describe the locations of incidents. The LINK location data
structures define the location of links and include both a starting and ending latitude, longitude and
street level code. Links are used to describe the locations of links or incidents. Each type of
location data structure contains fields defining street name information which may be optionally
included in the location reference.

typedef struct { /* Locally referenced point */
 USIGN lrmscode:4;
 USIGN lrtype:4;
 short longitude;
 short latitude;
 char level:4;
 USIGN :2;
 USIGN streetflag:1;
 USIGN streetdata:1;
 STREET street;
} LOCALPOINT;

typedef struct { /* Locally referenced link */
 USIGN lrmscode:4;
 USIGN lrtype:4;
 short startlon;
 short startlat;
 short endlon;
 short endlat;
 char startlevel:4;
 char endlevel:4;
 USIGN :6;
 USIGN streetflag:1;
 USIGN streetdata:1;
 STREET street;
} LOCALLINK;

typedef struct { /* Globally referenced point */
 USIGN lrmscode:4;
 USIGN lrtype:4;
 long longitude;
 long latitude;
 char level:4;
 USIGN lrseqid:2;
 USIGN streetflag:1;
 USIGN streetdata:1;
 STREET street;
} GLOBALPOINT;

typedef struct { /* Globally referenced link */
 USIGN lrmscode:4;
 USIGN lrtype:4;
 long startlon;
 long startlat;
 long endlon;
 long endlat;
 char startlevel:4;
 char endlevel:4;

In-Vehicle Navigation System Design Document58

 USIGN :4;
 USIGN lrseqid:2;
 USIGN streetflag:1;
 USIGN streetdata:1;
 STREET street;
} GLOBALLINK;

4.2.4.2 STIC Message Encoder Communication Protocol Data Structures

The IVN Process communicates to the STIC message encoder in accordance with the STIC
message encoder communication protocol. This protocol has the external controller (in this case
the IVN process) as the master which initiates all communications to the STIC (the slave). All
messages received by the STIC result in a response from STIC indicating the success or failure of
the STIC to interpret and respond to the message.

The STIC communication protocol defines two primary message types: forward messages issued
by the external controller and response messages from the STIC. The IVN uses only a subset of
the forward message types available within the STIC protocol: the ADD PACKET, CLEAR
PACKETS, and QUERY MARKER messages. The ADD PACKET message is used to add data
to the STIC broadcast packet. The CLEAR PACKETS message is used to clear all data from the
broadcast packet. The QUERY MARKER message is used to determine when a broadcast packet
becomes active (is being transmitted). The data structures defined within the IVN MCS for the
STIC message types used by the IVN process are described below. For a complete description of
the STIC communication protocol and message types, refer to the Subcarrier Traffic Information
Channel (STIC) Interface Control Document.

The STICMSG structure defines the format of forward messages from the IVN process to the
STIC. Forward messages are delimited by byte arrays which are unique byte sequences which flag
the start and end of the STIC message. The message also contains header information, the
message data, and a crc which is computed on the start flag, header, and data fields. Note that the
data field is optional depending on the forward message type. For the IVN application, the data
field is used only for the ADD PACKET message.

typedef struct { /* STIC message structure */
 STICFLAG somflag;
 STICMSGHEAD head;
 STICMSGDATA data;
 USHORT crc;
 STICFLAG eomflag;
} STICMSG;

The STICRESP structure defines the format of response messages from the STIC. Response
messages are delimited by byte arrays which are unique byte sequences which flag the start and
end of the STIC message. The message also contains header information, the message data, and a
crc which is computed on the start flag, header, and data fields. Note that the data field is optional.
For the IVN application, the data field is included only in responses to the ADD PACKET
message.

typedef struct { /* STIC response structure */
 STICFLAG somflag;
 STICMSGHEAD head;
 STICRESPDATA data;
 USHORT crc;
 STICFLAG eomflag;

In-Vehicle Navigation System Design Document59

} STICRESP;

The STICMSGHEAD structure defines the unit ID of the STIC to receive the message (always 0
for the IVN application), the length of the message in bytes, and the message type code.

typedef struct { /* STIC message header structure */
 UCHAR unitid;
 USHORT bytecount;
 UCHAR msgcode;
} STICMSGHEAD;

The STICMSGDATA structure defines the format of the data included in the ADD PACKET
forward message. It includes a unique sequence number which identifies the packet and the actual
message data which for the IVN application is the formatted link speed or incident STMs.

typedef struct { /* STIC message data structure */
 ULONG msgseq;
 STICDATA msgdata;
} STICMSGDATA;

The STICRESPDATA structure defines the format of the data in the ADD PACKET response
message. It includes the sequence number of the packet that was added and the number of bytes
available in the broadcast message for additional packets.

typedef union { /* STIC response data structure */
 ULONG seqnum;
 USHORT bytesleft;
} STICRESPDATA;

In-Vehicle Navigation System 60

5. Requirements Traceability
The following table correlates the system requirements, design elements, and acceptance tests. The table demonstrates that each of the system
requirements are met and verified.

NUMBER REQUIREMENT SOURCE DESIGN ELEMENT
ALLOCATED TO

IVN-1 The system shall communicate the following types of real-time traffic information
to moving vehicles:
• link speed data
• incident information

RFO-33.3.3 MCS/STIC system

IVN-2 The real-time traffic information shall be derived from the Data Server. P-2.6.2.3.4 MCS
IVN-2.1 Software running on an IVN master computer shall be used to extract real-time

information from the Data Server.
P-2.6.2.3.4 MCS

IVN-2.1.1 The IVN MCS shall transmit IVN process status information to the Data Server
every 60 seconds.

derived MCS

IVN-2.1.2 The IVN MCS shall extract link ID information from the Data Server Realtime
Subsystem.

derived MCS

IVN-2.1.3 The IVN MCS shall extract link location information from the Data Server
Realtime Subsystem.

derived MCS

IVN-2.1.4 The IVN MCS shall extract link speed information from the Data Server Realtime
Subsystem.

derived MCS

IVN-2.1.5 The IVN MCS shall extract incident information from the Data Server Realtime
Subsystem.

derived MCS

IVN-2.1.6 The IVN MCS shall transmit link speed information to the STIC message encoder
every 60 seconds.

derived MCS

IVN-2.1.7 The IVN MCS shall transmit incident information to the STIC message encoder
every 60 seconds.

derived MCS

IVN-2.1.8 The IVN MCS shall transmit locally referenced link speed information to the STIC
message encoder in accordance with the messaging protocol defined in the
TransGuide In-Vehicle Navigation System High Speed FM Subcarrier
Communications Protocol .

derived MCS

IVN-2.1.9 The IVN MCS shall transmit globally referenced link speed information to the
STIC message encoder in accordance with the messaging protocol defined in the
TransGuide In-Vehicle Navigation System High Speed FM Subcarrier
Communications Protocol .

derived MCS

IVN-2.1.10 The IVN MCS shall transmit locally referenced incident information to the STIC
message encoder in accordance with the messaging protocol defined in the
TransGuide In-Vehicle Navigation System High Speed FM Subcarrier
Communications Protocol .

derived MCS

IVN-2.1.11 The IVN MCS shall transmit globally referenced incident information to the STIC
message encoder in accordance with the messaging protocol defined in the

derived MCS

In-Vehicle Navigation System 61

NUMBER REQUIREMENT SOURCE DESIGN ELEMENT
ALLOCATED TO

TransGuide In-Vehicle Navigation System High Speed FM Subcarrier
Communications Protocol .

IVN-2.1.12 The IVN MCS shall generate a table of TransGuide link information that includes
link ID, starting coordinate, ending coordinate, and street name.

derived MCS

IVN-2.1.13 The IVN MCS shall provide a display of the process status which shall be updated
every 60 seconds.

derived MCS

IVN-2.1.14 The IVN MCS shall be capable of being started and stopped through the IVN
process status GUI.

derived MCS

IVN-2.1.15 The IVN MCS shall provide a display of the status of communication to peripheral
systems with which it exchanges data.

derived MCS

IVN-2.1.16 The IVN MCS shall log informational messages, warning messages, and error
messages to a status log file.

derived MCS

IVN-2.2 The IVN master computer shall be a Sun Microsystems Ultra SPARCStation with
the following components:
• 167 MHz SPARC (RISC) CPU
• 128 MB RAM
• GB hard disk space
• Floppy disk drive
• Sun CD-ROM drive
• Turbo GX+ graphics
• 20” color monitor
• 8 port modem server (SCSI attached)
• Dual ethernet interfaces
• Dual SCSI channels

P-2.3.2.4.1 IVN master computer

IVN-2.3 The master computer shall be located in the TransGuide Operations Center. P-2.6.2.3.4 IVN master computer
IVN-3 The system shall communicate the real-time traffic information using the

Subcarrier Traffic Information Channel (STIC) system which consists of a message
encoder/FM subcarrier generator and FM subcarrier receivers.

P-2.6.1 STIC encoder/STIC
receiver

IVN-4 The system shall utilize commercially available IVN units to display the real-time
traffic information to travelers.

RFO-33.4.1 Alpine/Zexel
navigation units

IVN-4.1 The IVN unit shall be composed of the following components:
• microprocessor
• reconfigurable LCD color display
• removable media for data storage
• gyroscopic sensor
• GPS receiver

P-2.6.2.3.5 Alpine/Zexel
navigation units

IVN-4.2 The IVN unit shall accept real-time traffic data input from the STIC receiver. P-2.6.2.3.5 Alpine/Zexel
navigation units

In-Vehicle Navigation System 62

NUMBER REQUIREMENT SOURCE DESIGN ELEMENT
ALLOCATED TO

IVN-4.3 The IVN unit shall provide a means for the traveler to enter a destination of the
following types:
• address
• intersection
• place or point of interest
• previous destination

P-2.6.2.3.5 Alpine/Zexel
navigation units

IVN-4.4 The IVN unit shall calculate the shortest time route, based on the real-time
information from the STIC receiver, from the current location of the vehicle to the
traveler-entered destination.

RFO-33.4.2 Alpine/Zexel
navigation units

IVN-4.5 The IVN unit shall communicate the route information using a map display, guide
display, and audible prompting.

P-2.6.2.3.5 Alpine/Zexel
navigation units

IVN-4.6 The IVN unit guide display shall present the following information:
• distance to an upcoming turn,
• direction of an upcoming turn.

P-2.6.2.3.5 Alpine/Zexel
navigation units

IVN-4.7 The IVN unit shall provide the following audible prompts:
• warning of an upcoming turn,
• indication to make a turn.

RFO-33.4.2 Alpine/Zexel
navigation units

IVN-4.8 The IVN unit map display shall show the current location of the vehicle and the
calculated route on an annotated map of the surroundings.

P-2.6.2.3.5 Alpine/Zexel
navigation units

IVN-4.9 The information used to generate the map display shall be derived from the San
Antonio, Texas Metropolitan Area database supplied by Navigation Technologies.

P-2.6.2.3.5 Alpine/Zexel
navigation units

IVN-5 The system shall utilize the IVN units of at least two manufacturers. RFO-33.4.1 Alpine/Zexel
navigation units

APPENDIX A - IVN SYSTEM ENGINEERING DRAWINGS

