
Data Server

Model Deployment Initiative

Software Design Document
Version 1.0

December 19, 1997

SwRI Project No. 10-8684
P.O. No. 7-70030

Req. No. 60115-7-70030

Prepared For:

Texas Department of Transportation
TransGuide

3500 NW Loop 410
San Antonio, Texas  78229

Prepared By:

Southwest Research Institute
P.O. Drawer 28510

San Antonio, Texas  78228



Data Server i System Design Document

Approval Page

________________________________ ______________________

Data Server Project Manager Date

________________________________ ______________________

SwRI MDI Project Manager Date

________________________________ ______________________

Software Engineering Director Date



Data Server ii System Design Document

Acronym List

ATIS Advanced Traveler Information System
ATMS Advanced Traffic Management System
ATP Acceptance Test Plan
AVI Automatic Vehicle Identification
CCTV Closed Circuit Television
CGI Common Gateway Interface
CMS Changeable Message Sign
DCIS Data Consumer Interface Subsystem
DGIS Data Generator Interface Subsystem
DGS Data Generator Subsystem
DSC Data Server Component
DS Data Server
DSS Data Server Subsystem
FTP File Transfer Protocol
GIS Geographical Information System
GPS Global Positioning System
GPSTHC Global Positioning System/Theoretical Data Component
GUI Graphical User Interface
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
HTTPd Hypertext Transfer Protocol daemon
ID Identifier
i/f Interface
ITS Intelligent Transportation Systems
IVN In-Vehicle Navigation
LCGUIC Lane Closure GUI Component
LCS Lane Control Signal
LPTV Low Power Television
MCS Master Computer Subsystem
MDI Model Deployment Initiative
RCIC Road Closed Interface Component
RRC Railroad Crossing
RRS Railroad Sensor
RTBC Realtime Broadcast Component
RTCC Realtime Collect Component
RDIC Railroad Delay Interface Component
RFO Request For Offer
SA San Antonio
SGUIC Status Graphical User Interface Component
SGUIS Status Graphical User Interface Subsystem
SwRI Southwest Research Institute
TG TransGuide
TTI Texas Transportation Institute
TxDOT Texas Department of Transportation
udp User Datagram Protocol
VIC VIA Interface Component



Data Server iii System Design Document

WIC Weather Interface Component
WWW World Wide Web
WWWIC World Wide Web Interface Component
911IC 911 Interface Component



Data Server iv System Design Document

Table of Contents

1. Introduction.............................................................................................1
1.1 Purpose of System..............................................................................................................1

1.2 Operational Concept...........................................................................................................1

1.3 Goals and Objectives ..........................................................................................................2

1.4 Referenced Documents .......................................................................................................2

2. External Interfaces..................................................................................3
2.1 ATMS................................................................................................................................3

2.2 AVI....................................................................................................................................4

2.3 911 ....................................................................................................................................4

2.4 Road Closed.......................................................................................................................4

2.5 VIA....................................................................................................................................4

2.6 Weather .............................................................................................................................4

2.7 AWARD............................................................................................................................4

2.8 WWW ...............................................................................................................................4

2.9 In-Vehicle NAV .................................................................................................................4

2.10 Kiosk ...............................................................................................................................4

2.11 Emergency Response ........................................................................................................4

2.12 User .................................................................................................................................5

3. System Requirements..............................................................................6
3.1 General Requirements.........................................................................................................7

3.2 System Level Requirements ................................................................................................8
3.2.1 Interface Requirements.................................................................................................8
3.2.2 Functional Requirements ..............................................................................................9
3.2.3 Data Server System Physical Requirements ..................................................................9

3.3 Data Server Subsystem Level Requirements......................................................................10
3.3.1 Data Server Subsystem Requirements.........................................................................10

3.3.1.1 Data Server Subsystem Functional Requirements .................................................10
3.3.2 Data Server Interface Library Subsystem Requirements..............................................11

3.3.2.1 Data Server Interface Library Subsystem Interface Requirements .........................11
3.3.2.2 Data Server Interface Library Subsystem Functional Requirements ......................11

3.3.3 Data Generator Subsystem Requirements ...................................................................12
3.3.3.1 Data Generator Subsystem Interface Requirements...............................................12
3.3.3.2 Data Generator Subsystem Functional Requirements............................................12

3.3.4 Data Generator Interface Subsystem Requirements .....................................................13



Data Server v System Design Document

3.3.4.1 Interface Requirements ........................................................................................13
3.3.4.2 Functional Requirements......................................................................................13

3.3.5 Status Graphical User Interface Subsystem Requirements...........................................14
3.3.5.1 Interface Requirements ........................................................................................14
3.3.5.2 Functional Requirements......................................................................................14

3.3.6 Data Consumer Interface Subsystem Requirements.....................................................14
3.3.6.1 Data Consumer Interface Subsystem Interface Requirements ................................15
3.3.6.2 Data Consumer Interface Subsystem Functional Requirements .............................15

3.3.7 Master Computer Subsystem Requirements ................................................................16
3.3.7.1 Master Computer Subsystem Physical Requirements............................................16

3.4 Data Server Component Level Requirements.....................................................................16
3.4.1 Data Server Component Requirements........................................................................17

3.4.1.1 Functional Requirements......................................................................................17
3.4.2 Data Server Interface Library Component Requirements.............................................18

3.4.2.1 Data Server Interface Library Component Interface Requirements ........................18
3.4.2.2 Data Server Interface Library Component Functional Requirements .....................18

3.4.3 911 Interface Component Requirements......................................................................19
3.4.3.1 911 Interface Component Interface Requirements .................................................19
3.4.3.2 911 Interface Component Functional Requirements ..............................................20

3.4.4 Lane Closure Graphical User Interface Component Requirements ...............................20
3.4.4.1 Lane Closure Graphical User Interface Component Interface Requirements ..........20
3.4.4.2 Lane Closure Graphical User Interface Component Functional Requirements........20

3.4.5 Road Closed Interface Component Requirements ........................................................21
3.4.5.1 Road Closed Interface Component Interface Requirements ...................................21
3.4.5.2 Road Closed Interface Component Functional Requirements.................................21

3.4.6 Global Positioning System / Theoretical Data Component Requirements .....................21
3.4.6.1 Global Positioning System / Theoretical Data Component Functional Requirements21

3.4.7 World Wide Web Interface Component Requirements.................................................22
3.4.7.1 World Wide Web Interface Component Interface Requirements ............................22
3.4.7.2 World Wide Web Interface Component Functional Requirements .........................22

3.4.8 Status Graphical User Interface Component Requirements..........................................22
3.4.8.1 Status Graphical User Interface Component Interface Requirements .....................22
3.4.8.2 Status Graphical User Interface Component Functional Requirements ..................23

3.4.9 Realtime Collect Component Requirements.................................................................24
3.4.9.1 Realtime Collect Component Interface Requirements............................................24
3.4.9.2 Realtime Collect Component Functional Requirements .........................................24

3.4.10 Realtime Broadcast Component Requirements ..........................................................25
3.4.10.1 Realtime Broadcast Component Interface Requirements .....................................25
3.4.10.2 Realtime Broadcast Component Functional Requirements...................................26

4. System Design........................................................................................28
4.1 System Architecture .........................................................................................................28

4.2 System Level Design ........................................................................................................30
4.2.1 Data Server System....................................................................................................31
4.2.2 WWW System ...........................................................................................................33
4.2.3 Lane Closure System..................................................................................................34
4.2.4 Realtime Receive System............................................................................................35
4.2.5 Realtime Map Display................................................................................................35



Data Server vi System Design Document

4.2.6 Data Server Interface Common Interface Library........................................................35

4.3 Subsystem Level Design ...................................................................................................36
4.3.1 Data Server Subsystem ..............................................................................................36

4.3.1.1 Process Design ....................................................................................................36
4.3.1.2 Model Design ......................................................................................................46
4.3.1.3 Communication Protocol....................................................................................102

4.3.2 Status GUI...............................................................................................................108
4.3.2.1 Process Design ..................................................................................................110
4.3.2.2 Model Design ....................................................................................................111

4.3.3 Realtime Collect.......................................................................................................120
4.3.3.1 Process Design ..................................................................................................120
4.3.3.2 Model Design ....................................................................................................120

4.3.4 GPS/Theoretical Subsystem .....................................................................................131
4.3.4.1 Process Design ..................................................................................................131
4.3.4.2 Model Design ....................................................................................................135

4.3.5 Lane Closure GUI....................................................................................................172
4.3.5.1 Process Design ..................................................................................................174
4.3.5.2 Model Design ....................................................................................................175

4.3.6 Road Closed Interface ..............................................................................................177
4.3.7 911 Interface Subsystem ..........................................................................................178

4.3.7.1 Process Design ..................................................................................................178
4.3.7.2 Model Design ....................................................................................................180

4.3.8 Realtime Broadcast ..................................................................................................185
4.3.8.1 Process Design ..................................................................................................185
4.3.8.2 Model Design ....................................................................................................185

4.3.9 Realtime Receive......................................................................................................191
4.3.9.1 Process Design ..................................................................................................191
4.3.9.2 Model Design ....................................................................................................192

4.3.10 World Wide Web Interface.....................................................................................197
4.3.10.1 Process Design ................................................................................................197
4.3.10.2 Model Design ..................................................................................................198

4.3.11 Data Server Common Interface Library ..................................................................206
4.3.11.1 ds_init .............................................................................................................206
4.3.11.2 ds_close...........................................................................................................207
4.3.11.3 ds_send_heartbeat............................................................................................208
4.3.11.4 ds_write_lane_data ..........................................................................................209
4.3.11.5 ds_write_inc_data............................................................................................211
4.3.11.6 ds_write_rr_sens_data .....................................................................................212
4.3.11.7 ds_write_rr_cross_data....................................................................................213
4.3.11.8 ds_write_equip_status......................................................................................214
4.3.11.9 ds_read_lane_data ...........................................................................................216
4.3.11.10 ds_read_inc_data ...........................................................................................217
4.3.11.11 ds_read_rr_sens_data.....................................................................................218
4.3.11.12 ds_read_rr_cross_data ...................................................................................220
4.3.11.13 ds_read_equip_status.....................................................................................221
4.3.11.14 ds_write_file..................................................................................................222
4.3.11.15 ds_delete_file.................................................................................................223
4.3.11.16 ds_read_file ...................................................................................................224



Data Server vii System Design Document

4.3.11.17 ds_get_file_time.............................................................................................226
4.3.11.18 ds_get_file_type_time ....................................................................................227

5. Traceability Matrix.............................................................................229



Data Server viii System Design Document

List of Figures

Figure 2.1 Data Server External Interfaces ...................................................................................3

Figure 4.1  Data Server Context Diagram ..................................................................................29

Figure 4.2  Data Server System Data Flow Diagram ..................................................................31

Figure 4.3  WWW System Context Diagram ...............................................................................34

Figure 4.4  Lane Closure System Context Diagram ....................................................................34

Figure 4.5  Realtime Receive Context Diagram ..........................................................................35

Figure 4.6  Data Server Subsystem Data Flow Diagram .............................................................38

Figure 4.7. Data Server Process Data Flow Diagram .................................................................39

Figure 4.8. Client Request Data Flow Diagram ..........................................................................40

Figure 4.9. Lane Data Data Flow Diagram ................................................................................41

Figure 4.10. Incident Data Data Flow Diagram..........................................................................42

Figure 4.11 Equipment Data Data Flow Diagram ......................................................................43

Figure 4.12. Client Data Data Flow Diagram.............................................................................44

Figure 4.13. File Data Data Flow Diagram................................................................................45

Figure 4.14  Railroad Data Data Flow Diagram .........................................................................46

Figure 4.15. Data Server Structure Chart...................................................................................48

Figure 4.16 dataserver_exit_handler Structure Chart ..................................................................51

Figure 4.17 dataserver_kill_children Structure Chart ..................................................................52

Figure 4.18 dataserver_init_process_status Structure Chart........................................................52

Figure 4.19 ds_signal_setup Structure Chart ..............................................................................53

Figure 4.20 dataserver_initialize Structure Chart........................................................................54

Figure 4.21 ds_cfg_load_cfg_data Structure Chart .....................................................................54

Figure 4.22 dataserver_init_shared_memory Structure Chart ......................................................55

Figure 4.23 dataserver_create_segment Structure Chart..............................................................56

Figure 4.24 dataserver_init_status_segment Structure Chart .......................................................57

Figure 4.25 dataserver_init_timeout_segment Structure Chart ....................................................57

Figure 4.26 dataserver_send_heartbeat Structure Chart ..............................................................58

Figure 4.27 dataserver_check_timeout_values Structure Chart ...................................................59

Figure 4.28 dataserver_clear_incident_data Structure Chart .......................................................60

Figure 4.29 ds_delete_file Structure Chart..................................................................................61

Figure 4.30 dataserver_init_socket Structure Chart ....................................................................61

Figure 4.31 dataserver_update_data_time Structure Chart ..........................................................62



Data Server ix System Design Document

Figure 4.32 dataserver_clear_equipment_data Structure Chart....................................................63

Figure 4.33 dataserver_clear_link_data Structure Chart..............................................................63

Figure 4.34 dataserver_clear_rrs_data Structure Chart ...............................................................64

Figure 4.35 dataserver_clear_rrc_data Structure Chart...............................................................65

Figure 4.36 child Structure Chart ...............................................................................................66

Figure 4.37 dataserver_process_client_requests Structure Chart .................................................68

Figure 4.38 dataserver_read_request Structure Chart..................................................................71

Figure 4.39 dataserver_write_status Structure Chart ..................................................................71

Figure 4.40 dataserver_read_data Structure Chart ......................................................................72

Figure 4.41 dataserver_process_init Structure Chart...................................................................73

Figure 4.42 dataserver_process_close Structure Chart ................................................................74

Figure 4.43 dataserver_process_hb Structure Chart....................................................................74

Figure 4.44 dataserver_process_link_write Structure Chart ........................................................75

Figure 4.45 dataserver_read_link_data Structure Chart ..............................................................76

Figure 4.46 dataserver_update_link_time Structure Chart...........................................................77

Figure 4.47 dataserver_update_data_time Structure Chart ..........................................................77

Figure 4.48 dataserver_process_link_read Structure Chart .........................................................78

Figure 4.49 dataserver_write_size Structure Chart .....................................................................79

Figure 4.50 dataserver_read_link_segment Structure Chart.........................................................80

Figure 4.51 dataserver_write_data Structure Chart.....................................................................81

Figure 4.52 dataserver_process_incident_write Structure Chart ..................................................82

Figure 4.53 ds_fopen_file Structure Chart..................................................................................83

Figure 4.54 dataserver_write_data_file Structure Chart ..............................................................83

Figure 4.55 dataserver_update_incident_time Structure Chart.....................................................84

Figure 4.56 dataserver_process_incident_read Structure Chart ...................................................85

Figure 4.57 dataserver_read_data_file Structure Chart ...............................................................86

Figure 4.58 dataserver_process_rrs_write Structure Chart..........................................................86

Figure 4.59 dataserver_update_rrs_time Structure Chart ............................................................87

Figure 4.60 dataserver_process_rrs_read Structure Chart ...........................................................88

Figure 4.61 dataserver_process_rrc_write Structure Chart..........................................................89

Figure 4.62 dataserver_update_rrc_time Structure Chart ............................................................90

Figure 4.63 dataserver_process_rrc_read Structure Chart...........................................................90

Figure 4.64 dataserver_process_file_write Structure Chart .........................................................91

Figure 4.65 dataserver_process_file_delete Structure Chart ........................................................92



Data Server x System Design Document

Figure 4.66 dataserver_process_file_read Structure Chart ..........................................................93

Figure 4.67 dataserver_process_file_time Structure Chart ..........................................................94

Figure 4.68 dataserver_write_file_time Structure Chart ..............................................................94

Figure 4.69 dataserver_process_file_list Structure Chart ............................................................95

Figure 4.70 dataserver_get_directory_list Structure Chart ..........................................................96

Figure 4.71 dataserver_directory_exists Structure Chart.............................................................97

Figure 4.72 ds_get_file_timestamp Structure Chart ....................................................................98

Figure 4.73 dataserver_write_file_list Structure Chart................................................................98

Figure 4.74 dataserver_process_status_read Structure Chart ......................................................99

Figure 4.75 dataserver_process_equipment_write Structure Chart ............................................100

Figure 4.76 dataserver_update_equip_time Structure Chart ......................................................101

Figure 4.77 dataserver_process_equipment_read Structure Chart..............................................101

Figure 4.78. Client Data Protocol.............................................................................................103

Figure 4.79. Link Data Protocol...............................................................................................104

Figure 4.80. Incident Data Protocol..........................................................................................104

Figure 4.81. Equipment Data Protocol......................................................................................105

Figure 4.82. Railroad Data Protocol.........................................................................................106

Figure 4.83. File Data Protocol ................................................................................................107

Figure 4.84  MDI Status GUI ..................................................................................................109

Figure 4.85  Data Server Process Status GUI Screen................................................................110

Figure 4.86. Status GUI Data Flow Diagram............................................................................111

Figure 4.87  mdisg teleuse_main Structure Chart......................................................................111

Figure 4.88  mdisg_main Structure Chart .................................................................................112

Figure 4.89  INITIALLY Structure Chart ................................................................................113

Figure 4.90  GET_UPDATE_RATE........................................................................................114

Figure 4.91  initialize_application Structure Chart....................................................................114

Figure 4.92  periodic_update Structure Chart ...........................................................................115

Figure 4.93  PERIODIC_UPDATE Structure Chart.................................................................116

Figure 4.94  UPDATE_STATUS Structure Chart....................................................................117

Figure 4.95  display_detailed_status Structure Chart ................................................................118

Figure 4.96  DISPLAY_DETAILED_STATUS Structure Chart ..............................................118

Figure 4.97  Realtime Collect Data Flow Diagram....................................................................120

Figure 4.98  Realtime Collect Main Structure Chart .................................................................121

Figure 4.99  initialize_dsif_connection Structure Chart.............................................................123



Data Server xi System Design Document

Figure 4.100  dsif_send_heartbeat Structure Chart ...................................................................124

Figure 4.101  log_error_heartbeat Structure Chart....................................................................125

Figure 4.102  fail_atms_data Structure Chart ...........................................................................126

Figure 4.103  update_linkid_data Structure Chart.....................................................................127

Figure 4.104  send_to_broadcast  Structure Chart ....................................................................128

Figure 4.105  receive_broadcast_data Structure Chart..............................................................128

Figure 4.106  update_atms_linkid_data Structure Chart ...........................................................129

Figure 4.107  update_incident_data Structure Chart .................................................................130

Figure 4.108. GPS TH Data Data Flow Diagram .....................................................................132

Figure 4.109. Read GPS TH Data Data Flow Diagram ............................................................134

Figure 4.110. GPS TH Subsystem Structure Chart....................................................................136

Figure 4.111  ds_signal_setup Structure Chart .........................................................................138

Figure 4.112  load_cfg_data Structure Chart ............................................................................139

Figure 4.113  load_num_params Structure Chart .....................................................................140

Figure 4.114  ds_fopen_file Structure Chart .............................................................................140

Figure 4.115  load_params Structure Chart ..............................................................................141

Figure 4.116  init_status_table Structure Chart ........................................................................142

Figure 4.117  init_shared_memory Structure Chart...................................................................142

Figure 4.118  gpsth_send_heartbeat Structure Chart.................................................................143

Figure 4.119 init_link_data Structure Chart..............................................................................144

Figure 4.120 init_data_file Structure Chart ..............................................................................145

Figure 4.121  init_key_table Structure Chart ............................................................................146

Figure 4.122 build_key_table Structure Chart ..........................................................................147

Figure 4.123 read_next_key Structure Chart ............................................................................148

Figure 4.124 append_to_key_table Structure Chart ..................................................................149

Figure 4.125 gpsth_connect_to_dsif Structure Chart ................................................................149

Figure 4.126 ds_dsif_connect Structure Chart ..........................................................................150

Figure 4.127 gpsth_time Structure Chart..................................................................................151

Figure 4.128  cal_to_gpsth_date Structure Chart......................................................................151

Figure 4.129 init_cal_file Structure Chart ................................................................................152

Figure 4.130 read_cal_file Structure Chart...............................................................................153

Figure 4.131 init_params_struct Structure Chart ......................................................................154

Figure 4.132 extract_date Structure Chart................................................................................155

Figure 4.133 check_daymo Structure Chart..............................................................................156



Data Server xii System Design Document

Figure 4.134 match_daymo Structure Chart .............................................................................156

Figure 4.135 set_params Structure Chart .................................................................................157

Figure 4.136 free_params_struct Structure Chart .....................................................................158

Figure 4.137 process_link_data Structure Chart .......................................................................158

Figure 4.138 get_params Structure Chart.................................................................................159

Figure 4.139 read_link_record Structure Chart.........................................................................160

Figure 4.140 compare_key_entries Structure Chart ..................................................................161

Figure 4.141 compare_keys Structure Chart.............................................................................161

Figure 4.142 get_key_index Structure Chart.............................................................................162

Figure 4.143 find_active_record Structure Chart ......................................................................163

Figure 4.144 read_record Structure Chart ................................................................................163

Figure 4.145 compare_headers Structure Chart ........................................................................164

Figure 4.146 copy_data_record Structure Chart .......................................................................165

Figure 4.147 send_link_data_with_retry Structure Chart ..........................................................165

Figure 4.148 write_link_data Structure Chart...........................................................................166

Figure 4.149 ds_dsif_send_link_write_request Structure Chart .................................................167

Figure 4.150 ds_dsif_read_status Structure Chart ....................................................................168

Figure 4.151 gpsth_connect_to_dsif Structure Chart ................................................................169

Figure 4.152 ds_dsif_connect Structure Chart ..........................................................................170

Figure 4.153 gpsth_send_heartbeat Structure Chart..................................................................171

Figure 4.154  Lane Closure Control GUI..................................................................................173

Figure 4.155  Lane Closure GUI Data Flow Diagram ..............................................................174

Figure 4.156  ds_lc_init Structure Chart...................................................................................175

Figure 4.157  send_lc_to_ds Structure Chart ............................................................................176

Figure 4.158. 911 IF Data Flow Diagram.................................................................................179

Figure 4.159. Convert Coordinates Data Flow Diagram ..........................................................179

Figure 4.160. 911 Main Structure Chart...................................................................................181

Figure 4.161  open_status_log Structure Chart.........................................................................183

Figure 4.162  process_911_data Structure Chart ......................................................................184

Figure 4.163  Realtime Broadcast Data Flow Diagram .............................................................185

Figure 4.164  Realtime Broadcast Main Structure Chart...........................................................186

Figure 4.165  initialize_dsif_connection Structure Chart...........................................................188

Figure 4.166  dsif_send_heartbeat Structure Chart ...................................................................189

Figure 4.167  send_broadcast Structure Chart ..........................................................................190



Data Server xiii System Design Document

Figure 4.168. Realtime Receive Data Flow Diagram.................................................................191

Figure 4.169. Realtime Receive Structure Chart .......................................................................192

Figure 4.170. udp_open Structure Chart...................................................................................194

Figure 4.171. send_configuration Structure Chart.....................................................................195

Figure 4.172. send_data_refresh Structure Chart ......................................................................196

Figure 4.173  WWW Interface Data Flow Diagram..................................................................198

Figure 4.174  www_main Structure Chart ................................................................................199

Figure 4.175  Update_Data_CB Structure Chart ......................................................................201

Figure 4.176  gifDispCreate Structure Chart ............................................................................203

Figure 4.177  Update_Data Structure Chart .............................................................................204

Figure 4.178  send_www_heartbeat Structure Chart.................................................................205

Figure 4.179 ds_init Structure Chart ........................................................................................207

Figure 4.180  ds_close Structure Chart ....................................................................................208

Figure 4.181  ds_send_heartbeat Structure Chart ....................................................................209

Figure 4.182  ds_write_lane_data Structure Chart ...................................................................210

Figure 4.183  ds_write_inc_data Structure Chart .....................................................................211

Figure 4.184  ds_write_rr_sens_data Structure Chart ..............................................................212

Figure 4.185  ds_write_rr_cross_data Structure Chart.............................................................214

Figure 4.186 ds_write_equip_status Structure Chart ................................................................215

Figure 4.187 ds_read_lane_data Structure Chart.....................................................................216

Figure 4.188 ds_read_inc_data Structure Chart.......................................................................218

Figure 4.189 ds_read_rr_sens_data Structure Chart ................................................................219

Figure 4.190 ds_read_rr_cross_data Structure Chart ..............................................................220

Figure 4.191 ds_read_equip_status Structure Chart.................................................................222

Figure 4.192  ds_write_file Structure Chart .............................................................................223

Figure 4.193  ds_delete_file Structure Chart ............................................................................224

Figure 4.194  ds_read_file Structure Chart ..............................................................................225

Figure 4.195  ds_get_file_time Structure Chart ........................................................................226

Figure 4.196 ds_get_file_type_time Structure Chart.................................................................228



Data Server xiv System Design Document

List of Tables

Table 3.1  Data Server System General Requirements ..................................................................7

Table 3.2  Data Server System Interface Requirements.................................................................8

Table 3.3  Data Server System Functional Requirements ..............................................................9

Table 3.4  Data Server System Physical Requirements .................................................................9

Table 3.5  Data Server Subsystem Functional Requirements.......................................................10

Table 3.6  Data Server Interface Library Subsystem Interface Requirements...............................11

Table 3.7  Data Server Interface Library Subsystem Functional Requirements ............................11

Table 3.8  Data Generator Subsystem Interface Requirements ....................................................12

Table 3.9  Data Generator Subsystem Functional Requirements..................................................12

Table 3.10  Data Generator Interface Subsystem Interface Requirements ....................................13

Table 3.11  Data Generator Interface Subsystem Functional Requirements .................................13

Table 3.12  Status Graphical User Interface Subsystem Interface Requirements..........................14

Table 3.13  Status Graphical User Interface Subsystem Functional Requirements .......................14

Table 3.14  Data Consumer Interface Subsystem Interface Requirements....................................15

Table 3.15  Data Consumer Interface Subsystem Functional Requirements .................................15

Table 3.16  Master Computer Subsystem Physical Requirements................................................16

Table 3.17  Data Server Component Functional Requirements....................................................17

Table 3.18  Data Server Interface Library Component Interface Requirements............................18

Table 3.19  Data Server Interface Library Component Functional Requirements .........................18

Table 3.20  911 Interface Component Interface Requirements.....................................................19

Table 3.21  911 Interface Component Functional Requirements ..................................................20

Table 3.22  Lane Closure Graphical User Interface Component Interface Requirements ..............20

Table 3.23  Lane Closure Graphical User Interface Functional Requirements..............................20

Table 3.24  Road Closed Interface Component Interface Requirements .......................................21

Table 3.25  Road Closed Interface Component Functional Requirements ....................................21

Table 3.26  Global Positioning System / Theoretical Data Component Functional Requirements .21

Table 3.27  World Wide Web Interface Component Interface Requirements................................22

Table 3.28  World Wide Web Interface Component Functional Requirements .............................22

Table 3.29  Status Graphical User Interface Component Interface Requirements.........................23

Table 3.30  Status Graphical User Interface Component Functional Requirements ......................23

Table 3.31. Realtime Collect Component Interface Requirements................................................24



Data Server xv System Design Document

Table 3.32. Realtime Collect Component Functional Requirements.............................................24

Table 3.33  Realtime Broadcast Component Interface Requirements ...........................................26

Table 3.34  Realtime Broadcast Component Functional Requirements ........................................26

Table 4.1. Data Server Process Processes..................................................................................39

Table 4.2. Client Request Processes...........................................................................................40

Table 4.3. Lane Data Processes .................................................................................................41

Table 4.4. Incident Data Processes ............................................................................................42

Table 4.5 Equipment Data Processes .........................................................................................43

Table 4.6. Client Data Processes ...............................................................................................44

Table 4.7. File Data Processes...................................................................................................44

Table 4.8. Railroad Data Processes ...........................................................................................46

Table 4.9. Data Server Functions...............................................................................................49

Table 4.10 dataserver_exit_handler Functions ............................................................................51

Table 4.11 dataserver_kill_children Functions ............................................................................52

Table 4.12 dataserver_init_process_status Function ...................................................................53

Table 4.13 ds_signal_setup Function..........................................................................................53

Table 4.14 dataserver_initialize Function ...................................................................................54

Table 4.15 ds_cfg_load_cfg_data Functions ...............................................................................54

Table 4.16 dataserver_init_shared_memory Functions ................................................................55

Table 4.17 dataserver_create_segment Functions........................................................................56

Table 4.18 dataserver_init_status_segment Function ..................................................................57

Table 4.19 dataserver_init_timeout_segment Function................................................................58

Table 4.20 dataserver_send_heartbeat Functions ........................................................................58

Table 4.21 dataserver_check_timeout_values Functions .............................................................59

Table 4.22 dataserver_clear_incident_data Function...................................................................60

Table 4.23 ds_delete_file Function .............................................................................................61

Table 4.24 dataserver_init_socket Functions ..............................................................................62

Table 4.25 dataserver_update_data_time Function .....................................................................62

Table 4.26 dataserver_clear_equipment_data Function ...............................................................63

Table 4.27 dataserver_clear_link_data Functions........................................................................64

Table 4.28 dataserver_clear_rrs_data Function...........................................................................64

Table 4.29 dataserver_clear_rrc_data Function ..........................................................................65

Table 4.30 child Functions .........................................................................................................66

Table 4.31 dataserver_process_client_requests Functions ...........................................................69



Data Server xvi System Design Document

Table 4.32 dataserver_read_request Functions............................................................................71

Table 4.33 dataserver_write_status Functions ............................................................................72

Table 4.34 dataserver_read_data Functions ................................................................................72

Table 4.35 dataserver_process_init Functions.............................................................................73

Table 4.36 dataserver_process_close Functions ..........................................................................74

Table 4.37 dataserver_process_hb Functions..............................................................................75

Table 4.38 dataserver_process_link_write Functions ..................................................................75

Table 4.39 dataserver_read_link_data Functions ........................................................................76

Table 4.40 dataserver_update_link_time Functions.....................................................................77

Table 4.41 dataserver_update_data_time Function .....................................................................78

Table 4.42 dataserver_process_link_read Functions ...................................................................79

Table 4.43 dataserver_write_size Functions ...............................................................................80

Table 4.44 dataserver_read_link_segment Functions...................................................................80

Table 4.45 dataserver_write_data Functions...............................................................................81

Table 4.46 dataserver_process_incident_write Functions ............................................................82

Table 4.47 ds_fopen_file Functions............................................................................................83

Table 4.48 dataserver_write_data_file Functions ........................................................................83

Table 4.49 dataserver_update_incident_time Functions...............................................................84

Table 4.50 dataserver_process_incident_read Functions .............................................................85

Table 4.51 dataserver_read_data_file Functions .........................................................................86

Table 4.52 dataserver_process_rrs_write Functions....................................................................87

Table 4.53 dataserver_update_rrs_time Functions ......................................................................87

Table 4.54 dataserver_process_rrs_read Functions .....................................................................88

Table 4.55 dataserver_process_rrc_write Functions....................................................................89

Table 4.56 dataserver_update_rrc_time Functions ......................................................................90

Table 4.57 dataserver_process_rrc_read Functions.....................................................................91

Table 4.58 dataserver_process_file_write Functions ...................................................................91

Table 4.59 dataserver_process_file_delete Functions ..................................................................92

Table 4.60 dataserver_process_file_read Functions ....................................................................93

Table 4.61 dataserver_process_file_time Functions ....................................................................94

Table 4.62 dataserver_write_file_time Functions ........................................................................95

Table 4.63 dataserver_process_file_list Functions ......................................................................96

Table 4.64 dataserver_get_directory_list Functions ....................................................................96

Table 4.65 dataserver_directory_exists Functions.......................................................................97



Data Server xvii System Design Document

Table 4.66 ds_get_file_timestamp Function................................................................................98

Table 4.67 dataserver_write_file_list Functions..........................................................................99

Table 4.68 dataserver_process_status_read Functions ................................................................99

Table 4.69 dataserver_process_equipment_write Functions ......................................................100

Table 4.70 dataserver_update_equip_time Functions ................................................................101

Table 4.71 dataserver_process_equipment_read Functions........................................................102

Table 4.72  mdisg teleuse_main Functions................................................................................111

Table 4.73  mdisg_main Functions...........................................................................................112

Table 4.74  INITIALLY Functions ..........................................................................................113

Table 4.75  GET_UPDATE_RATE Functions .........................................................................114

Table 4.76  initialize_application Function ...............................................................................115

Table 4.77  periodic_update Functions .....................................................................................115

Table 4.78  PERIODIC_UPDATE Functions...........................................................................116

Table 4.79 UPDATE_STATUS Functions...............................................................................117

Table 4.80  display_detailed_status Functions ..........................................................................119

Table 4.81  Realtime Collect Main Functions ...........................................................................122

Table 4.82  initialize_dsif_connection.......................................................................................123

Table 4.83  dsif_send_heartbeat Functions ...............................................................................124

Table 4.84  log_error_heartbeat Functions ...............................................................................125

Table 4.85  fail_atms_data Functions.......................................................................................126

Table 4.86  update_linkid_data Functions ................................................................................127

Table 4.87  send_to_broadcast Functions .................................................................................128

Table 4.88  receive_broadcast_data Function ...........................................................................129

Table 4.89  update_atms_linkid_data Functions .......................................................................129

Table 4.90  update_incident_data Functions .............................................................................130

Table 4.91. GPS TH Main Processes........................................................................................133

Table 4.92. Read GPS TH Data Processes ...............................................................................134

Table 4.93. GPS TH Subsystem Functions................................................................................137

Table 4.94 ds_signal_setup Function........................................................................................138

Table 4.95 load_cfg_data Functions.........................................................................................139

Table 4.96 load_num_params Functions ..................................................................................140

Table 4.97 ds_fopen_file Functions..........................................................................................141

Table 4.98 load_params Functions...........................................................................................141

Table 4.99 init_status_table Function.......................................................................................142



Data Server xviii System Design Document

Table 4.100 init_shared_memory Functions..............................................................................142

Table 4.101 gpsth_send_heartbeat Functions............................................................................143

Table 4.102 init_link_data Functions........................................................................................144

Table 4.103 init_data_file Functions ........................................................................................145

Table 4.104 init_key_table Functions .......................................................................................146

Table 4.105 build_key_table Functions ....................................................................................147

Table 4.106 read_next_key Functions ......................................................................................148

Table 4.107 append_to_key_table Functions ............................................................................149

Table 4.108 gpsth_connect_to_dsif Functions ..........................................................................150

Table 4.109 ds_dsif_connect Functions ....................................................................................150

Table 4.110 gpsth_time Function .............................................................................................151

Table 4.111 cal_to_gpsth_date Functions.................................................................................152

Table 4.112 init_cal_file Functions ..........................................................................................152

Table 4.113 read_cal_file Functions.........................................................................................154

Table 4.114 init_params_struct Function .................................................................................154

Table 4.115 extract_date Functions..........................................................................................155

Table 4.116 check_daymo Function .........................................................................................156

Table 4.117 match_daymo Functions .......................................................................................157

Table 4.118 set_params Function.............................................................................................157

Table 4.119 free_params_struct Function.................................................................................158

Table 4.120 process_link_data Functions .................................................................................158

Table 4.121 get_params Functions...........................................................................................159

Table 4.122 read_link_record Functions...................................................................................160

Table 4.123 compare_key_entries Function..............................................................................161

Table 4.124 compare_keys Function ........................................................................................161

Table 4.125 get_key_index Functions.......................................................................................162

Table 4.126 find_active_record Functions ................................................................................163

Table 4.127 read_record Function............................................................................................164

Table 4.128 compare_headers Function....................................................................................164

Table 4.129 copy_data_record Function...................................................................................165

Table 4.130 send_link_data_with_retry Functions ....................................................................166

Table 4.131 write_link_data Functions.....................................................................................166

Table 4.132 ds_dsif_send_link_write_request Functions...........................................................167

Table 4.133 ds_dsif_read_status Functions ..............................................................................168



Data Server xix System Design Document

Table 4.134 gpsth_connect_to_dsif Functions ..........................................................................169

Table 4.135 ds_dsif_connect Functions ....................................................................................170

Table 4.136 gpsth_send_heartbeat Functions............................................................................171

Table 4.137  Lane Closure GUI Processes ...............................................................................174

Table 4.138  ds_lc_init Functions.............................................................................................175

Table 4.139  send_lc_to_ds Functions ......................................................................................176

Table 4.140  transferfiles configuration items for the Road Closed Interface.............................177

Table 4.141. 911 IF Subsystem................................................................................................179

Table 4.142. Convert Coordinates Processes ...........................................................................180

Table 4.143. 911 Main Functions.............................................................................................182

Table 4.144  open_status_log Function ....................................................................................183

Table 4.145  process_911_data Functions ................................................................................184

Table 4.146  Realtime Broadcast Main Functions.....................................................................186

Table 4.147  initialize_dsif_connection Functions.....................................................................188

Table 4.148  dsif_send_heartbeat Functions .............................................................................189

Table 4.149  send_broadcast Functions ....................................................................................190

Table 4.150. Realtime Receive Functions .................................................................................192

Table 4.151. udp_open Functions.............................................................................................194

Table 4.152. send_configuration Functions...............................................................................195

Table 4.153. send_data_refresh Function .................................................................................196

Table 4.154  www_main Functions ..........................................................................................199

Table 4.155 Update_Data_CB Functions .................................................................................202

Table 4.156  gifDispCreate Functions ......................................................................................203

Table 4.157  Update_Data Functions .......................................................................................204

Table 4.158  send_www_heartbeat Functions...........................................................................205

Table 4.159 ds_init Functions..................................................................................................207

Table 4.160 ds_close Functions ...............................................................................................208

Table 4.161  ds_send_heartbeat Functions ..............................................................................209

Table 4.162  ds_write_lane_data Functions .............................................................................210

Table 4.163  ds_write_inc_data Functions...............................................................................211

Table 4.164  ds_write_rr_sens_data Functions ........................................................................213

Table 4.165  ds_write_rr_cross_data Functions.......................................................................214

Table 4.166 ds_write_equip_status Functions..........................................................................215

Table 4.167 ds_read_lane_data Functions...............................................................................217



Data Server xx System Design Document

Table 4.168 ds_read_inc_data Functions.................................................................................218

Table 4.169 ds_read_rr_sens_data Functions..........................................................................219

Table 4.170 ds_read_rr_cross_data Functions ........................................................................220

Table 4.171 ds_read_equip_status Functions...........................................................................222

Table 4.172  ds_write_file Functions .......................................................................................223

Table 4.173  ds_delete_file Functions ......................................................................................224

Table 4.174  ds_read_file Functions ........................................................................................225

Table 4.175  ds_get_file_time Functions ..................................................................................226

Table 4.176 ds_get_file_type_time Functions...........................................................................228

Table 5.1. Data Server System Traceability Matrix ..................................................................230



Data Server 1 System Design Document

Data Server
Software Design Document

1. Introduction
The Data Server is the central archive within the TransGuide environment where data, necessary to
support both the TransGuide Advanced Traffic Management System (ATMS) operations and the
Model Deployment Initiative (MDI) projects, is stored.  The MDI Data Server is an extension of a
“first-generation” Data Server, termed “realtime data services”, previously developed for
TransGuide.

The Data Server is the central access point for data in the MDI project, and it treats all traffic
management data in a homogeneous fashion so that any application can seamlessly access the data.
The Data Server is designed based on a concept of Data Generators which supply data to the
system, and Data Consumers which utilize this data.  The data is not stored in a traditional
“database”, instead it resides in shared memory on the Data Server Master Computer, so that it can
be accessed as rapidly as possible.  Since traffic congestion data is dynamic, and traffic incidents
that occurred several  hours ago are typically not pertinent to current traffic information, the Data
Server maintains only the most recent data.

The data in the Data Server is maintained in a geographical perspective, so that application
programs can “window” into the data that the application requires.  This is implemented by a
concept developed by SwRI, referred to as “intelligent map objects”.  The data structures of these
objects resemble those developed for the existing TransGuide graphical map.  For road segments
that have changing speed and occupancy values, an intelligent map object exists for each
“instrumented” section of highway.  These intelligent map objects have a variety of attributes,
including geographical data, traffic data source, and types of ATMS equipment associated with the
object.  Each instrumented section of highway has a unique identifier, called a TransGuide LinkID.
Background data, such as minor arteries or public buildings, will be stored in the Data Server as
static map objects.  The combination of intelligent map objects and static map objects provide a
realistic looking map.

The Data Server is a robust software environment which can be modified to include new alternative
data sources as ITS technologies are developed and deployed into the TransGuide environment.

This document is the Software Design Document for the Data Server system.  The external
interfaces to the Data Server are described in Section 2. Section 3 contains the Data Server system
requirements.  Section 4 details the Data Server system design.  The requirements traceability
matrix for the Data Server is in Section 5.

1.1 Purpose of System

The Data Server system will collect, store, and distribute data for the TransGuide ATMS and the
other MDI systems.

1.2 Operational Concept

The Data Server interfaces with data generators and data consumers. The Data Server awaits data
read and data write requests and processes those requests when they are made. The Data Server
stores the most current version of data, updating the data when new data is received and
distributing the data when data requests are received.



Data Server 2 System Design Document

Data generator systems initiate a connection with the Data Server and send data to the Data Server.
The Data Server receives the data from the data generator and stores the data.  Data consumers
connect with the Data Server and request data from the Data Server. The Data Server sends the
data to the data consumer and the data consumers receive the data.

1.3 Goals and Objectives

The Data Server design gave consideration to the following design goals and objectives:

• The MDI Data Server should provide a central access point for the storage and
distribution of data for both the TransGuide ATMS and the MDI subsystems.

• The Data Server should treat traffic management data in a homogeneous fashion to allow
applications to seamlessly access data.

• The Data Server should store the data so that it can be geographically filtered when
accessed.

• The Data Server should provide rapid response to data requests.
• The Data Server should easily incorporate new data sources in the future.
• The Data Server design should be object-oriented to improve system maintainability and

flexibility.
• The Data Server should be implemented with data structures that closely resemble the

TransGuide graphical map data structures.
• The Data Server should be integrated into the existing TransGuide environment with

minimal impact on the existing TransGuide ATMS.
• The Data Server should use intelligent map objects (similar to those stored in the

TransGuide ATMS map) to store data.

1.4 Referenced Documents

Southwest Research Institute, Proposal for the Model Deployment Initiative System Integration,
SwRI Proposal No. 10-20342, November 1996.

Texas Department of Transportation, Request for Offer (RFO) for the Model Deployment
Initiative System Integration, 60115-7-70030, Specification No. TxDOT 795-SAT-01, October
1996.



Data Server 3 System Design Document

2. External Interfaces
There are several external interfaces to the Data Server system. Figure 2.1 shows the Data Server
and the external systems with which it interfaces. The following sections describe the systems in
more detail.

Data
Server

ATMSAVI

911

Road
Closed

VIA

Weather

AWARD

User

Emergency
Response

In-Vehicle
NAV

Kiosk

WWW

Data Generators Data Consumers

Figure 2.1 Data Server External Interfaces

2.1 ATMS

The TransGuide ATMS system is an existing traffic management system that monitors traffic in
portions of the San Antonio area. The TransGuide ATMS provides realtime traffic data to the
Data Server.  The ATMS also receives realtime traffic information from other sources through the
Data Server for display on the TransGuide Realtime Map.



Data Server 4 System Design Document

2.2 AVI

The AVI system was developed as part of the MDI program. The system collects realtime travel
time and speed information for portions of the San Antonio area. This data is provided to the Data
Server.

2.3 911

The San Antonio Police 911 Dispatch System provides realtime incident information to the Data
Server. The Data Server distributes this data to other systems in the TransGuide/MDI
environment.

2.4 Road Closed

The Texas State Roadway Closed Database provides road closure information for the state of
Texas. This data is stored in the Data Server.

2.5 VIA

The Data Server interfaces with the VIA Metropolitan Transit system to obtain information about
the VIA bus system. This data is provided to other systems.

2.6 Weather

A Weather system is accessed to obtain current and expected weather conditions for the San
Antonio area. The Data Server collects this data and makes it available to other systems.

2.7 AWARD

The Advance Warning to Avoid Railroad Delays (AWARD) system was developed as part of the
MDI program.  The system helps motorists avoid delays due to railroad operations that cross
freeway access frontage roads.

2.8 WWW

TransGuide currently operates a World Wide Web (WWW) server that displays some traffic data
from the TransGuide ATMS. The Data Server provides a Realtime map display to the Web-page
that allows a user to see the current speeds of roadways, as well as any active traffic incidents or
lane closures.

2.9 In-Vehicle NAV

The In-Vehicle Navigation system was developed as part of the MDI program. The system  uses
realtime data supplied by the Data Server to provide drivers with route guidance information.

2.10 Kiosk

The Kiosk system was developed as part of the MDI program.  The kiosk field units use data
supplied by the Data Server to provide information which includes realtime traffic conditions, route
guidance, weather information and transportation information.

2.11 Emergency Response

The Data Server interfaces with the San Antonio Emergency Response organizations to provide
incident and traffic data. This data improves the responsiveness of emergency agencies.



Data Server 5 System Design Document

2.12 User

The Data Server has several interfaces with the TransGuide Operations user. The user can
determine the status of the Data Server and other MDI systems.



Data Server 6 System Design Document

3. System Requirements
The following sections contain the system requirements for the Data Server system. The
requirements are organized by level and category. The levels that are defined in this document are
general, system, subsystem, and component. General requirements are non-technical requirements
that apply to the program in general. System requirements apply to the system level of the Data
Server system. Subsystem requirements apply to the subsystem design elements that are
documented in the Subsystem Level Design section of this document. Component requirements
apply to the component design elements that are documented in the Component Level Design
section of this document.

The categories of requirements that are defined are general, interface, functional, and physical. If
there are no requirements of a particular category at a particular level, there is no reference to that
category at that level.

There are three types of requirements presented in these sections: MDI RFO requirements, SwRI
MDI proposal requirements, and derived requirements. Where a conflict exists, the SwRI MDI
Proposal requirements supersede the MDI RFO requirements. In these cases, only the SwRI MDI
Proposal requirements are documented. Derived requirements are generated by analysis of the
existing requirements.

Several notations are used in the following tables. The requirement number is a three-part number
that is used to uniquely identify each requirement. The number consists of the following fields:

<System Mnemonic>-<Requirement Category Mnemonic>-<Requirement Number>

System Mnemonic

The system mnemonic uniquely identifies the Data Server System to distinguish its
requirements from the requirements of the other MDI systems. The system mnemonic for
the Data Server System is DS.

Requirement Category Mnemonic

A mnemonic has been created for each of the requirement categories. They are GN -
general, IF - interface,  FN - functional, and PY - physical.

Requirement Number

The requirements are numbered sequentially within a given category. The requirements at
the system level each have a single requirement number. As requirements are derived at the
subsystem and component levels, additional numbers are added to show the relationship
between requirements. For example, requirement DS-IF-1 at the system level may have
two children at the subsystem level, DS-IF-1.1 and DS-IF-1.2. With this numbering
scheme it is easy to determine a requirement’s parent and the level of the requirement.

The terms maintain, store, acquire, and provide are used throughout the requirements when
referring to data. Maintain is used at high level requirements to mean the data will be handled in
some way. Requirements that state the data shall be maintained are further refined at subsequent
levels using the other terms. Store is used to indicate that the data is kept. Acquire is used to
indicate that the data is obtained from another source, but not necessarily kept. Provide is used to
indicate that the data is sent to another destination.

The requirements below contain rationale for each requirement. The rationale is used to further
explain the origin and meaning of the requirement and to improve clarity.



Data Server 7 System Design Document

Each of these requirements are further documented in Section 5 in the traceability matrix. For each
requirement, the matrix contains traceability information to show the relationship between the
requirement and other requirements, design elements, and the Acceptance Test Plan (ATP).

3.1 General Requirements

The general requirements for the Data Server system are listed in Table 3.1. The general
requirements include project deliverables and milestones.

Table 3.1  Data Server System General Requirements

REQUIREMENT
NUMBER

REQUIREMENT RATIONALE

DS-GN-1 An 80% System Design Document
shall be delivered.

Required by TxDOT RFO and SwRI Proposal.

DS-GN-2 A 100% design document shall be
delivered.

Required by TxDOT RFO and SwRI Proposal.

DS-GN-3 An Acceptance Test Plan shall be
delivered.

Required by TxDOT RFO and SwRI Proposal.

DS-GN-4 A Version Description Document shall
be delivered.

Required by SwRI Proposal.

DS-GN-5 Monthly status reports shall be
delivered.

Required by TxDOT RFO and SwRI Proposal.

DS-GN-6 A training program on the Data Server
shall be presented after final software
integration has completed.

Required by TxDOT RFO and SwRI Proposal.

DS-GN-7 A videotape of the training program
shall be delivered.

Required by TxDOT RFO and SwRI Proposal.

DS-GN-8 A final report shall be delivered. Required by SwRI Proposal.



Data Server 8 System Design Document

3.2 System Level Requirements

The system level requirements for the Data Server system are listed in the following sections.

3.2.1 Interface Requirements

The interface requirements for the Data Server system are listed in Table 3.2.

Table 3.2  Data Server System Interface Requirements

REQUIREMENT
NUMBER

REQUIREMENT RATIONALE

DS-IF-1 The system shall interface with the TG
ATMS.

The TG ATMS will be the source of ATMS equipment
data, incident data, and traffic data. It will also receive
incident data from the DS.

DS-IF-2 The system shall interface with the
Automatic Vehicle Identification (AVI)
system.

The MDI AVI system will be a source of travel data for
portions of the TG road segments.

DS-IF-3 The system shall interface with the TG
Operations user.

The user will provide status requests and tuning
parameters to the DS. The user will receive status
information from the DS.

DS-IF-4 The system shall interface with the
Texas State Roadway Closed database.

The road closed database will provide road closure
information.

DS-IF-6 The system shall interface with the
IVN/Kiosk system.

The IVN/Kiosk system will receive traffic, weather,
VIA, and airport data from the DS.

DS-IF-7 The system shall interface with the San
Antonio Police 911 Dispatch system.

The 911 system will provide incident data to the DS.

DS-IF-8 The system shall interface with the TG
WWW system.

The WWW system will receive travel and other data
from the DS.

DS-IF-10 The system shall interface with the
Emergency Response system.

The Emergency Response system will receive incident
data from the DS.

DS-IF-12 The system shall interface with the TG
ATMS Map system.

The TG ATMS Map system will receive travel,
incident, and ATMS equipment data from the DS.

DS-IF-13 The system shall interface with the
MDI Railroad Delay system.

The  MDI Railroad Delay system will provide train
delay information to the DS.



Data Server 9 System Design Document

3.2.2 Functional Requirements

The functional requirements for the Data Server system are listed in Table 3.3.

Table 3.3  Data Server System Functional Requirements

REQUIREMENT
NUMBER

REQUIREMENT RATIONALE

DS-FN-1 The system shall maintain road
segment data for the TG road segments.

Data will be stored for a portion of SA road segments
termed TG road segments. These include all segments
for which travel data will be available.

DS-FN-2 The system shall maintain map data for
areas outside of the segments  of
interest.

Data outside the TG road segments will be used to
draw the “background” map.

DS-FN-2.1 The system shall store San Antonio
map data for areas outside the TG road
segments.

Map data will be used to generate the “background”
map in the TG ATMS Map system.

DS-FN-3 The system shall maintain travel data
for the TG road segments.

Travel data will be kept for the TG road segments. This
may include realtime, GPS, or theoretical data.

DS-FN-4 The system shall maintain lane closure
data.

Lane closure data will be acquired and stored for use by
other systems.

DS-FN-6 The system shall maintain traffic
incident data.

Traffic incident data will be acquired from several
sources and will be provided to other systems.

DS-FN-7 The system shall maintain traveler
information.

Various traveler information will be maintained
including VIA/Airport/Weather.

DS-FN-8 The system shall maintain TG ATMS
equipment status data.

TG ATMS equipment data will be acquired and
provided to other systems.

DS-FN-9 The system shall maintain MDI System
status data.

The DS will provide the overall status of systems in the
MDI System.

DS-FN-10 The system shall adjust travel data for
TG road segments based on current
conditions.

Adjustment factors will be used to adjust certain types
of travel data based on current conditions.

DS-FN-11 The system shall have the ability to
access the data based on geographic
attributes.

Geographic data access will be more efficient than
having to access the entire database.

3.2.3 Data Server System Physical Requirements

The physical requirements of the Data Server system are listed in Table 3.4.

Table 3.4  Data Server System Physical Requirements

REQUIREMENT
NUMBER

REQUIREMENT RATIONALE

DS-PY-1 The system will reside on a computer
separate from the TG operational
computers.

The system should operate on its own computer.



Data Server 10 System Design Document

3.3 Data Server Subsystem Level Requirements

The subsystem level requirements for the Data Server subsystems are listed in the following
sections. The subsystems are documented in the Subsystem Level Design section of this document.
The DS subsystems are:

 
• Data Server Subsystem (DSS),
• Data Server Interface Library Subsystem (DSILS),
• Data Generator Subsystem (DGS),
• Data Generator Interface Subsystem (DGIS),
• Status Graphical User Interface Subsystem (SGUIS),
• Data Consumer Interface Subsystem (DCIS), and
• Master Computer Subsystem (MCS).

3.3.1 Data Server Subsystem Requirements

The requirements for the DSS are listed in the following sections.

3.3.1.1 Data Server Subsystem Functional Requirements

The functional requirements for the DSS are listed in Table 3.5.

Table 3.5  Data Server Subsystem Functional Requirements

REQUIREMENT
NUMBER

REQUIREMENT RATIONALE

DS-FN-1.1 The DSS shall store TG Link Identifier
data for the TG road segments.

Road segment data will be stored as TG Links, similar
to the TG ATMS.

DS-FN-3.1 The DSS shall store TG ATMS travel
data for TG ATMS road segments.

The DSS will be a repository for TG ATMS travel data
for the TG road segments covered by the TG ATMS.

DS-FN-3.2 The DSS shall store MDI AVI travel
data for MDI AVI TG road segments.

The DSS will be a repository for MDI AVI travel data
for the TG road segments covered by the MDI AVI
system.

DS-FN-3.3 The DSS shall store theoretical travel
data for the theoretical TG road
segments.

The DSS will be a repository for theoretical travel data
for the TG road segments covered by the theoretical
data generated by TTI.

DS-FN-3.4 The DSS shall store GPS travel data for
the GPS TG road segments.

The DSS will be a repository for GPS travel data for
the TG road segments covered by the GPS data
generated by TTI.

DS-FN-4.1 The DSS shall store State of Texas lane
closure data.

The DSS will be a repository for State of Texas lane
closure data.

DS-FN-4.2 The DSS shall store San Antonio lane
closure data.

The DSS will be a repository for San Antonio lane
closure data.

DS-FN-6.1 The DSS shall store TG ATMS traffic
incident data.

The DSS will be a repository for TG ATMS traffic
incident data.

DS-FN-6.2 The DSS shall store 911 traffic incident
data.

The DSS will be a repository for 911 traffic incident
data.

DS-FN-6.3 The DSS shall store Railroad Delay
incident data.

The DSS will be a repository for Railroad Delay
incident data.



Data Server 11 System Design Document

REQUIREMENT
NUMBER

REQUIREMENT RATIONALE

DS-FN-7.1 The DSS shall store VIA data. The DSS will be a repository for VIA data.

DS-FN-7.2 The DSS shall store weather data. The DSS will be a repository for weather data.

DS-FN-8.1 The DSS shall store TG ATMS CMS
data.

The DSS will be a repository for TG ATMS CMS data.

DS-FN-8.2 The DSS shall store TG ATMS LCS
data.

The DSS will be a repository for TG ATMS LCS data.

DS-FN-10.1 The DSS shall adjust theoretical travel
data for theoretical TG road segments
based on time of day.

The DSS will use adjustment factors provided by TTI to
adjust the theoretical travel data based on time of day.

DS-FN-10.2 The DSS shall adjust GPS travel data
for GPS TG road segments based on
time of day.

The DSS will use adjustment factors provided by TTI to
adjust the GPS travel data based on time of day.

DS-FN-11.1 The DSS shall store geographic
attributes of data.

Storing geographic attributes will allow the DS to
retrieve data by region.

3.3.2 Data Server Interface Library Subsystem Requirements

The requirements for the DSILS are listed in the following sections.

3.3.2.1 Data Server Interface Library Subsystem Interface Requirements

The interface requirements for the DSILS are listed in Table 3.6.

Table 3.6  Data Server Interface Library Subsystem Interface Requirements

REQUIREMENT
NUMBER

REQUIREMENT RATIONALE

DS-IF-2.1 The DSILS shall interface with the
MDI AVI system.

The MDI AVI system will provide travel data for
portions of the TG road segments to the DSILS.

DS-IF-6.1 The DSILS shall interface with the
IVN/Kiosk system.

The IVN/Kiosk system will receive traffic, weather,
VIA, and airport data from the DSILS.

DS-IF-13.1 The DSILS shall interface with the
MDI Railroad Delay system.

The MDI Railroad Delay system will provide train
delay information to the DSILS.

3.3.2.2 Data Server Interface Library Subsystem Functional Requirements

The functional requirements for the DSILS are listed in Table 3.7.

Table 3.7  Data Server Interface Library Subsystem Functional Requirements

REQUIREMENT
NUMBER

REQUIREMENT RATIONALE

DS-FN-3.7 The DSILS shall acquire TG ATMS
travel data for TG road segments.

The DSILS will acquire TG ATMS travel data for the
TG road segments covered by the TG ATMS for storage
in the DSS.



Data Server 12 System Design Document

REQUIREMENT
NUMBER

REQUIREMENT RATIONALE

DS-FN-3.8 The DSILS shall acquire MDI AVI
travel data for MDI AVI TG road
segments.

The DSILS will acquire MDI AVI travel data for the
TG road segments covered by the MDI AVI system for
storage in the DSS.

DS-FN-4.5 The DSILS shall provide State of Texas
roadway closed data.

The DSILS will acquire State of Texas roadway closed
data from the DSS for distribution to data consumers.

DS-FN-7.4 The DSILS shall acquire VIA data. The DSILS will acquire VIA data for storage in the
DSS.

DS-FN-7.5 The DSILS shall acquire Weather data. The DSILS will acquire Weather data for storage in the
DSS.

DS-FN-7.6 The DSILS shall provide VIA data. The DSILS will acquire VIA data from the DSS for
distribution to data consumers.

DS-FN-7.8 The DSILS shall provide weather data. The DSILS will acquire weather data from the DSS for
distribution to data consumers.

DS-FN-9.2 The DSILS shall acquire MDI AVI
System status information.

The DSILS will acquire MDI AVI System status data
for storage in the DSS.

DS-FN-9.3 The DSILS shall acquire MDI Railroad
Delay System status information.

The DSILS will acquire MDI Railroad Delay System
status data for storage in the DSS.

3.3.3 Data Generator Subsystem Requirements

The requirements for the DGS are listed in the following sections.

3.3.3.1 Data Generator Subsystem Interface Requirements

The interface requirements for the DGS are listed in Table 3.8.

Table 3.8  Data Generator Subsystem Interface Requirements

REQUIREMENT
NUMBER

REQUIREMENT RATIONALE

DS-IF-3.1 The DGS shall interface with the TG
Operations user using a graphical user
interface.

The DGS will obtain data from the user.

3.3.3.2 Data Generator Subsystem Functional Requirements

The functional requirements for the DGS are listed in Table 3.9.

Table 3.9  Data Generator Subsystem Functional Requirements

REQUIREMENT
NUMBER

REQUIREMENT RATIONALE

DS-FN-3.5 The DGS shall store theoretical travel
data for the theoretical TG road
segments at 15-minute time intervals.

Theoretical travel data will be produced by TTI and
will cover TG road segments that are not covered by
other travel data sources.



Data Server 13 System Design Document

REQUIREMENT
NUMBER

REQUIREMENT RATIONALE

DS-FN-3.6 The DGS shall store GPS travel data
for the GPS TG road segments at 15-
minute intervals.

GPS travel data will be produced by TTI and will cover
the GPS TG road segments.

DS-FN-4.3 The DGS shall acquire lane closure
data.

The DGS will acquire lane closure data for storage in
the DSS.

DS-FN-9.1 The DGS shall monitor DGS process
status information.

The DGS will report its status.

3.3.4 Data Generator Interface Subsystem Requirements

The requirements for the DGIS are listed in the following sections.

3.3.4.1 Interface Requirements

The interface requirements for the DGIS are listed in Table 3.10.

Table 3.10  Data Generator Interface Subsystem Interface Requirements

REQUIREMENT
NUMBER

REQUIREMENT RATIONALE

DS-IF-1.1 The DGIS shall interface with the TG
ATMS using protocol defined by the
existing TG ATMS data broadcast.

The TG ATMS will provide ATMS equipment data,
incident data, and traffic data to the DGIS.

DS-IF-4.1 The DGIS shall interface with the
Texas State Roadway Closed Database.

The road closed database will provide road closure
information to the DGIS.

DS-IF-7.1 The DGIS shall interface with the San
Antonio Police 911 Dispatch system.

The 911 system will provide incident data to the DGIS.

3.3.4.2 Functional Requirements

The functional requirements for the DGIS are listed in Table 3.11.

Table 3.11  Data Generator Interface Subsystem Functional Requirements

REQUIREMENT
NUMBER

REQUIREMENT RATIONALE

DS-FN-4.4 The DGIS shall acquire State of Texas
roadway closed data.

The DGIS will acquire State of Texas roadway closed
data for storage in the DSS.

DS-FN-6.4 The DGIS shall acquire TG ATMS
traffic incident data.

The DGIS will acquire TG ATMS traffic incident data
for storage in the DSS.

DS-FN-6.5 The DGIS shall acquire 911 traffic
incident data.

The DGIS will acquire 911 traffic incident data for
storage in the DSS.

DS-FN-6.6 The DGIS shall acquire Railroad Delay
incident data.

The DGIS will acquire Railroad Delay incident data for
storage in the DSS.

DS-FN-8.3 The DGIS shall acquire TG ATMS
CMS data.

The DGIS will acquire TG ATMS CMS data for
storage in the DSS.



Data Server 14 System Design Document

REQUIREMENT
NUMBER

REQUIREMENT RATIONALE

DS-FN-8.4 The DGIS shall acquire TG ATMS
LCS data.

The DGIS will acquire TG ATMS LCS data for storage
in the DSS.

3.3.5 Status Graphical User Interface Subsystem Requirements

The requirements for the SGUIS are listed in the following sections.

3.3.5.1 Interface Requirements

The interface requirements for the SGUIS are listed in Table 3.12.

Table 3.12  Status Graphical User Interface Subsystem Interface Requirements

REQUIREMENT
NUMBER

REQUIREMENT RATIONALE

DS-IF-3.2 The SGUIS shall interface with the TG
Operations user using a graphical user
interface.

The user will provide status requests and tuning
parameters to the SGUIS. The user will receive status
information from the SGUIS.

3.3.5.2 Functional Requirements

The functional requirements for the SGUIS are listed in Table 3.13.

Table 3.13  Status Graphical User Interface Subsystem Functional Requirements

REQUIREMENT
NUMBER

REQUIREMENT RATIONALE

DS-FN-9.4 The SGUIS shall display MDI AVI
System status information.

The SGUIS will provide MDI AVI System status data
to the user.

DS-FN-9.5 The SGUIS shall display MDI IVN
System status information.

The SGUIS will provide MDI IVN System status data
to the user.

DS-FN-9.6 The SGUIS shall display MDI Kiosk
System status information.

The SGUIS will provide MDI Kiosk System status data
to the user.

DS-FN-9.7 The SGUIS shall display MDI Railroad
Delay System status information.

The SGUIS will provide MDI Railroad Delay System
status data to the user.

DS-FN-9.8 The SGUIS shall display DS DGS
process status information.

The SGUIS will provide internal DS DGS process
information to the user.

DS-FN-9.9 The SGUIS shall display DS DGIS
process information.

The SGUIS provide internal DS DGIS process
information to the user.

DS-FN-9.11 The SGUIS shall display DS DCIS
process information.

The SGUIS provide internal DS DCIS process
information to the user.

3.3.6 Data Consumer Interface Subsystem Requirements

The requirements for the DCIS are listed in the following sections.



Data Server 15 System Design Document

3.3.6.1 Data Consumer Interface Subsystem Interface Requirements

The interface requirements for the DCIS are listed in Table 3.14.

Table 3.14  Data Consumer Interface Subsystem Interface Requirements

REQUIREMENT
NUMBER

REQUIREMENT RATIONALE

DS-IF-8.1 The DCIS shall interface with the TG
WWW system.

The WWW system will receive traffic and other data
from the DCIS.

DS-IF-10.1 The DCIS shall interface with the
Emergency Response system.

The Emergency Response system will receive incident
data from the DCIS.

DS-IF-12.1 The DCIS shall interface with the TG
ATMS Map system.

The TG ATMS Map system will receive travel,
incident, and ATMS equipment data from the DCIS.

3.3.6.2 Data Consumer Interface Subsystem Functional Requirements

The functional requirements for the DCIS are listed in Table 3.15.

Table 3.15  Data Consumer Interface Subsystem Functional Requirements

REQUIREMENT
NUMBER

REQUIREMENT RATIONALE

DS-FN-3.9 The DCIS shall provide TG ATMS
travel data for TG ATMS road
segments.

The DCIS will acquire TG ATMS travel data from the
DSS for the TG road segments covered by the TG
ATMS for distribution to data consumers.

DS-FN-3.10 The DCIS shall provide MDI AVI
travel data for MDI AVI TG road
segments.

The DCIS will acquire MDI AVI travel data from the
DSS for the TG road segments covered by the MDI AVI
system for distribution to data consumers.

DS-FN-3.11 The DCIS shall provide theoretical
travel data for the theoretical TG road
segments.

The DCIS will acquire theoretical travel data from the
DSS for the TG road segments covered by the
theoretical data generated by TTI for distribution to
data consumers.

DS-FN-3.12 The DCIS shall provide GPS travel
data for the GPS TG road segments.

The DCIS will acquire GPS travel data from the DSS
for the TG road segments covered by the GPS data
generated by TTI for distribution to data consumers.

DS-FN-4.6 The DCIS shall provide TG lane
closure data.

The DCIS will acquire TG lane closure data from the
DSS for distribution to data consumers.

DS-FN-6.8 The DCIS shall provide TG ATMS
traffic incident data.

The DCIS will acquire TG ATMS traffic incident data
from the DSS for distribution to data consumers.

DS-FN-6.9 The DCIS shall provide 911 traffic
incident data.

The DCIS will acquire 911 traffic incident data from
the DSS for distribution to data consumers.

DS-FN-6.10 The DCIS shall provide railroad delay
incident data.

The DCIS will acquire Railroad Delay incident data
from the DSS for distribution to data consumers.

DS-FN-8.5 The DCIS shall provide TG ATMS
CMS data.

The DCIS will acquire TG ATMS CMS data from the
DSS for distribution to data consumers.

DS-FN-8.6 The DCIS shall provide TG ATMS
LCS data.

The DCIS will acquire TG ATMS LCS data from the
DSS for distribution to data consumers.



Data Server 16 System Design Document

3.3.7 Master Computer Subsystem Requirements

The requirements for the MCS are listed in the following sections.

3.3.7.1 Master Computer Subsystem Physical Requirements

The physical requirements for the MCS are listed in Table 3.16.

Table 3.16  Master Computer Subsystem Physical Requirements

REQUIREMENT
NUMBER

REQUIREMENT RATIONALE

DS-PY-1.1 The MCS shall be a Sun Microsystems
Ultra SPARCStation or better.

The expected processing requirements of the MCS can
be met by a computer of this capability.

DS-PY-1.2 The MCS shall have, at a minimum,
the following items:

• 167MHz SPARC CPU
• 4.2 GB Hard Disk
• 128 MB RAM
• Floppy Disk drive
• CD-ROM drive
• Turbo GX+ Graphics
• 20” Sun color monitor
• 2 Ethernet interfaces
• 2 SCSI channels

Required by SwRI Proposal.

3.4 Data Server Component Level Requirements

The component level requirements for the Data Server components are listed in the following
sections. The components are documented in the Component Level Design of this document. The
DS components are:

• Data Server Component (DSC),
• Data Server Interface Library Component (DSILC),
• 911 Interface Component (911IC),
• Lane Closure GUI Component (LCGUIC),
• Road Closed Interface Component (RCIC),
• GPS/Theoretical Data Component (GPSTHC),
• WWW Interface Component (WWWIC),
• Status Graphical User Interface Component (SGUIC),
• Realtime Collect Component (RTCC), and
• Realtime Broadcast Component (RTBC).

The component level requirements for the Data Server components are listed in the following
sections. The components are documented in the Component Level Design of this document.



Data Server 17 System Design Document

3.4.1 Data Server Component Requirements

The Data Server component (DSC) requirements are listed in the following sections.

3.4.1.1 Functional Requirements

The functional requirements for the Data Server component are listed in Table 3.17.

Table 3.17  Data Server Component Functional Requirements

REQUIREMENT
NUMBER

REQUIREMENT RATIONALE

DS-FN-1.1.1 The DSC shall store a TG Link
Identifier for the TG road segments.

TG Link Identifiers uniquely identify a segment of
interest in the current TG ATMS.

DS-FN-1.1.2 The DSC shall store TG Equipment
Identifier for TG equipment associated
with a segment of interest.

TG equipment is associated with TG road segments in
the current TG ATMS.

DS-FN-3.1.1 The DSC shall store the current travel
data for the travel data elements
defined by the existing TG ATMS data
broadcast system.

The TG ATMS currently broadcasts travel data. The
data elements that are broadcast will be stored by the
DSC.

DS-FN-3.2.1 The DSC shall store the current MDI
AVI-measured vehicle travel time
associated with MDI AVI TG road
segments.

Vehicle travel time is an element of MDI AVI travel
data.

DS-FN-3.2.2 The DSC shall store the current MDI
AVI-measured vehicle speed associated
with MDI AVI TG road segments.

Vehicle speed is an element of MDI AVI travel data.

DS-FN-3.3.1 The DSC shall store the current
theoretical vehicle speed associated
with theoretical TG road segments.

Vehicle speed is an element of theoretical travel data.

DS-FN-3.4.1 The DSC shall store the current GPS-
measured vehicle speed associated with
GPS TG road segments.

Vehicle speed is an element of GPS travel data.

DS-FN-4.1.1 The DSC shall store non-construction
related lane closure information for
State of Texas roadway closed data.

The DSS will be a repository State of Texas roadway
closed data.

DS-FN-4.2.1 The DSC shall store the lane closure
data elements defined in the current
TG Lane Closure system for TG lane
closure data.

TG currently operates a lane closure system. The DSC
will use the same data definition as this system.

DS-FN-6.1.1 The DSC shall store current incident
data for the incident data elements
defined in the existing TG ATMS data
broadcast system.

The TG ATMS currently broadcasts incident data. The
data elements that are broadcast will be stored by the
DSC.

DS-FN-6.2.1 The DSC shall store accident related
incident data for 911 traffic incidents.

The DSS will be a repository for 911 traffic incident
data.

DS-FN-6.3.1 The DSC shall store current incident
data for Railroad Delay incident data.

The DSS will be a repository for Railroad Delay traffic
incident data.



Data Server 18 System Design Document

REQUIREMENT
NUMBER

REQUIREMENT RATIONALE

DS-FN-7.1.1 The DSC shall store VIA data as
specified in the MDI Traveler
Information Kiosk Design Document.

The VIA data will be defined and used by the Kiosk
system.

DS-FN-7.2.1 The DSC shall store weather data as
specified in the MDI Traveler
Information Kiosk Design Document.

The weather data will be defined and used by the Kiosk
system.

DS-FN-8.1.1 The DSC shall store the current CMS
data for the CMS data elements defined
in the existing TG ATMS data
broadcast system.

The TG ATMS currently broadcasts CMS data. The
data elements that are broadcast will be stored by the
DSC.

DS-FN-8.2.1 The DSC shall store the current LCS
data for the LCS data elements defined
in the existing TG ATMS data
broadcast system.

The TG ATMS currently broadcasts LCS data. The data
elements that are broadcast will be stored by the DSC.

DS-FN-11.1.1 The DSC shall store the altitude,
latitude, and longitude of the endpoints
of the TG road segments.

Geographic data will allow geographic retrieval of data.

3.4.2 Data Server Interface Library Component Requirements

The requirements for the DSILC are listed in the following sections.

3.4.2.1 Data Server Interface Library Component Interface Requirements

The interface requirements for the DSILC are listed in Table 3.18.

Table 3.18  Data Server Interface Library Component Interface Requirements

REQUIREMENT
NUMBER

REQUIREMENT RATIONALE

DS-IF-2.1.1 The DSILC shall interface with the
MDI AVI system.

The DSILC will acquire travel data from the MDI AVI
system.

DS-IF-6.1.1 The DSILC shall interface with the
MDI IVN/Kiosk system.

The DSILC will provide data to the MDI IVN/Kiosk
system.

DS-IF-13.1.1 The DSILC shall interface with the
Railroad Delay system.

The MDI Railroad Delay system will provide train
delay information to the DSILC.

3.4.2.2 Data Server Interface Library Component Functional Requirements

The functional requirements for the DSILC are listed in Table 3.19.

Table 3.19  Data Server Interface Library Component Functional Requirements

REQUIREMENT
NUMBER

REQUIREMENT RATIONALE



Data Server 19 System Design Document

REQUIREMENT
NUMBER

REQUIREMENT RATIONALE

DS-FN-3.8.1 The DSILC shall acquire the current
MDI AVI-measured vehicle travel time
associated with MDI AVI TG road
segments.

Vehicle travel time is an element of MDI AVI travel
data.

DS-FN-3.8.2 The DSILC shall acquire the current
MDI AVI-measured vehicle speed
associated with MDI AVI TG road
segments.

Vehicle speed is an element of MDI AVI travel data.

DS-FN-6.6.1 The DSILC shall acquire current
incident data for Railroad Delay
incidents.

The DSILC will acquire Railroad Delay incident data.

DS-FN-7.4.1 The DSILS shall acquire VIA data as
specified in the MDI Traveler
Information Kiosk Design Document.

The VIA data will be defined and used by the Kiosk
system.

DS-FN-7.5.1 The DSILC shall acquire weather data
as specified in the MDI Traveler
Information Kiosk Design Document.

The weather data will be defined and used by the Kiosk
system.

DS-FN-7.6.1 The DSILC shall provide VIA data as
specified in the MDI Traveler
Information Kiosk Design Document to
the MDI IVN/KIOSK System.

The VIA data will be defined and used by the Kiosk
system.

DS-FN-7.8.1 The DSILC shall provide weather data
as specified in the MDI Traveler
Information Kiosk Preliminary Design
Document to the MDI IVN/KIOSK
System.

The weather data will be defined and used by the Kiosk
system.

3.4.3 911 Interface Component Requirements

The requirements for the 911IC are listed in the following sections.

3.4.3.1 911 Interface Component Interface Requirements

The interface requirements for the 911IC are listed in Table 3.20.

Table 3.20  911 Interface Component Interface Requirements

REQUIREMENT
NUMBER

REQUIREMENT RATIONALE

DS-IF-7.1.1 The 911IC shall interface with the San
Antonio Police 911 Dispatch System.

The 911IC will acquire incident information from the
San Antonio Police 911 Dispatch System.



Data Server 20 System Design Document

3.4.3.2 911 Interface Component Functional Requirements

The functional requirements for the 911IC are listed in Table 3.21.

Table 3.21  911 Interface Component Functional Requirements

REQUIREMENT
NUMBER

REQUIREMENT RATIONALE

DS-FN-6.5.1 The 911IC shall acquire accident
related 911 traffic incident data.

The 911IC will acquire 911 traffic incident data.

3.4.4 Lane Closure Graphical User Interface Component Requirements

The requirements for the LCGUIC are listed in the following sections.

3.4.4.1 Lane Closure Graphical User Interface Component Interface Requirements

The interface requirements for the LCGUIC are listed in Table 3.22.

Table 3.22  Lane Closure Graphical User Interface Component Interface Requirements

REQUIREMENT
NUMBER

REQUIREMENT RATIONALE

DS-IF-3.1.1 The LCGUIC shall interface with the
TG Operations user using a graphical
user interface.

The LCGUIC will acquire lane closure data from the
user.

3.4.4.2 Lane Closure Graphical User Interface Component Functional Requirements

The functional requirements for the LCGUIC are listed in Table 3.23.

Table 3.23  Lane Closure Graphical User Interface Functional Requirements

REQUIREMENT
NUMBER

REQUIREMENT RATIONALE

DS-FN-4.3.1 The LCGUIC shall acquire the lane
closure data elements defined in the
current TG Lane Closure system for TG
lane closure data.

TG currently operates a lane closure system. The
LCGUIC will acquire the same data elements as the
existing system.



Data Server 21 System Design Document

3.4.5 Road Closed Interface Component Requirements

The requirements for the RCIC are listed in the following sections.

3.4.5.1 Road Closed Interface Component Interface Requirements

The interface requirements for the RCIC are listed in Table 3.24.

Table 3.24  Road Closed Interface Component Interface Requirements

REQUIREMENT
NUMBER

REQUIREMENT RATIONALE

DS-IF-4.1.1 The RCIC shall interface with the
Texas State Roadway Closed database.

The RCIC will acquire lane closure data from the Texas
State Roadway Closed database.

3.4.5.2 Road Closed Interface Component Functional Requirements

The functional requirements for the RCIC are listed in Table 3.25.

Table 3.25  Road Closed Interface Component Functional Requirements

REQUIREMENT
NUMBER

REQUIREMENT RATIONALE

DS-FN-4.4.1 The RCIC shall acquire non-
construction related lane closure
information for State of Texas road
closed data.

The RCIC will acquire State of Texas road closed data.

3.4.6 Global Positioning System / Theoretical Data Component Requirements

The requirements for the GPSTHC are listed in the following sections.

3.4.6.1 Global Positioning System / Theoretical Data Component Functional Requirements

The functional requirements for the GPSTHC are listed in Table 3.26.

Table 3.26  Global Positioning System / Theoretical Data Component Functional
Requirements

REQUIREMENT
NUMBER

REQUIREMENT RATIONALE

DS-FN-3.6.1 The GPSTHC shall store the vehicle
speed at 15-minute time intervals for
GPS TG road segments and theoretical
TG road segments.

Vehicle speed is an element of GPS and theoretical
travel data.

DS-FN-9.1.3 The GPSTHC shall provide GPSTHC
process status information.

The GPSTDC will report its process status.



Data Server 22 System Design Document

REQUIREMENT
NUMBER

REQUIREMENT RATIONALE

DS-FN-10.1.1 The GPSTHC shall adjust theoretical
travel data for theoretical TG road
segments based on current conditions
using adjustment factors based on type
of day and/or weather.

The GPSTHC will use adjustment factors provided by
TTI to adjust the theoretical travel data based on
current conditions.

DS-FN-10.2.1 The GPSTHC shall adjust GPS travel
data for GPS TG road segments based
on current conditions using adjustment
factors based on type of day and/or
weather.

The GPSTHC will use adjustment factors provided by
TTI to adjust the GPS travel data based on current
conditions.

3.4.7 World Wide Web Interface Component Requirements

The requirements for the WWWIC are listed in the following sections.

3.4.7.1 World Wide Web Interface Component Interface Requirements

The interface requirements for the WWWIC are listed in Table 3.27.

Table 3.27  World Wide Web Interface Component Interface Requirements

REQUIREMENT
NUMBER

REQUIREMENT RATIONALE

DS-IF-8.1.1 The WWWIC shall interface with the
TG WWW system.

The WWWC will provide data to the TG WWW
system.

3.4.7.2 World Wide Web Interface Component Functional Requirements

The functional requirements for the WWWIC are listed in Table 3.28.

Table 3.28  World Wide Web Interface Component Functional Requirements

REQUIREMENT
NUMBER

REQUIREMENT RATIONALE

DS-FN-3.9.1 The WWWIC shall provide the current
travel data for the travel data elements
defined by the existing TG ATMS data
broadcast system to the TG WWW
system.

The TG ATMS currently broadcasts travel data. The
data elements that are broadcast will be provided by the
WWWIC.

3.4.8 Status Graphical User Interface Component Requirements

The requirements for the SGUIC are listed in the following sections.

3.4.8.1 Status Graphical User Interface Component Interface Requirements

The interface requirements for the SGUIC are listed in Table 3.29.



Data Server 23 System Design Document

Table 3.29  Status Graphical User Interface Component Interface Requirements

REQUIREMENT
NUMBER

REQUIREMENT RATIONALE

DS-IF-3.2.1 The SGUIC shall interface with the
user using a graphical user interface.

The DSGSS will exchange tuning and status
information with the user.

3.4.8.2 Status Graphical User Interface Component Functional Requirements

The functional requirements for the SGUIC are listed in Table 3.30.

Table 3.30  Status Graphical User Interface Component Functional Requirements

REQUIREMENT
NUMBER

REQUIREMENT RATIONALE

DS-FN-9.4.1 The SGUIC shall display MDI AVI
System current status.

The current status is an element of the status
information.

DS-FN-9.4.2 The SGUIC shall display MDI AVI
System detailed status information.

The status information consists of several status
elements.

DS-FN-9.5.1 The SGUIC shall display MDI IVN
System current status.

The current status is an element of the status
information.

DS-FN-9.5.2 The SGUIC shall display MDI IVN
System detailed status information.

The status information consists of several status
elements.

DS-FN-9.6.1 The SGUIC shall display MDI Kiosk
System current status.

The current status is an element of the status
information.

DS-FN-9.6.2 The SGUIC shall display MDI Kiosk
System detailed status information.

The status information consists of several status
elements.

DS-FN-9.7.1 The SGUIC shall display MDI Railroad
Delay System current status.

The current status is an element of the status
information.

DS-FN-9.7.2 The SGUIC shall display MDI Railroad
Delay System detailed status
information.

The status information consists of several status
elements.

DS-FN-9.8.3 The SGUIC shall display DS GPSTHC
process status information.

The GPSTHC will be a process of the DS system.

DS-FN-9.9.1 The SGUIC shall display DS RTCIC
process status information.

The RTCIC will be a process of the DS system.

DS-FN-9.9.2 The SGUIC shall display DS RDIC
process status information.

The RDIC will be a process of the DS system.

DS-FN-9.9.4 The SGUIC shall display DS 911IC
process status information.

The 911IC will be a process of the DS system.

DS-FN-9.9.5 The SGUIC shall display DS RCIC
process status information.

The RCIC will be a process of the DS system.

DS-FN-9.9.6 The SGUIC shall display DS VIC
process status information.

The VIC will be a process of the Kiosk system.

DS-FN-9.9.7 The SGUIC shall display DS WIC
process status information.

The WIC will be a process of the Kiosk system.



Data Server 24 System Design Document

REQUIREMENT
NUMBER

REQUIREMENT RATIONALE

DS-FN-9.11.1 The SGUIC shall display DS WWWIC
process information.

The WWWIC will be a process of the DS system.

DS-FN-9.11.5 The SGUIC shall display DS RTBC
process information.

The RTBC will be a process of the DS system.

3.4.9 Realtime Collect Component Requirements

The requirements for the RTCC are listed in the following sections.

3.4.9.1 Realtime Collect Component Interface Requirements

The interface requirements for the RTCC are listed in Table 3.31.

Table 3.31. Realtime Collect Component Interface Requirements

REQUIREMENT
NUMBER

REQUIREMENT RATIONALE

DS-IF-1.1.1 The RTCC shall interface with the TG
ATMS using protocol defined by the
existing TG ATMS data broadcast.

The RTCC will acquire data from the TG ATMS using
the protocol currently running on the TG ATMS.

3.4.9.2 Realtime Collect Component Functional Requirements

The functional requirements for the RTCC are listed in Table 3.32.

Table 3.32. Realtime Collect Component Functional Requirements

REQUIREMENT
NUMBER

REQUIREMENT RATIONALE

DS-FN-3.7.1 The RTCC shall acquire the current
travel data for the travel data elements
defined by the existing TG ATMS data
broadcast system.

The TG ATMS currently broadcasts travel data. The
data elements that are broadcast will be acquired by the
RTCC.

DS-FN-6.4.1 The RTCC shall acquire current
incident data for the incident data
elements defined in the existing TG
ATMS data broadcast system.

The TG ATMS currently broadcasts incident data. The
data elements that are broadcast will be acquired by the
RTCC.

DS-FN-8.3.1 The RTCC shall acquire the current
CMS data for the CMS data elements
defined in the existing TG ATMS data
broadcast system.

The TG ATMS currently broadcasts CMS data. The
data elements that are broadcast will be acquired by the
RTCC.

DS-FN-8.4.1 The RTCC shall acquire the current
LCS data for the LCS data elements
defined in the existing TG ATMS data
broadcast system.

The TG ATMS currently broadcasts LCS data. The data
elements that are broadcast will be acquired by the
RTCC.



Data Server 25 System Design Document

3.4.10 Realtime Broadcast Component Requirements

The requirements for the RTBC are listed in the following sections.

3.4.10.1 Realtime Broadcast Component Interface Requirements

The interface requirements for the RTBC are listed in Table 3.33.



Data Server 26 System Design Document

Table 3.33  Realtime Broadcast Component Interface Requirements

REQUIREMENT
NUMBER

REQUIREMENT RATIONALE

DS-IF-10.1.1 The RTBC shall interface with the
Emergency Response system.

The RTBC shall provide data to the Emergency
Response system.

DS-IF-12.1.1 The RTBC shall interface with TG
ATMS Map system using the protocol
defined by the current TG ATMS
operations broadcast system.

The RTBC will broadcast data to the TG ATMS map
using the protocol of the existing sun_broadcast()
system.

3.4.10.2 Realtime Broadcast Component Functional Requirements

The functional requirements for the RTBC are listed in Table 3.34.

Table 3.34  Realtime Broadcast Component Functional Requirements

REQUIREMENT
NUMBER

REQUIREMENT RATIONALE

DS-FN-3.9.4 The RTBC shall provide the current
travel data for the travel data elements
defined by the existing TG ATMS data
broadcast system to the TG ATMS
Map system, the MDI IVN/KIOSK
System, and other ATMS data
broadcast listeners.

The TG ATMS currently broadcasts travel data. The
data elements that are broadcast will be provided by the
RTBC.

DS-FN-3.10.5 The RTBC shall provide the current
MDI AVI-measured vehicle travel time
associated with MDI AVI TG road
segments to the TG ATMS Map
system.

Vehicle travel time is an element of MDI AVI travel
data.

DS-FN-3.10.6 The RTBC shall provide the current
MDI AVI-measured vehicle speed
associated with MDI AVI TG road
segments to the TG ATMS Map
system, the MDI IVN/KIOSK System,
and other ATMS data broadcast
listeners.

Vehicle speed is an element of MDI AVI travel data.

DS-FN-3.11.3 The RTBC shall provide the current
theoretical vehicle speed associated
with theoretical TG road segments to
the TG ATMS Map system, the MDI
IVN/KIOSK System, and other ATMS
data broadcast listeners.

Vehicle speed is an element of theoretical travel data.

DS-FN-3.12.3 The RTBC shall provide the current
GPS-measured vehicle speed
associated with GPS TG road segments
to the TG ATMS Map system, the MDI
IVN/KIOSK System, and other ATMS
data broadcast listeners.

Vehicle speed is an element of GPS travel data.



Data Server 27 System Design Document

REQUIREMENT
NUMBER

REQUIREMENT RATIONALE

DS-FN-4.6.2 The RTBC shall provide the lane
closure data elements defined in the
current TG Lane Closure system for
San Antonio lane closure data to the
TG ATMS Map system, the MDI
IVN/KIOSK System, and other ATMS
data broadcast listeners.

TG currently operates a lane closure system. The RTBC
will use the same data definition as this system.

DS-FN-6.8.4 The RTBC shall provide current
incident data for the incident data
elements defined in the existing TG
ATMS data broadcast system to the TG
ATMS Map system, the MDI
IVN/KIOSK System, and other ATMS
data broadcast listeners.

The TG ATMS currently broadcasts incident data. The
data elements that are broadcast will be provided by the
RTBC.

DS-FN-6.9.4 The RTBC shall provide 911 traffic
incident data to the TG ATMS Map
system, the MDI IVN/KIOSK System,
and other ATMS data broadcast
listeners.

The RTBC will be a repository for 911 traffic incident
data.

DS-FN-8.5.1 The RTBC shall provide the current
CMS data for the CMS data elements
defined in the existing TG ATMS data
broadcast system to the TG ATMS
Map system and other broadcast
listeners.

The TG ATMS currently broadcasts CMS data. The
data elements that are broadcast will be provided by the
RTBC.

DS-FN-8.6.1 The RTBC shall provide the current
LCS data for the LCS data elements
defined in the existing TG ATMS data
broadcast system to the TG ATMS
Map system and other broadcast
listeners.

The TG ATMS currently broadcasts LCS data. The data
elements that are broadcast will be provided by the
RTBC.



Data Server 28 System Design Document

4. System Design
The Data Server system software resides on a separate computer from the current TransGuide
operational computers and separate from other MDI project computers.  The Data Server
interfaces with the other systems via network connections.  A Status GUI provides the user
interface to the overall MDI system status.

The systems that interface with the Data Server can be divided into Data Generators and Data
Consumers.  Data Generators are processes that supply data to the Data Server.  The Data Server
receives the data and stores it in a central archive for other applications to use.  Data Consumers
are processes that use data stored in the Data Server.  They request the traffic data they need from
the Data Server, and the Data Server sends it back to them.  The Data Generators and Data
Consumers send status information to the Data Server.  This status information is contained in a
regularly sent “Heartbeat” message to the Data Server, which allows the Data Server to maintain
an overall status of the MDI processes.

The Data Server uses the information supplied by the Data Generators to provide a feed for the
TransGuide realtime graphical map.  In addition to speed data from instrumented highways, this
map also displays speed data from AVI readers as well as GPS/GIS and theoretical data.  The map
data is broadcast over a network, and other applications in addition to the TransGuide Realtime
Map can receive and utilize this data.

4.1 System Architecture

The external systems that generate data for the Data Server are:

• MDI Railroad System
• MDI AVI System
• Lane Closure System
• Road Closed System
• 911 Data Dispatch System
• VIA System
• Weather System, and
• TransGuide ATMS

The external systems that use the data from the Data Server are:

• MDI Kiosk System
• MDI IVN System, and
• WWW System

Figure 4.1 is a context diagram of the MDI Data Server system, and shows the external systems
that interface to it, and the data that is transmitted over these interfaces.



Data Server 29 System Design Document

1

MDI
Data 
Server

911
Dispatch 
System

VIA
System

MDI
Kiosk 
System

MDI
AVI 
System

MDI
IVN 
System

TG
Network

Weather
System

MDI
AWARD 
System

Road
Closed 
System

WWW
System

Lane
Closure 
System

VAX

911 Incidents

VIA Files

Lane Data Req

Client Data
Req

File Data Req
File Data

Broadcast DataATMS Data

Client Data
Req

Client Data
Req

Client Data
Req

Highway
Condtions FileIncident Data

Req

RR Data Req

Client Data
Req

Client Data
Req

Client Data
Req

Weather Files

Client Data
Req

Client Data
Req

Client Data
Req

Client Data

Figure 4.1  Data Server Context Diagram

The Data Server communicates with the Data Generators and Data Consumers over TCP/IP
sockets.

The external systems that were developed or augmented during the MDI project, connect to the
Data Server, and send it regular status messages. The external systems that were not developed
during MDI, have an interface process within the Data Server system that retrieves the data that
they provide, and generates a status message.  The Data Server system uses the status messages to
update a Status GUI, which allows the user to determine at a glance the overall status of all the
MDI processes.  In addition to sending a status message, Data Generators transmit data
asynchronously to the Data Server.  Data Consumers send data requests to the Data Server, and
the Data Server responds by sending them the data they requested. The majority of the data needed



Data Server 30 System Design Document

by the Data Consumers is received from the realtime TransGuide graphical map feed and
broadcast on the TransGuide network by the Realtime Broadcast process.

The Data Server Master Computer includes the following components:

• Sun Microsystems Ultra SPARCStation
• 167 MHz SPARC (RISC) CPU
• 4.2 Gigabytes Hard Disk
• 128 Megabytes RAM
• Floppy Disk
• CD_ROM
• Turbo GX+ Graphics
• 20 inch Color Monitor
• Dual Ethernet Interfaces
• Dual SCSI Channels

4.2 System Level Design

This section describes the Data Server system, including those external systems that were
developed or augmented during MDI, but which are not part of another MDI project.  The other
external MDI systems are described in the SDD’s for those systems.

The following systems are described below:

• Data Server System
• WWW System
• Lane Closure System
• Realtime Receive System, and
• Realtime Map Display

The common library functions developed for communications with the Data Server, are also
described in this section.

The Emergency Response System interfaces with the Data Server system as one of the recipients of
the Realtime Map data.

The design of the interfaces to the Weather System and VIA System are described in the MDI
Kiosk Systems Design Document.



Data Server 31 System Design Document

4.2.1 Data Server System

Figure 4.1 shows a data flow diagram of the Data Server System processes.

The Data Server system consists of the following subsystems:

• Data Server subsystem
• Status GUI subsystem
• GPS and Theoretical Data subsystem
• Road Closed Interface subsystem
• 911 Interface subsystem
• Realtime Collect subsystem
• Realtime Broadcast subsystem
• VIA Interface subsystem, and
• Weather Interface subsystem

1.8
Realtime
Broadcast

1.2
Status
GUI

1.3
911
IF

1.4

Data
Server

1.10
Transfer
Files

1.7
GPS TH
Data

1.9
Realtime
Collect

911 Incidents

Incident Data
Req

Incident Data
Req

Highway
Condtions File

File DataRR Data Req
File Data Req

Heartbeat

MDI Status
Data

File Data Req

VIA Files

Heartbeat

Broadcast Data

Incident Data

Lane Data Req

Heartbeat

File Write
Req

ATMS Data

Heartbeat

Weather Files

Heartbeat

Heartbeat

Incident Data
Req

Incident Data
Req

Heartbeat
Client Data
Req Lane Data Req

Lane Data Req

Status Info

Status Info

Status Info

Status Info

Status Info

Status Info

ATMS Data
Incident Data
Req

Lane Data Req

Link Data

Figure 4.2  Data Server System Data Flow Diagram



Data Server 32 System Design Document

A high-level description of these subsystems is in the following paragraphs.

The Data Server subsystem is the central subsystem of the Data Server.  It creates shared memory
to store the process status information and traffic data that it receives.  Some traffic data is stored
in files.  The Data Server subsystem consists of several processes as shown in Figure 4.6.  Data
Generators, local as well as external, supply the information that is stored by the Data Server.
Data Consumers send requests to the Data Server for the data they need, and the Data Server sends
the requested data back.  The communication between the Data Generators, or Data Consumers,
and the Data Server uses a set of common Data Server Interface library routines.  These routines
are described in detail in section 4.3.11. A detailed description of the Data Server subsystem is in
section 4.3.1.

The Data Server subsystem creates a shared memory segment to store the current status of all
processes, including its own status.  The Status GUI subsystem attaches to this segment and
displays the information on the MDI Status GUI. This gives the user the ability to determine the
overall status of the Data Server as well as its external processes, at a glance.  The Data Server, as
well as each external Data Generator and Data Consumer, has a sub-window in the Status GUI
which shows the overall status of the respective process. The user can request detailed status
information for each of the processes by clicking on the corresponding sub-window in the GUI.  A
detailed description of the Status GUI subsystem is in section 4.3.2.

The GPS and Theoretical Data System is a Data Generator that supplies data to the Data Server.
It retrieves traffic data from a database for road segments for which GPS and Theoretical data,
respectively, has been collected.  The database contains expected travel speeds for every 15-minute
interval of the day and night for the selected road segments.  The speed data is used to update the
estimated travel speeds for the segments in the Data Server.  Weather, school and holiday
information about the current day is used to adjust the speeds before they are transmitted to the
Data Server. The GPS and Theoretical System connects to the Data Server process, and sends it
status information at regular intervals. A detailed description of the GPS and Theoretical Data
subsystem is in section 4.3.4.

The Road Closed Interface subsystem interfaces with the Texas Roadway Closed Database.  A
report that contains the highway conditions of state roadways is generated at regular intervals by
the database.  This report includes information about closures due to construction, weather and
other reasons.  The database sends a text file containing this report to the TransGuide web server.
The Road Closed Interface retrieves this file and removes any construction related closures and
stores the remaining closures, if any, in a file.  This file is then sent to the Data Server process, to
be stored on the Data Server disk.  Since the database does not send MDI status information (i.e.
heartbeats), the interface process sends a status message at regular intervals to the Data Server
process.  The Road Closed Interface is implemented by the process transferfiles using a Road
Closed configuration file.  The transferfiles process is described in the Kiosk System Design
Document.  A detailed description of the Road Closed configuration file is in section 4.3.6.

The 911 Interface subsystem interfaces with the Police 911 Data Dispatch system.  It receives a
data feed containing the active traffic report over a TCP/IP socket connection.  The 911 Dispatch
Interface extracts the accident related traffic data from the received data.  This data is converted
into realtime incident data format, and sent to the Data Server process, which stores it. Since the
911 Data Dispatch system does not generate MDI status information, the 911 interface sends a
status message at regular intervals to the Data Server process.  A detailed description of the 911
Interface subsystem is in section 4.3.7.



Data Server 33 System Design Document

The Realtime Collect subsystem is a Data Generator which receives the raw traffic data from the
ATMS.  The raw traffic data contains speed data from ATMS segments, ATMS equipment
information and ATMS incident information.  It converts this data into ATMS data format and
sends it to the Data Server where it is stored in shared memory.  The data is also transmitted
directly to the Realtime Broadcast process.  Realtime Collect also sends status information to the
Data Server at regular intervals. A detailed description of the Realtime Collect subsystem is in
section 4.3.3.

The Realtime Broadcast subsystem is a Data Consumer which requests traffic data from the Data
Server. Realtime Broadcast connects to the Data Server, and sends it status information at regular
intervals. It requests the MDI data from the Data Server and it receives the ATMS data from the
Realtime Collect process.  Realtime Broadcast then broadcasts this traffic data feed over the
TransGuide network.  Any listeners who wish to use this information can execute the Realtime
Receive process on their workstation. Realtime Receive stores the received data in shared memory,
to which applications like the TransGuide Realtime Map can attach to retrieve the current traffic
data. The Realtime Broadcast subsystem broadcasts the realtime data every five seconds.  The
subsystem utilizes the broadcast approach because of the desire to minimize network loading; a
number of Data Consumers need access to the realtime data and rather than have each one
requesting the same data from the Data Server, a design decision was made to place the data on the
network one time for all receivers to acquire.  A detailed description of the Realtime Broadcast
subsystem is in section 4.3.8.

The Realtime Receive subsystem works in conjunction with the Data Consumers.  The subsystem
retrieves the realtime information from the network (which is broadcast by Realtime Broadcast)
and makes the data available to the Data Consumers.  The Data Consumer can request a “refresh”
of the realtime data and the current data is transmitted to the consumer.  A detailed description of
the Realtime Receive subsystem is in section 4.3.9.

The VIA Interface process and the Weather Interface process are described in the SDD for the
MDI Kiosk System.

4.2.2 WWW System

The context diagram for the WWW System is shown in Figure 4.3.



Data Server 34 System Design Document

The WWW System is an external Data Consumer that receives the data feed for the realtime
TransGuide graphical map.  It uses the data it receives to create a modified TransGuide map, the
display of which is then captured and displayed on a page of the TransGuide web-site.  The WWW
System connects to the Data Server process, and sends it status information at regular intervals. A
detailed description of the WWW System is in section 4.3.10.

4.2.3 Lane Closure System

The context diagram for the Lane Closure System is shown in Figure 4.4.

The Lane Closure System is launched by a user of the TransGuide Realtime Map.  The location of
the lane closure is determined by the location of the cursor when the Lane Closure GUI was
launched. The Lane Closure system displays a GUI that allows the user to enter information about
a TransGuide lane closure, and/or remove information about lane closures that have expired. The
remaining lane closures are then converted to incident data format, and are sent to the Data Server
process, where they are stored. A detailed description of the Land Closure System is in section
4.3.5.

1

MDI
WWW 
System

Realtime
Data Shared 
Memory

WWW
Server

MDI
Data 
Server

Lane Data
Record

Real-time Data
File

Incident Record

Map GIF File
Image Map

Con Req Client Data
Req

Lookup File

Cross Reference
File

Info Text File

Figure 4.3  WWW System Context Diagram

1

Lane
Closure 
System

MDI
Data 
Server

Realtime
Map 
Display

Launch LC GUI

Client Data
ReqMap Coordinate
Con Req

Incident Data
Req

Figure 4.4  Lane Closure System Context Diagram



Data Server 35 System Design Document

4.2.4 Realtime Receive System

The context diagram for the Realtime Receive System is shown in Figure 4.5.

The Realtime Receive system replaces functionality that was previously implemented by the
receive_broadcast program.  The Realtime Receive system runs on a workstation that wishes to
receive the TransGuide Realtime Map.  Realtime Receive receives the broadcast of realtime traffic
data that was sent by Realtime Broadcast.  It stores this data locally in the Realtime Data shared
memory, which it creates at startup.  Realtime Receive continuously updates the data in shared
memory by over-writing existing data with new data as it arrives.  The TransGuide Realtime Map
attaches to this shared memory at startup, and uses the data to update the map with current traffic
conditions.

The Realtime Receive process is a passive Data Consumer, which does not request any data from
the Data Server, and does not connect to it, nor send it any status information.

4.2.5 Realtime Map Display

The Realtime Map replaces the existing TransGuide graphical map.  The map requires that the
Realtime Receive process is also running on the workstation, and has created a shared memory
segment where it stores traffic data in a pre-defined format.  The Realtime Map attaches to the
shared memory segment, and periodically retrieves data for the intelligent map objects that it
displays.  The map also displays static data as background information.

The Realtime Map is based on the map application code developed for TxDOT during the
maintenance contract. In addition to displaying the speed data from ATMS-instrumented segments,
it also displays AVI speed data, GPS travel speed data and Theoretical travel speed data.  It
displays icons indicating locations of various equipment (LCS, VMS and CCTV), and locations of
currently active incidents, as well as icons indicating locations of active lane closures and active
traffic related events received from the 911 Data Dispatch.

Instrumented lanes use a color code to distinguish the source of the speed data displayed in them.
The color of the outline indicates if a segment is instrumented by sensors (ATMS), AVI , GPS or
Theoretical data.

Users of the map can click on a lane or an icon (equipment, incident, 911 or lane closure) to
display a popup window that contains more detailed information about the icon selected.

4.2.6 Data Server Interface Common Interface Library

In order to simplify the interface between other processes and the Data Server, a set of common
Data Server library functions were developed.  The library includes functions to initialize and
terminate communication with the Data Server.  Functions are also included to send status
information, traffic data, incident data, equipment data and files to the Data Server process.  Data

Realtime
Broadcast

Realtime
Data Shared 
Memory

1

Realtime
Receive

ATMS Data
MDI Lane Data
MDI Incident
Data

ATMS Data
MDI Lane Data
MDI Incident
Data

Figure 4.5  Realtime Receive Context Diagram



Data Server 36 System Design Document

Consumers can use library functions to request traffic data, incident data, equipment data, files or
file time-stamp information, or to delete data files that were previously sent to the Data Server.  A
detailed description of the functions included in the library is in section 4.3.11.

4.3 Subsystem Level Design

This section describes the design of the Data Server subsystems, and the external subsystems that
were developed on the MDI Data Server project.  The subsystems described are:

• Data Server subsystem
• Status GUI subsystem
• Realtime Collect subsystem
• GPS and Theoretical Data subsystem
• Lane Closure subsystem
• Road Closed Interface Subsystem
• 911 Interface subsystem
• Realtime Broadcast subsystem,
• Realtime Receive System, and
• WWW subsystem

The common library functions developed for communications with the Data Server, are also
described in detail in this section.

Each subsystem consists of one or more components, each of which is a separate Unix process.
The subsystem components were designed as individual processes to increase the reliability of the
system.  If a system has to be modified or added, or if one process fails, it will not negatively
impact the whole system.  Each of the subsystems communicate with the Data Server over a socket
interface.

4.3.1 Data Server Subsystem

The Data Server subsystem is a repository for various types of ATMS and ATIS data. The data
that is stored by the Data Server subsystem is generated by data generator clients and is used by
data consumer clients. The Data Server subsystem acts as the server half of a client/server system.
In this scenario, clients send one of several predefined requests to the Data Server subsystem which
accepts these requests and performs the service on behalf of the client. The interaction between the
client and server takes place according to an established communication protocol. The following
sections provide the process, model, and protocol design of the Data Server subsystem.

4.3.1.1 Process Design

The external environment of the Data Server subsystem is depicted in the Data Server data flow
diagram shown in Figure 4.2. The diagram shows the Data Server subsystem interacting with the
other subsystems of the Data Server. The data flows entering the Data Server subsystem are
requests from clients which include connection requests, client data requests (e.g., heartbeat,
initialization), lane data requests, incident data requests, and file data requests. The data flows
exiting the Data Server subsystem are responses to requests.

The Data Server subsystem data flow diagram is shown in Figure 4.6.  The Data Server
subsystem is composed of five processes: the Master process, the Heartbeat process, the Data
Server Interface process, the Status Logger process and the Data Server process.  The Master



Data Server 37 System Design Document

process starts up the other processes of the Data Server subsystem, and monitors their process
status.  The Heartbeat process receives the individual heartbeats from each process, and sends the
overall system status to the Data Server Interface process.  The Data Server Interface process is
the common gateway for all requests that are directed to the Data Server, and the responses that
are returned.  The Status Logger process stores the status messages that it gets from the subsystem
processes in a log file.

The Data Server process data flow diagram is shown in Figure 4.7. The Data Server process is
composed of two processes: the Data Server Main process, and the Client Request processes. The
Data Server Main process accepts client requests then passes the client data to the Client Request
processes which handle the requests themselves. Separating the connections from the requests
allows each process to focus on a specific task. The processes shown on the Data Server data flow
diagram are described in more detail in Table 4.1.

There are multiple Client Request processes. A Client Request process is generated for each client
that connects, making each Client Request process dedicated to a single client. Dedicating a
process to each client has the advantage that the Client Request process can be designed and
implemented for the simple case of a single client. Designing a Client Request process that is
capable of handling multiple clients would introduce an unnecessary degree of complexity.
Another advantage of using multiple client request processes is that each process is isolated from
the others.  If errors occur in one process, they will not adversely affect other processes.



Data Server 38 System Design Document

1.4.1

Data
Server 
Process

1.4.2

Master

1.4.3

Heartbeat

1.4.4

Data
Server 
i/f

1.4.5

Status
Logger

Process
Status 
Shared Memory

MDI Status
Shared 
Memory

Client Data
Req

Incident Data
Req

Heartbeat

Lane Data Req

MDI Status

File Data Req
File DataRR Data Req
Incident Data

Heartbeat

Status Info

Status Info

MDI Status
Data

Process Status

Startup Status

Status Info

Status Info

MDI Data Req MDI Data

Heartbeat

Heartbeat

Client Data
Req

Heartbeat

Con Req

MDI Status

Status Info

Link Data

Figure 4.6  Data Server Subsystem Data Flow Diagram



Data Server 39 System Design Document

1.4.1.1
Data Server
Main

1.4.1.2

Client
Request

Client Connection

Create Child

Incident Data
Req

Client Data
Req

RR Data Req

File Data

Lane Data Req

File Data Req

Con Req

Incident Data
AWARD DataEquipment

Status

Equipment Data
Req

Status Info

Heartbeat

MDI Data Req

MDI Data

Figure 4.7. Data Server Process Data Flow Diagram

Table 4.1. Data Server Process Processes

ITEM DESCRIPTION

Data Server
Main

The main process of the Data Server subsystem. The process initializes the Data Server
subsystem, accepts client connections, and spawns children to manage the client connections.

Client Request A child process of the Data Server Main process that is created to manage a specific client. The
process is created by the Data Server Main process when a client connection is received and
terminates when the client disconnects. There are multiple instances of this process, one for each
client that is connected to the Data Server subsystem.

The process accepts requests from the client and determines the nature of the request. The request
is then passed to a specialized process that handles the request.

The Client Request process data flow diagram is shown in Figure 4.8. The Client Request process
is broken into specialized processes, each dedicated to handling a separate type of data request.
The processes of the Client Request data flow diagram are described in more detail in Table 4.2.



Data Server 40 System Design Document

1.4.1.2.1

Client
Data

1.4.1.2.2

Link
Data

1.4.1.2.3

File
Data

1.4.1.2.4

Incident
Data

1.4.1.2.5

RR
Data

1.4.1.2.6

Equipment
Data

Lane Data Req Incident Data
Req

Incident Data

Client Data
Req

File Data Req RR Data Req

File Data

Lane Data

AWARD Data

Equipment Data
Req

Equipment Data

Figure 4.8. Client Request Data Flow Diagram

Table 4.2. Client Request Processes

ITEM DESCRIPTION

Client Data A process to handle client data requests from clients. The process is passed the client data
request and performs actions based on the request.

Equipment Data A process to handle equipment data requests from clients. The process is passed the
equipment data request and performs actions based on the request.

File Data A process to handle file data requests from clients. The process is passed the file data request
and performs actions based on the request.

Incident Data A process to handle incident data requests from clients. The process is passed the incident
data request and performs actions based on the request.

Link Data A process to handle client data requests from clients.  The process is passed the client data
request and performs actions based on the request.

RR Data A process to handle RR data requests from clients. The process is passed the RR data request
and performs actions based on the request.



Data Server 41 System Design Document

1.4.1.2.2.1
Write
Link

1.4.1.2.2.2
Read
Link

Data Server Shared Memory

Lane Data

Link Data
Record

Link Data
Record

Lane Write
Req

Lane Read Req

Lane Data Req

Figure 4.9. Lane Data Data Flow Diagram

The Lane Data process data flow diagram is presented in Figure 4.9. The lane data is written to
the Data Server Shared Memory by the Lane Write process and is retrieved by the Lane Read
process. These processes are described in more detail in Table 4.3.

Table 4.3. Lane Data Processes

ITEM DESCRIPTION

Read Link A process to read the link data from the Data Server Shared Memory and send it to the requesting
client. The link data is read and sent in the form of Lane Data Records.

Write Link A process to write link data to the Data Server Shared Memory. The link data is passed in the form
of DS Lane Data Records which are converted to Lane Data Records before being written to shared
memory.

The DS Lane Data Records are the MDI-representation of the link data. The Lane Data Records are
a compact representation of the DS Lane Data Record.



Data Server 42 System Design Document

The Incident Data process data flow diagram is presented in Figure 4.10. The incident data is
written to one of several data server files depending on the value of the source field in the Incident
Write Request record. Read requests will return one or all of the types of incidents depending on
the type specified in the read request. The Incident Data processes are described in more detail in
Table 4.4.

1.4.1.2.4.1
Write
Incident

1.4.1.2.4.2
Read
Incident

DS Incident Files

Incident Write
Req

Incident Read
Req

Incident Data

Incident Data
Req

Incident RecordIncident Record

Figure 4.10. Incident Data Data Flow Diagram

Table 4.4. Incident Data Processes

ITEM DESCRIPTION

Read Incident A process to read incident data from the Data Server incident data files and send the incident
data to the requesting client. The incident data is read in the form of DS Incident Data Records
and written in the form of DS Incident Data.

Write Incident A process to write incident data to a DS Incident file. The incident data is passed in the form of
DS Incident Data Records which are written to shared memory.

The Equipment Data process data flow diagram is presented in Figure 4.11. The equipment data is
written to one of several data server files depending on the value of the source field in the
Equipment Write Request record. Read requests will return one or all of the types of equipment
data depending on the type specified in the read request. The Equipment Data processes are
described in more detail in Table 4.5.



Data Server 43 System Design Document

1
Write
Equipment

2
Read
Equipment

DS Equipment Files

Equipment
Write Req

Equipment Read
Req

Equipment Data

Equipment Data
Req

Equipment
Record

Equipment
Record

Figure 4.11 Equipment Data Data Flow Diagram

Table 4.5 Equipment Data Processes

ITEM DESCRIPTION

Read Equipment A process to read equipment data from the Data Server equipment data files and send the
equipment data to the requesting client. The equipment data is read in the form of DS
Equipment Data Records and written in the form of DS Equipment Data.

Write Equipment A process to write equipment data to a DS Equipment file. The equipment data is passed in
the form of DS Equipment Data Records.

The Client Data process data flow diagram is shown in Figure 4.12.  Client data is processed by
three specialized processes. The data is stored and retrieved from the Data Server Shared Memory.
The Client Data processes are described in more detail in Table 4.6.



Data Server 44 System Design Document

1.4.1.2.1.1

Init
Client

1.4.1.2.1.2

Record
Heartbeat

1.4.1.2.1.3

Close
Client

Data Server
Shared 
Memory

Client Data

HB Req

Close ReqInit Req

MDI Status
Data

MDI Status
Data

MDI Status
Data

MDI Status
Data

MDI Status
Data

MDI Status
Data

Figure 4.12. Client Data Data Flow Diagram

Table 4.6. Client Data Processes

ITEM DESCRIPTION

Init Client A process to accept client initialization data and write the data to the Data Server Shared Memory
area. The process receives the data in the form of an Init Req, reads the current MDI Status Data
from the Data Server Shared Memory area, modifies the current MDI Status Data based on the Init
Req data, and then writes the MDI Status Data back to the Data Server Shared Memory.

Record
Heartbeat

A process to accept client heartbeat data and write the data to the Data Server Shared Memory
area. The process receives the data in the form of a HB Req, reads the current MDI Status Data
from the Data Server Shared Memory area, modifies the current MDI Status Data based on the HB
Req data, and then writes the MDI Status Data back to the Data Server Shared Memory.

Close Client A process to accept client close data and write the data to the Data Server Shared Memory area.
The process receives the data in the form of a Close Req, reads the current MDI Status Data from
the Data Server Shared Memory area, modifies the current MDI Status Data based on the Close
Req data, and then writes the MDI Status Data back to the Data Server Shared Memory.

The File Data process data flow diagram is shown in Figure 4.13. Specialized processes are used
to handle each of the requests. File data is stored in the Data Files area of the Data Server. The
File Data processes are described in more detail in Table 4.7.

Table 4.7. File Data Processes

ITEM DESCRIPTION

Delete File A process to handle a File Delete Req. The File Delete Req contains the name of the file to
delete. The process deletes the file from the Data Server Data Files area.

File List A process to retrieve a directory listing of the Data Server Data Files area.  The listing is
obtained and sent back to the client.



Data Server 45 System Design Document

ITEM DESCRIPTION

Query File Time A process to determine the time a file was last written. The name of the file is contained in
the File Time Req. The time of the file is determined from the file in the Data Server Data
Files area and the time is returned to the client in the form of File Data.

Read File A process to accept a File Read Req and read the specified file from the Data Server Data
Files area and return the file to the client. The File Read Req specifies the name of the file to
read. The file is read and sent to the client in the form of File Data.

Write File A process to receive a file write request and write the data to the specified file in the Data
Server Data Files area. The File Write Req contains the file name and the file data. The File
Data is extracted and written to the Data Files area.

The Railroad Data process data flow diagram is shown in Figure 4.14. The railroad data is stored
in the Data Server Shared Memory. A description of each of the Railroad Data processes is
provided in Table 4.8.

1.4.1.2.3.1
Write
File

1.4.1.2.3.2
Read
File

1.4.1.2.3.3
Delete
File

1.4.1.2.3.4
Query
File Time

Data Files

1.4.1.2.3.5
File
List

File Data

File Data File Data

File Data Req

File Data

File Write
Req File Read Req

File Delete
Req File Time Req

File Data

File Data

File List Req

File Data

Figure 4.13. File Data Data Flow Diagram



Data Server 46 System Design Document

1.4.1.2.5.1
Write
RRC

1.4.1.2.5.2
Write
RRS

Data Server RRC File

1.4.1.2.5.3
Read
RRC

1.4.1.2.5.4
Read
RRS

Data Server RRS File

RR Data Write
Req

RRC Write Req RRS Data Write
Req

RRC Data RRS Data

AWARD Data AWARD Data

RRS DataRRC Data

Figure 4.14  Railroad Data Data Flow Diagram

Table 4.8. Railroad Data Processes

ITEM DESCRIPTION

Read RRC The Read RRC process obtains the RRC data from the RRC data file and sends it to the client.

Read RRS The Read RRS process obtains the RRS data from the RRS data file and sends it to the client.

Write RRC The Write RRC process receives a RRC Write request, extracts the RRC Data, and writes the data
to the Data Server RRC Data File.

Write RRS The Write RRS process receives a RRS Write request, extracts the RRS Data, and writes the data
to the Data Server Shared Memory area.

4.3.1.2 Model Design

The primary functions of the Data Server subsystem are:

• create and initialize the Data Server shared memory,
• accept connections from client processes, and
• process client requests.



Data Server 47 System Design Document

As was described in the previous section, the Data Server subsystem is actually two processes: The
Data Server Main process, and the Client Request process. The Data Server Main process carries
out the first two functions listed above, then creates the Client Request processes to perform the
third function.

The Data Server Main process structure chart is shown in Figure 4.15. The main function calls
functions which create the Data Server Shared Memory and perform communication initialization
so that clients can connect. It then waits for client connections using the sock accept function.
When a client connects, the Data Server Main process uses the UNIX fork command to create a
child process. This child process is the Client Request process and is dedicated to communicating
with the client (refer to Section 4.3.1.1 for a discussion of the Client Request process). The Data
Server Main process then waits for another connection and the sequence of steps is repeated. The
functions shown in Figure 4.15 are described in more detail in Table 4.9.



Data Server 48 System Design Document

main

dataserver
check timeout 
values

dataserver
send 
heartbeat

process
status 
get status

dataserver
init 
socket

sock
accept

fork

select

dataserver
initialize

ds
signal 
setup

process
status config 
with logge

dataserver
init shared 
memory

setpgidgetpid

atexit
dataserver
exit 
handler

sigset

gethostname

strncpy

ph
connect

process
status 
message

FD_ZERO

FD_SET

process
status set 
status type v

waitpid

status
logger 
disconnect

close
status
logger 
connect

child

Figure 4.15. Data Server Structure Chart



Data Server 49 System Design Document

Table 4.9. Data Server Functions

ITEM DESCRIPTION

atexit C Library Function used to register routines to be called on normal
termination of a program.

child Process that is created by the main Data Server process to handle a single
Data Server client. The child process closes its accept socket and
communicates with the client over the newly-created socket. The child
process must also establish its own connection with the Status Logger
process to record status information.

close C Library Function to close a file descriptor. The descriptor can be for a
variety of things, including a file or socket.

dataserver check timeout values Function to check the current status of the data timeout values. These
values are used to keep track of the time that has elapsed since a
particular type of data has been received by the Data Server. If the elapsed
time exceeds a threshold, the data is cleared to its default value.

dataserver exit handler Called when the Data Server process exits.  This routine is responsible for
performing the housekeeping necessary for a graceful shutdown.  This
includes killing any child processes and disconnecting from other
processes.

dataserver init shared memory Function to initialize the Data Server shared memory segments.

dataserver init socket Function to setup the Data Server shared memory segments.

dataserver initialize Function to initialize the Data Server process.

dataserver send heartbeat Function to send a heartbeat message to the subsystem heartbeat process.

ds signal setup Data Server Subsystem Common Library function that sets a common
signal handler routine for all catchable signals.

FD_SET C Library Macro to add a socket descriptor to a select set.

FD_ZERO C Library Macro to clear a select set.

fork C Library Function that creates a child process that is an exact duplicate
of the current process.

gethostname C Library Function which returns a string containing the name of the host
machine.

getpid C Library Function to retrieve the process identifier of the calling process.

main The main function for the Data Server Subsystem. The function initializes
the subsystem shared memory and the accept socket that will be used by
clients to connect with the Data Server. When a client connects, the Data
Server process creates a child process to handle the connection with the
client. Before creating the child process, the main process disconnects
with the Status Logger so that the child and parent can have seperate
connections with the Status Logger. The main process also sends heartbeat
information to the subsystem heartbeat process periodically.

ph connect MDI Process Heartbeat Common Library routine used to connect to the
specified process-level heartbeat service.  The host name and service
name are used to make the connection.



Data Server 50 System Design Document

ITEM DESCRIPTION

process status config with logge process_status_config_with_logger is an MDI Process Status Common
Library routine used to configure the process status handling for the
process.  This routine is used to set up the connection to the status logger
used by the calling program.

process status get status MDI Process Status Common Library routine used to obtain the most
severe process-level status. This is an aggregation of the status for each of
the status types defined for the process.

process status message MDI Proces Status Common Library routine used to log a status message
for the specified status type. If the process status library was configured to
use a status logger, then the message is forwarded to the status logger.
Otherwise the message is written to the configured status log file.
process_status_message will also keep track of the current status value of
the status type specified by the caller so that the current status can be
retrieved later.

process status set status type v process_status_set_status_type_value is used to set the value associated
with the specified status type.

select C Library Function used to multiplex synchronous I/O.  The list of file
descriptors for reading, writing, and receiving exceptions are examined
and any file descriptors that are ready for reading, writing, or have an
exceptional condition pending are identified.

setpgid C Library Function to set the process group identifier of the calling
process.

sigset C Library Function used to modify the disposition of a signal. The signal
can be caught, ignored, or returned to the default disposition.

sock accept MDI Socket Common Library routine that accepts a connection on the
specified socket.

status logger connect MDI Status Logger Common Library routine to connect with the status
logger process.

status logger disconnect MDI Status Logger Common Library routine to close the connection with
the status logger process.

strncpy C Library Function used to copy a specified number of bytes from one
string to another.

waitpid C Library Function that waits for a child process to terminate. The
function returns the process identifier of the child that terminated.

The dataserver_ exit_handler function is called when the Data Server process exits.  This routine is
responsible for performing the housekeeping necessary for a graceful shutdown.  This includes
killing any child processes and disconnecting from other processes.  The dataserver_exit_handler
structure chart is shown in Figure 4.16.



Data Server 51 System Design Document

dataserver
exit 
handler

dataserver
kill 
children

sigset
sock
close

process
status 
message

dataserver
init process 
status

Figure 4.16 dataserver_exit_handler Structure Chart

The functions called by dataserver_exit_handler are described in more detail in Table 4.10.

Table 4.10 dataserver_exit_handler Functions

ITEM DESCRIPTION

dataserver init process status Function to initialize the entry in the Data Server process status shared
memory segment which stores the status of each of the subsystems that are
connected with the Data Server process.

dataserver kill children Function to kill all children of the Data Server process.

process status message MDI Proces Status Common Library routine used to log a status message for
the specified status type. If the process status library was configured to use a
status logger, then the message is forwarded to the status logger. Otherwise
the message is written to the configured status log file.
process_status_message will also keep track of the current status value of the
status type specified by the caller so that the current status can be retrieved
later.

sigset C Library Function used to modify the disposition of a signal. The signal can
be caught, ignored, or returned to the default disposition.

sock close MDI Socket Common Library routine used to close the specified socket
connection.

The dataserver_kill_children function kills all children of the Data Server process.  The
dataserver_kill_children structure chart is shown in Figure 4.17.



Data Server 52 System Design Document

dataserver
kill 
children

process
status 
message

getpid kill

Figure 4.17 dataserver_kill_children Structure Chart

The functions called by dataserver_kill_children are described in more detail in Table 4.11.

Table 4.11 dataserver_kill_children Functions

ITEM DESCRIPTION

getpid C Library Function to retrieve the process identifier of the calling process.

Kill C Library Function to send a SIGTERM signal to a process.

process status message MDI Proces Status Common Library routine used to log a status message for the
specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the message is
written to the configured status log file. process_status_message will also keep track
of the current status value of the status type specified by the caller so that the current
status can be retrieved later.

The dataserver_init_process_status function initializes the entry in the Data Server process status
shared memory segment which stores the status of each of the subsystems that are connected with
the Data Server process.  The dataserver_init_process_status structure chart is shown in Figure
4.18.

dataserver
init process 
status

write
segment 
element

Figure 4.18 dataserver_init_process_status Structure Chart

The function called by dataserver_init_process_status is described in more detail in Table 4.12.



Data Server 53 System Design Document

Table 4.12 dataserver_init_process_status Function

ITEM DESCRIPTION

write segment element MDI Shared Memory Manager Common Library function to write information
to a specific element in a shared memory segment.  In this case the shared
memory segment is viewed as an array of elements.

The ds_signal_setup function is a Data Server Subsystem Common Library function that sets a
common signal handler routine for all catchable signals.  The ds_signal_setup structure chart is
shown in Figure 4.19.

ds
signal 
setup

sigset

Figure 4.19 ds_signal_setup Structure Chart

The function called by ds_signal_setup is described in more detail in Table 4.13.

Table 4.13 ds_signal_setup Function

ITEM DESCRIPTION

sigset C Library Function used to modify the disposition of a signal. The signal can be caught,
ignored, or returned to the default disposition.

The dataserver_initialize function initializes the Data Server process.  The dataserver_initialize
structure chart is shown in Figure 4.20.



Data Server 54 System Design Document

dataserver
initialize

ds cfg
load 
cfg data

Figure 4.20 dataserver_initialize Structure Chart

The function called by dataserver_initialize is described in more detail in Table 4.14.

Table 4.14 dataserver_initialize Function

ITEM DESCRIPTION

ds cfg load cfg data Data Server Configuration Library routine to read the configuration data and store it in a
table passed by the caller.

The ds_cfg_load_cfg_data function is a Data Server Configuration Library routine to read the
configuration data and store it in a table passed by the caller.  The ds_cfg_load_cfg_data structure
chart is shown in Figure 4.21.

ds cfg
load 
cfg data

cfg load
configuration 
data

gethostname
cfg
get 
value

getservbyname

Figure 4.21 ds_cfg_load_cfg_data Structure Chart

The functions called by ds_cfg_load_cfg_data are described in more detail in Table 4.15.

Table 4.15 ds_cfg_load_cfg_data Functions

ITEM DESCRIPTION

cfg get value MDI Configuration File Common Library routine used to return the value of the
specified configuration name.



Data Server 55 System Design Document

ITEM DESCRIPTION

cfg load configuration data MDI Configuration File Common Library routine used to read the configuration
name-value pairs from the specified configuration file.  These name-value pairs
are loaded into memory so they can be accessed on demand by the calling
program.

gethostname C Library Function which returns a string containing the name of the host
machine.

getservbyname C Library Function used to obtain an entry for the specified Internet service.

The dataserver_init_shared_memory function initializes the Data Server shared memory segments.
The dataserver_init_shared_memory structure chart is shown in Figure 4.22.

dataserver
init shared 
memory

config
shm 
mgr

process
status 
message

dataserver
create 
segment

dataserver
init status 
segment

dataserver
init timeout 
segment

Figure 4.22 dataserver_init_shared_memory Structure Chart

The functions called by dataserver_init_shared_memory are described in more detail in Table 4.16.

Table 4.16 dataserver_init_shared_memory Functions

ITEM DESCRIPTION

config shm mgr MDI Shared Memory Manager Common Library routine used to initialize
and configure the shared memory manager library routines for the calling
program.

dataserver create segment Function to create a shared memory segment. If the segment already exists
of the correct size, the function simply attaches to the segment. If the
segment exists and is the wrong size, an error is returned. If the segment
does not exist, the function creates it.

dataserver init status segment Function to initialize the Data Server status shared memory segment,
which is used to store the status of each of the subsystems that are attached
to the Data Server. The function initializes the segment by initializing the
individual elements within the segment.

dataserver init timeout segment Function to initialize the Data Server timeout segment which is used to
keep track of the elapsed time since an update of each kind of data has
been received. This function initializes the segment by initializing the
individual elements within the segment.



Data Server 56 System Design Document

ITEM DESCRIPTION

process status message MDI Proces Status Common Library routine used to log a status message
for the specified status type. If the process status library was configured to
use a status logger, then the message is forwarded to the status logger.
Otherwise the message is written to the configured status log file.
process_status_message will also keep track of the current status value of
the status type specified by the caller so that the current status can be
retrieved later.

The dataserver_create_segment function creates a shared memory segment. If the segment already
exists of the correct size, the function simply attaches to the segment. If the segment exists and is
the wrong size, an error is returned. If the segment does not exist, the function creates it.  The
dataserver_create_segment structure chart is shown in Figure 4.23.

dataserver
create 
segment

segment
exists

create
segment

sizeof
segment

attach
to 
segment

Figure 4.23 dataserver_create_segment Structure Chart

The functions called by dataserver_create_segment are described in more detail in Table 4.17.

Table 4.17 dataserver_create_segment Functions

ITEM DESCRIPTION

attach to segment MDI Shared Memory Manager Common Library routine used to attach the calling
process to the specified shared memory segment.

create segment MDI Shared Memory Manager Common Library routine used to create a shared
memory segment of the specified size.  The shared memory segment is
automatically attached to the calling process.

segment exists MDI Shared Memory Manager Common Library routine to test for the existence
of the specified shared memory segment.

sizeof segment MDI Shared Memory Manager Common Library routine used to obtain the size in
bytes of the specified shared memory segment.

The dataserver_init_status_segment function initializes the Data Server status shared memory
segment, which is used to store the status of each of the subsystems that are attached to the Data
Server. The function initializes the segment by initializing the individual elements within the
segment.  The dataserver_init_status_segment structure chart is shown in Figure 4.24.



Data Server 57 System Design Document

dataserver
init status 
segment

dataserver
init process 
status

Figure 4.24 dataserver_init_status_segment Structure Chart

The function called by dataserver_init_status_segment is described in more detail in Table 4.18.

Table 4.18 dataserver_init_status_segment Function

ITEM DESCRIPTION

dataserver init process status Function to initialize the entry in the Data Server process status shared
memory segment which stores the status of each of the subsystems that are
connected with the Data Server process.

The dataserver_init_timeout_segment function initializes the Data Server timeout segment which is
used to keep track of the elapsed time since an update of each kind of data has been received. This
function initializes the segment by initializing the individual elements within the segment.  The
dataserver_init_timeout_segment structure chart is shown in Figure 4.25.

dataserver
init timeout 
segment

write
segment 
element

Figure 4.25 dataserver_init_timeout_segment Structure Chart

The function called by dataserver_init_timeout_segment is described in more detail in Table 4.19.



Data Server 58 System Design Document

Table 4.19 dataserver_init_timeout_segment Function

ITEM DESCRIPTION

write segment element MDI Shared Memory Manager Common Library function to write
information to a specific element in a shared memory segment.  In this case
the shared memory segment is viewed as an array of elements.

The dataserver_send_heartbeat function sends a heartbeat message to the subsystem heartbeat
process.  The dataserver_send_heartbeat structure chart is shown in Figure 4.26.

dataserver
send 
heartbeat

ph send
heartbeat

gethostname
ph
connect

ph send
heartbeat

Figure 4.26 dataserver_send_heartbeat Structure Chart

The functions called by dataserver_send_heartbeat are described in more detail in Table 4.20.

Table 4.20 dataserver_send_heartbeat Functions

ITEM DESCRIPTION

gethostname C Library Function which returns a string containing the name of the host
machine.

ph connect MDI Process Heartbeat Common Library routine used to connect to the specified
process-level heartbeat service.  The host name and service name are used to
make the connection.

ph send heartbeat MDI Process Heartbeat Common Library routine used to send the specified status
value to the heartbeat service configured by the ph_connect call.

ph send heartbeat MDI Process Heartbeat Common Library routine used to send the specified status
value to the heartbeat service configured by the ph_connect call.

The dataserver_check_timeout_values function checks the current status of the data timeout
values. These values are used to keep track of the time that has elapsed since a particular type of
data has been received by the Data Server. If the elapsed time exceeds a threshold, the data is
cleared to its default value.  The dataserver_check_timeout_values structure chart is shown in
Figure 4.27.



Data Server 59 System Design Document

dataserver
check timeout 
values

read
segment 
element

dataserver
clear incident 
data

dataserver
update data 
time

dataserver
clear 
equipment data

dataserver
clear link 
data

dataserver
clear rrs 
data

dataserver
clear rrc 
data

Figure 4.27 dataserver_check_timeout_values Structure Chart

The functions called by dataserver_check_timeout_values are described in more detail in Table
4.21.

Table 4.21 dataserver_check_timeout_values Functions

ITEM DESCRIPTION

dataserver clear equipment data Function to clear equipment data.  The function is passed the type of
equipment data to clear and then clears the data by deleting the equipment
data file of that type.

dataserver clear incident data Function to clear incident data. The function is passed the type of incident
data to clear and then clears the data by deleting the incident data file of
that type.

dataserver clear link data Function to clear link data. The function is passed the type of link data to
clear and then clears the data by resetting the values of the link shared
memory segment.

dataserver clear rrc data Function to clear railroad crossing data. The function clears the data by
deleting the railroad crossing data file.

dataserver clear rrs data Function to clear railroad sensor data. The function clears the data by
deleting the railroad sensor data file.

dataserver update data time Function to update the Data Server timeout shared memory segment.



Data Server 60 System Design Document

ITEM DESCRIPTION

read segment element MDI Shared Memory Manager routine to read the contents of a specified
shared memory segment element.  The contents are stored in a memory
area allocated by the caller.

The dataserver_clear_incident_data function clears incident data. The function is passed the type
of incident data to clear and then clears the data by deleting the incident data file of that type.  The
dataserver_clear_incident_data structure chart is shown in Figure 4.28.

dataserver
clear incident 
data

ds
delete 
file

Figure 4.28 dataserver_clear_incident_data Structure Chart

The function called by dataserver_clear_incident_data described in more detail in Table 4.22.

Table 4.22 dataserver_clear_incident_data Function

ITEM DESCRIPTION

ds delete file Data Server Subsystem Common Library routine to delete a file from the
Data Server.

The ds_delete_file function is a Data Server Subsystem Common Library routine to delete a file
from the Data Server.  The ds_delete_file structure chart is shown in Figure 4.29.



Data Server 61 System Design Document

ds
delete 
file

remove

Figure 4.29 ds_delete_file Structure Chart

The function called by ds_delete_file is described in more detail in Table 4.23.

Table 4.23 ds_delete_file Function

ITEM DESCRIPTION

remove C Library Function to remove a file.

The dataserver_init_socket function sets up the Data Server shared memory segments The
dataserver_init_socket structure chart is shown in Figure 4.30.

dataserver
init 
socket

cfg
get 
value

process
status 
message

sock get
service 
port

sock
listen 
with reuse

Figure 4.30 dataserver_init_socket Structure Chart

The functions called by dataserver_init_socket are described in more detail in Table 4.24.



Data Server 62 System Design Document

Table 4.24 dataserver_init_socket Functions

ITEM DESCRIPTION

cfg get value MDI Configuration File Common Library routine used to return the value of the
specified configuration name.

process status message MDI Proces Status Common Library routine used to log a status message for the
specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the message is
written to the configured status log file. process_status_message will also keep track
of the current status value of the status type specified by the caller so that the current
status can be retrieved later.

sock get service port MDI Socket Common Library routine that returns the port number associated with
the specified service name.

sock listen with reuse MDI Socket Common Library routine used to set up a socket to listen for connections
and to make the socket address reusable.

The dataserver_update_data_time function updates the Data Server timeout shared memory
segment.  The dataserver_update_data_time structure chart is shown in Figure 4.31.

dataserver
update data 
time

write
segment 
element

Figure 4.31 dataserver_update_data_time Structure Chart

The function called by dataserver_update_data_time is described in more detail in Table 4.25.

Table 4.25 dataserver_update_data_time Function

ITEM DESCRIPTION

write segment element MDI Shared Memory Manager Common Library function to write information
to a specific element in a shared memory segment.  In this case the shared
memory segment is viewed as an array of elements.

The dataserver_clear_equipment_data function clears equipment data. The function is passed the
type of equipment data to clear and then clears the data by deleting the equipment data file of that
type.  The dataserver_clear_equipment_data structure chart is shown in Figure 4.32.



Data Server 63 System Design Document

dataserver
clear 
equipment data

ds
delete 
file

Figure 4.32 dataserver_clear_equipment_data Structure Chart

The function called by dataserver_clear_equipment_data is described in more detail in Table 4.26.

Table 4.26 dataserver_clear_equipment_data Function

ITEM DESCRIPTION

ds delete file Data Server Subsystem Common Library routine to delete a file from the
Data Server.

The dataserver_clear_link_data function clears link data. The function is passed the type of link
data to clear and then clears the data by resetting the values of the link shared memory segment.
The dataserver_clear_link_data structure chart is shown in Figure 4.33.

dataserver
clear link 
data

malloc
process
status 
message

memset
dataserver
determine 
link segmen

write
segment

Figure 4.33 dataserver_clear_link_data Structure Chart

The functions called by dataserver_clear_link_data are described in more detail in Table 4.27.



Data Server 64 System Design Document

Table 4.27 dataserver_clear_link_data Functions

ITEM DESCRIPTION

dataserver determine link segmen Function to determine the shared memory segment identifier based on
the type of link data. The function returns the link segment identifier.

malloc C Library Function to allocate the specified amount of memory.

memset C Library Function used to set an area of memory to a specified value.

process status message MDI Proces Status Common Library routine used to log a status
message for the specified status type. If the process status library was
configured to use a status logger, then the message is forwarded to the
status logger. Otherwise the message is written to the configured status
log file. process_status_message will also keep track of the current
status value of the status type specified by the caller so that the current
status can be retrieved later.

write segment MDI Shared Memory Manager Common Library routine that writes data
to the specified shared memory segment.

The dataserver_clear_rrs_data function clears railroad sensor data. The function clears the data by
deleting the railroad sensor data file.  The dataserver_clear_rrs_data structure chart is shown in
Figure 4.34.

dataserver
clear rrs 
data

ds
delete 
file

Figure 4.34 dataserver_clear_rrs_data Structure Chart

The function called by dataserver_clear_rrs_data is described in more detail in Table 4.28.

Table 4.28 dataserver_clear_rrs_data Function

ITEM DESCRIPTION

ds delete file Data Server Subsystem Common Library routine to delete a file from the Data
Server.



Data Server 65 System Design Document

The dataserver_clear_rrc_data function clears railroad crossing data. The function clears the data
by deleting the railroad crossing data file.  The dataserver_clear_rrc_data structure chart is shown
in Figure 4.35.

dataserver
clear rrc 
data

ds
delete 
file

Figure 4.35 dataserver_clear_rrc_data Structure Chart

The function called by dataserver_clear_rrc_data is described in more detail in Table 4.29.

Table 4.29 dataserver_clear_rrc_data Function

ITEM DESCRIPTION

ds delete file Data Server Subsystem Common Library routine to delete a file from the Data
Server.

The child function is a process that is created by the main Data Server process to handle a single
Data Server client. The child process closes its accept socket and communicates with the client
over the newly-created socket. The child process must also establish its own connection with the
Status Logger process to record status information.  The child structure chart is shown in Figure
4.36.



Data Server 66 System Design Document

child

close

status
logger 
connect

setpgidgetppid
process
status 
message

dataserver
process 
client reques

status
logger 
disconnect

Figure 4.36 child Structure Chart

The functions called by child are described in more detail in Table 4.30.

Table 4.30 child Functions

ITEM DESCRIPTION

close C Library Function to close a file descriptor. The descriptor can be for a
variety of things, including a file or socket.

dataserver process client reques Function to process a client request by reading the request, the size of the
data sent along with the request, the data sent along with the request, and
calling a specialized function to process the request. The function that is
called to handle the request is determined by examining the request type.
When the request has been processed by the specialized function, the
status data of the client is updated to indicate the time and number of the
request.

getppid C Library Function that returns the process identifier of the parent of the
calling process.

process status message MDI Proces Status Common Library routine used to log a status message
for the specified status type. If the process status library was configured to
use a status logger, then the message is forwarded to the status logger.
Otherwise the message is written to the configured status log file.
process_status_message will also keep track of the current status value of
the status type specified by the caller so that the current status can be
retrieved later.

setpgid C Library Function to set the process group identifier of the calling
process.

status logger connect MDI Status Logger Common Library routine to connect with the status
logger process.



Data Server 67 System Design Document

ITEM DESCRIPTION

status logger disconnect MDI Status Logger Common Library routine to close the connection with
the status logger process.

The dataserver_process_client_request function processes a client request by reading the request,
the size of the data sent along with the request, the data sent along with the request, and calling a
specialized function to process the request. The function that is called to handle the request is
determined by examining the request type. When the request has been processed by the specialized
function, the status data of the client is updated to indicate the time and number of the request.
The dataserver_process_client_request structure chart is shown in Figure 4.37.



Data Server 68 System Design Document

read
segment 
element

dataserver
write 
status

dataserver
read 
request

dataserver
process 
init

write
segment 
element

dataserver
process 
close

dataserver
process 
hb

dataserver
process 
link write

dataserver
process 
incident writ

dataserver
process 
rrs write

dataserver
process 
rrc write

dataserver
process 
file write

dataserver
process file 
delete

dataserver
process 
file read

dataserver
process 
file time

dataserver
init process 
status

dataserver
process 
client reques

process
status 
message

time

dataserver
read 
data

dataserver
process 
rrc read

dataserver
process 
link read

dataserver
process 
incident read

dataserver
process 
rrs read

dataserver
process 
file list

dataserver
process 
status read

dataserver
process 
equipment wri

dataserver
process 
equipment rea

Figure 4.37 dataserver_process_client_requests Structure Chart

The functions called by dataserver_process_client_requests are described in more detail in Table
4.31.



Data Server 69 System Design Document

Table 4.31 dataserver_process_client_requests Functions

ITEM DESCRIPTION

dataserver init process status Function to initialize the entry in the Data Server process status shared
memory segment which stores the status of each of the subsystems that
are connected with the Data Server process.

dataserver process close Function to process a close request from the client. The client sends a
client id and the function clears the clients' status area in the Data Server
status area shared memory segment. The function returns the status of
the operation to the client.

dataserver process equipment rea Function that processes an equipment status read request. The function
obtains the status of the specified equipment by reading the appropriate
data file and sends the status to the client. The function can handle a
request for a single type of equipment or for all types of equipment.

dataserver process equipment wri Function to process an equipment status write request. The client
specifies the type of equipment and the function writes the status to the
appropriate equipment status file in the Data Server data file area.

dataserver process file delete Function that processes a client file delete request. The client specifies
the file that is to be deleted and the function deletes the file from the
Data Server Data File area.

dataserver process file list Function to obtain a directory-style listing of the data files that are
available. The function returns a list of file names and times to the
client.

dataserver process file read Function that processes a client file read request. The client specifies the
file name and the function reads the file from the Data Server Data File
area and sends the file data directly to the client.

dataserver process file time Function to process a request to obtain the file time. The client sends the
name of the file and the function determines the last time the file was
modified and returns the time directly to the client.

dataserver process file write Function to process a client file write request. The function reads the
data from the client, creates a file in the Data Server data file area, and
writes the file.

dataserver process hb Function to Process a heartbeat request from the client. The client sends
a client id and their current status which are used to update the clients'
status area in the Data Server status area shared memory segment. The
function sends the status of the operation to the client.

dataserver process incident read Function that processes an incident read request from the client. The
function reads the incident data specified by the client and sends the size
of the data followed by the data itself to the client. The function can read
a single type of incident data or all incident data.

dataserver process incident writ Function that processes an incident write request from the client. The
client sends the size of the incident data and the incident data itself. The
function reads the incident data directly from the client and stores it in
one of the Data Server incident data files.

dataserver process init Function to handle a client initialization request. The function updates
the clients status in the Data Server status shared memory segment. The
function returns the status of the operation to the client.



Data Server 70 System Design Document

ITEM DESCRIPTION

dataserver process link read Function to process a link read request. The function reads the data from
the Data Server link data shared memory segment, sends the status and
size of the data to the client, then sends the data to the client. The
function will handle requests for a single type of link data, or for all
types of link data.

dataserver process link write Function to process a link write request from the client. The client sends
the type of link data, the size of the link data, and the link data itself.
The function reads the link data, stores the data in the Data Server link
data shared memory segment, and returns the status of the operation to
the client.

dataserver process rrc read Function to process a railroad crossing read request from the client. The
function reads the data from the Data Server railroad crossing data file
and sends it to the client.

dataserver process rrc write Function to process a railroad crossing write request from the client. The
client sends the rrc record and the function stores it in the Data Server
railroad crossing data file.

dataserver process rrs read Function to process a railroad sensor read request from the client. The
function reads the data from the Data Server railroad sensor data file and
sends it to the client.

dataserver process rrs write Function to process a railroad sensor write request from the client. The
client sends the rrs record and the function stores it in the Data Server
railroad sensor data file.

dataserver process status read Function to handle a client subsystem status request. The function
obtains the status of the specified subsystem and returns it to the client.

dataserver read data Function to read a specified amount of data from the client process.

dataserver read request Function to read a request identifier and the number of bytes of data
being sent in the request from the client.

dataserver write status Function to send a return status to the client process.

process status message MDI Proces Status Common Library routine used to log a status message
for the specified status type. If the process status library was configured
to use a status logger, then the message is forwarded to the status logger.
Otherwise the message is written to the configured status log file.
process_status_message will also keep track of the current status value
of the status type specified by the caller so that the current status can be
retrieved later.

read segment element MDI Shared Memory Manager routine to read the contents of a specified
shared memory segment element.  The contents are stored in a memory
area allocated by the caller.

time C Library Function that returns the time in UNIX calendar format (i.e.,
number of seconds since January 1, 1970 UTC).

write segment element MDI Shared Memory Manager Common Library function to write
information to a specific element in a shared memory segment.  In this
case the shared memory segment is viewed as an array of elements.

The dataserver_read_request function reads a request identifier and the number of bytes of data
being sent in the request from the client.  The dataserver_read_request structure chart is shown in
Figure 4.38.



Data Server 71 System Design Document

dataserver
read 
request

sock
readn

process
status 
message

Figure 4.38 dataserver_read_request Structure Chart

The functions called by dataserver_read_request are described in more detail in Table 4.32.

Table 4.32 dataserver_read_request Functions

ITEM DESCRIPTION

process status message MDI Proces Status Common Library routine used to log a status message for the
specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the message is
written to the configured status log file. process_status_message will also keep track
of the current status value of the status type specified by the caller so that the current
status can be retrieved later.

sock readn MDI Socket Common Library routine that reads a specified number of bytes from the
specified socket.

The dataserver_write_status function sends a return status to the client process. The
dataserver_write_status structure chart is shown in Figure 4.39.

dataserver
write 
status

sock
writen

process
status 
message

Figure 4.39 dataserver_write_status Structure Chart

The functions called by dataserver_write_status are described in more detail in Table 4.33.



Data Server 72 System Design Document

Table 4.33 dataserver_write_status Functions

ITEM DESCRIPTION

process status message MDI Proces Status Common Library routine used to log a status message for the
specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the message is
written to the configured status log file. process_status_message will also keep track
of the current status value of the status type specified by the caller so that the current
status can be retrieved later.

sock writen MDI Socket Common Library routine used to write a specified number of bytes to a
specified socket.

The dataserver_read_data function reads a specified amount of data from the client process.  The
dataserver_read_data structure chart is shown in Figure 4.40.

dataserver
read 
data

sock
readn

process
status 
message

Figure 4.40 dataserver_read_data Structure Chart

The functions called by dataserver_read_data are described in more detail in Table 4.34.

Table 4.34 dataserver_read_data Functions

ITEM DESCRIPTION

process status message MDI Proces Status Common Library routine used to log a status message for the
specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the message is
written to the configured status log file. process_status_message will also keep track
of the current status value of the status type specified by the caller so that the current
status can be retrieved later.

sock readn MDI Socket Common Library routine that reads a specified number of bytes from the
specified socket.

The dataserver_process_init function handles a client initialization request. The function updates
the client’s status in the Data Server status shared memory segment. The function returns the
status of the operation to the client.  The dataserver_process_init structure chart is shown in Figure
4.41.



Data Server 73 System Design Document

dataserver
process 
init

read
segment 
element

process
status 
message

write
segment 
element

dataserver
write 
status

Figure 4.41 dataserver_process_init Structure Chart

The functions called by dataserver_process_init are described in more detail in Table 4.35.

Table 4.35 dataserver_process_init Functions

ITEM DESCRIPTION

dataserver write status Function to send a return status to the client process.

process status message MDI Proces Status Common Library routine used to log a status message for the
specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the message is
written to the configured status log file. process_status_message will also keep track
of the current status value of the status type specified by the caller so that the current
status can be retrieved later.

read segment element MDI Shared Memory Manager routine to read the contents of a specified shared
memory segment element.  The contents are stored in a memory area allocated by the
caller.

write segment element MDI Shared Memory Manager Common Library function to write information to a
specific element in a shared memory segment.  In this case the shared memory
segment is viewed as an array of elements.

The dataserver_process_close function processes a close request from the client. The client sends a
client id and the function clears the client’s status area in the Data Server status area shared
memory segment. The function returns the status of the operation to the client.  The
dataserver_process_close structure chart is shown in Figure 4.42.



Data Server 74 System Design Document

dataserver
process 
close

dataserver
init process 
status

dataserver
write 
status

Figure 4.42 dataserver_process_close Structure Chart

The functions called by dataserver_process_close are described in more detail in Table 4.36.

Table 4.36 dataserver_process_close Functions

ITEM DESCRIPTION

dataserver init process status Function to initialize the entry in the Data Server process status shared
memory segment which stores the status of each of the subsystems that are
connected with the Data Server process.

dataserver write status Function to send a return status to the client process.

The dataserver_process_hb function processes a heartbeat request from the client. The client sends
a client id and its current status which are used to update the client’s status area in the Data Server
status area shared memory segment. The function sends the status of the operation to the client.
The dataserver_process_hb structure chart is shown in Figure 4.43.

dataserver
process 
hb

process
status 
message

read
segment 
element

write
segment 
element

dataserver
write 
status

Figure 4.43 dataserver_process_hb Structure Chart

The functions called by dataserver_process_hb are described in more detail in Table 4.37.



Data Server 75 System Design Document

Table 4.37 dataserver_process_hb Functions

ITEM DESCRIPTION

dataserver write status Function to send a return status to the client process.

process status message MDI Proces Status Common Library routine used to log a status message for the
specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the message is
written to the configured status log file. process_status_message will also keep track
of the current status value of the status type specified by the caller so that the current
status can be retrieved later.

read segment element MDI Shared Memory Manager routine to read the contents of a specified shared
memory segment element.  The contents are stored in a memory area allocated by the
caller.

write segment element MDI Shared Memory Manager Common Library function to write information to a
specific element in a shared memory segment.  In this case the shared memory
segment is viewed as an array of elements.

The dataserver_process_link_write function processes a link write request from the client. The
client sends the type of link data, the size of the link data, and the link data itself. The function
reads the link data, stores the data in the Data Server link data shared memory segment, and
returns the status of the operation to the client.  The dataserver_process_link_write structure chart
is shown in Figure 4.44.

dataserver
process 
link write

malloc
process
status 
message

dataserver
read link 
data

dataserver
determine 
link segmen

write
segment

dataserver
write 
status

dataserver
update link 
time

Figure 4.44 dataserver_process_link_write Structure Chart

The functions called by dataserver_process_link_write are described in more detail in Table 4.38.

Table 4.38 dataserver_process_link_write Functions

ITEM DESCRIPTION

dataserver determine link segmen Function to determine the shared memory segment identifier based on
the type of link data. The function returns the link segment identifier.

dataserver read link data Function to read the link data from the client. The function reads the
number of bytes specified by the client and stores the data in a local
global array. Each link data is compressed from a structure to a single
byte.



Data Server 76 System Design Document

ITEM DESCRIPTION

dataserver update link time Function to update the link data timeout element in the Data Server
timeout shared memory segment.

dataserver write status Function to send a return status to the client process.

malloc C Library Function to allocate the specified amount of memory.

process status message MDI Proces Status Common Library routine used to log a status
message for the specified status type. If the process status library was
configured to use a status logger, then the message is forwarded to the
status logger. Otherwise the message is written to the configured status
log file. process_status_message will also keep track of the current
status value of the status type specified by the caller so that the current
status can be retrieved later.

write segment MDI Shared Memory Manager Common Library routine that writes data
to the specified shared memory segment.

The dataserver_read_link_data function reads the link data from the client. The function reads the
number of bytes specified by the client and stores the data in a local global array. Each link data is
compressed from a structure to a single byte.  The dataserver_read_link_data structure chart is
shown in Figure 4.45.

dataserver
read link 
data

sock
readn

process
status 
message

Figure 4.45 dataserver_read_link_data Structure Chart

The functions called by dataserver_read_link_data are described in more detail in Table 4.39.

Table 4.39 dataserver_read_link_data Functions

ITEM DESCRIPTION

process status message MDI Proces Status Common Library routine used to log a status message for the
specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the message
is written to the configured status log file. process_status_message will also keep
track of the current status value of the status type specified by the caller so that the
current status can be retrieved later.

sock readn MDI Socket Common Library routine that reads a specified number of bytes from
the specified socket.



Data Server 77 System Design Document

The dataserver_update_link_time function updates the link data timeout element in the Data Server
timeout shared memory segment.  The dataserver_update_link_time structure chart is shown in
Figure 4.46.

dataserver
update link 
time

time
dataserver
update data 
time

Figure 4.46 dataserver_update_link_time Structure Chart

The functions called by dataserver_update_link_time are described in more detail in Table 4.40.

Table 4.40 dataserver_update_link_time Functions

ITEM DESCRIPTION

dataserver update data time Function to update the Data Server timeout shared memory segment.

time C Library Function that returns the time in UNIX calendar format (i.e., number
of seconds since January 1, 1970 UTC).

The dataserver_update_data_time function updates the Data Server timeout shared memory
segment.  The dataserver_update_data_time structure chart is shown in Figure 4.47.

dataserver
update data 
time

write
segment 
element

Figure 4.47 dataserver_update_data_time Structure Chart

The function called by dataserver_update_data_time is described in more detail in Table 4.41.



Data Server 78 System Design Document

Table 4.41 dataserver_update_data_time Function

ITEM DESCRIPTION

write segment element MDI Shared Memory Manager Common Library function to write information
to a specific element in a shared memory segment.  In this case the shared
memory segment is viewed as an array of elements.

The dataserver_process_link_read function processes a link read request. The function reads the
data from the Data Server link data shared memory segment, sends the status and size of the data
to the client, then sends the data to the client. The function will handle requests for a single type of
link data, or for all types of link data.  The dataserver_process_link_read structure chart is shown
in Figure 4.48.

dataserver
process 
link read

malloc

process
status 
message

dataserver
read link 
segment

dataserver
determine 
link segmen

dataserver
write 
size

dataserver
write 
status

dataserver
write 
data

sizeof
segment

Figure 4.48 dataserver_process_link_read Structure Chart

The functions called by dataserver_process_link_read are described in more detail in Table 4.42.



Data Server 79 System Design Document

Table 4.42 dataserver_process_link_read Functions

ITEM DESCRIPTION

dataserver determine link segmen Function to determine the shared memory segment identifier based on
the type of link data. The function returns the link segment identifier.

dataserver read link segment Function to read link data from a Data Server link shared memory
segment and store the data in a local global array.

dataserver write data Function to write data to a client process.

dataserver write size Function to send a data size to the client process.

dataserver write status Function to send a return status to the client process.

malloc C Library Function to allocate the specified amount of memory.

process status message MDI Proces Status Common Library routine used to log a status
message for the specified status type. If the process status library was
configured to use a status logger, then the message is forwarded to the
status logger. Otherwise the message is written to the configured status
log file. process_status_message will also keep track of the current
status value of the status type specified by the caller so that the current
status can be retrieved later.

sizeof segment MDI Shared Memory Manager Common Library routine used to obtain
the size in bytes of the specified shared memory segment.

The dataserver_write_size function sends a data size to the client process.  The
dataserver_write_size structure chart is shown in Figure 4.49.

dataserver
write 
size

sock
writen

process
status 
message

Figure 4.49 dataserver_write_size Structure Chart

The functions called by dataserver_write_size are described in more detail in Table 4.43.



Data Server 80 System Design Document

Table 4.43 dataserver_write_size Functions

ITEM DESCRIPTION

process status message MDI Proces Status Common Library routine used to log a status message for the
specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the message is
written to the configured status log file. process_status_message will also keep track
of the current status value of the status type specified by the caller so that the current
status can be retrieved later.

sock writen MDI Socket Common Library routine used to write a specified number of bytes to a
specified socket.

The dataserver_read_link_segment function reads link data from a Data Server link shared memory
segment and stores the data in a local global array.  The dataserver_read_link_segment structure
chart is shown in Figure 4.50.

dataserver
read link 
segment

sizeof
segment

process
status 
message

read
segment

Figure 4.50 dataserver_read_link_segment Structure Chart

The functions called by dataserver_read_link_segment are described in more detail in Table 4.44.

Table 4.44 dataserver_read_link_segment Functions

ITEM DESCRIPTION

process status message MDI Proces Status Common Library routine used to log a status message for
the specified status type. If the process status library was configured to use a
status logger, then the message is forwarded to the status logger. Otherwise
the message is written to the configured status log file.
process_status_message will also keep track of the current status value of the
status type specified by the caller so that the current status can be retrieved
later.

read segment MDI Shared Memory Manager Common Library routine to read the contents
of the specified shared memory segment.  The contents are stored in a memory
area allocated by the caller.

sizeof segment MDI Shared Memory Manager Common Library routine used to obtain the
size in bytes of the specified shared memory segment.



Data Server 81 System Design Document

The dataserver_write_data function writes data to a client process.  The dataserver_write_data
structure chart is shown in Figure 4.51.

dataserver
write 
data

sock
writen

process
status 
message

Figure 4.51 dataserver_write_data Structure Chart

The functions called by dataserver_write_data are described in more detail in Table 4.45.

Table 4.45 dataserver_write_data Functions

ITEM DESCRIPTION

process status message MDI Proces Status Common Library routine used to log a status message for the
specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the message is
written to the configured status log file. process_status_message will also keep track
of the current status value of the status type specified by the caller so that the current
status can be retrieved later.

sock writen MDI Socket Common Library routine used to write a specified number of bytes to a
specified socket.

The dataserver_process_incident_write function processes an incident write request from the client.
The client sends the size of the incident data and the incident data itself. The function reads the
incident data directly from the client and stores it one of the Data Server incident data files.  The
dataserver_process_incident_write structure chart is shown in Figure 4.52.



Data Server 82 System Design Document

dataserver
process 
incident writ

process
status 
message

ds
open 
file

dataserver
write 
status

dataserver
write data 
file

dataserver
update 
incident time

Figure 4.52 dataserver_process_incident_write Structure Chart

The functions called by dataserver_process_incident_write are described in more detail in Table
4.46.

Table 4.46 dataserver_process_incident_write Functions

ITEM DESCRIPTION

dataserver update incident time Function to update the incident data timeout element in the Data Server
timeout shared memory segment.

dataserver write data file Function to write an open data file. The function reads the data from the
client process and writes it to the file.

dataserver write status Function to send a return status to the client process.

ds open file Data Server Subsystem File Library routine to open a file and return
statistics about the file.

process status message MDI Proces Status Common Library routine used to log a status message
for the specified status type. If the process status library was configured to
use a status logger, then the message is forwarded to the status logger.
Otherwise the message is written to the configured status log file.
process_status_message will also keep track of the current status value of
the status type specified by the caller so that the current status can be
retrieved later.

The ds_fopen_file function is a Data Server Subsystem File Library routine to open a file using
formatted I/O and return statistics about the file.  The ds_fopen_file structure chart is shown in
Figure 4.53.



Data Server 83 System Design Document

ds
fopen 
file

fopen stat

Figure 4.53 ds_fopen_file Structure Chart

The functions called by ds_fopen_file are described in more detail in Table 4.47.

Table 4.47 ds_fopen_file Functions

ITEM DESCRIPTION

fopen C Library Function to open a file.

stat C Library Function to obtain the status information about a file.

The dataserver_write_data_file function writes an open data file. The function reads the data from
the client process and writes it to the file.  The dataserver_write_data_file structure chart is shown
in Figure 4.54.

dataserver
write data 
file

dataserver
read 
data

process
status 
message

write

Figure 4.54 dataserver_write_data_file Structure Chart

The functions called by dataserver_write_data_file are described in more detail in Table 4.48.

Table 4.48 dataserver_write_data_file Functions

ITEM DESCRIPTION

dataserver read data Function to read a specified amount of data from the client process.



Data Server 84 System Design Document

ITEM DESCRIPTION

process status message MDI Proces Status Common Library routine used to log a status message for the
specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the message
is written to the configured status log file. process_status_message will also keep
track of the current status value of the status type specified by the caller so that the
current status can be retrieved later.

write C Library Function used to write data to a descriptor (e.g., socket, file).

The dataserver_update_incident_time function updates the incident data timeout element in the
Data Server timeout shared memory segment.  The dataserver_update_incident_time structure
chart is shown in Figure 4.55.

dataserver
update 
incident time

time
dataserver
update data 
time

Figure 4.55 dataserver_update_incident_time Structure Chart

The functions called by dataserver_update_incident_time are described in more detail in Table
4.49.

Table 4.49 dataserver_update_incident_time Functions

ITEM DESCRIPTION

dataserver update data time Function to update the Data Server timeout shared memory segment.

time C Library Function that returns the time in UNIX calendar format (i.e.,
number of seconds since January 1, 1970 UTC).

The dataserver_process_incident_read function processes an incident read request from the client.
The function reads the incident data specified by the client and sends the size of the data followed
by the data itself to the client. The function can read a single type of incident data or all incident
data.  The dataserver_process_incident_read structure chart is shown in Figure 4.56.



Data Server 85 System Design Document

dataserver
process 
incident read

ds
open 
file

dataserver
write 
status

dataserver
write 
size

dataserver
read data 
file

process
status 
message

close

Figure 4.56 dataserver_process_incident_read Structure Chart

The functions called by dataserver_process_incident_read are described in more detail in Table
4.50.

Table 4.50 dataserver_process_incident_read Functions

ITEM DESCRIPTION

close C Library Function to close a file descriptor. The descriptor can be for a
variety of things, including a file or socket.

dataserver read data file Function to read an open data file and send it to the client. The function
reads the data and writes it to the client socket.

dataserver write size Function to send a data size to the client process.

dataserver write status Function to send a return status to the client process.

ds open file Data Server Subsystem File Library routine to open a file and return
statistics about the file.

process status message MDI Proces Status Common Library routine used to log a status message
for the specified status type. If the process status library was configured to
use a status logger, then the message is forwarded to the status logger.
Otherwise the message is written to the configured status log file.
process_status_message will also keep track of the current status value of
the status type specified by the caller so that the current status can be
retrieved later.

The dataserver_read_data_file function reads an open data file and sends it to the client. The
function reads the data and writes it to the client socket.  The dataserver_read_data_file structure
chart is shown in Figure 4.57.



Data Server 86 System Design Document

dataserver
read data 
file

read
process
status 
message

dataserver
write 
data

Figure 4.57 dataserver_read_data_file Structure Chart

The functions called by dataserver_read_data_file are described in more detail in Table 4.51.

Table 4.51 dataserver_read_data_file Functions

ITEM DESCRIPTION

dataserver write data Function to write data to a client process.

process status message MDI Proces Status Common Library routine used to log a status message for the
specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the message is
written to the configured status log file. process_status_message will also keep track
of the current status value of the status type specified by the caller so that the
current status can be retrieved later.

read C Library Function used to read data from a descriptor (e.g., socket, file).

The dataserver_process_rrs_write function processes a railroad sensor write request from the
client. The client sends the rrs record and the function stores it in the Data Server railroad sensor
data file.  The dataserver_process_rrs_write structure chart is shown in Figure 4.58.

dataserver
process 
rrs write

process
status 
message

ds
open 
file

dataserver
write 
status

dataserver
write data 
file

dataserver
update 
rrs time

Figure 4.58 dataserver_process_rrs_write Structure Chart

The functions called by dataserver_process_rrs_write are described in more detail in Table 4.52.



Data Server 87 System Design Document

Table 4.52 dataserver_process_rrs_write Functions

ITEM DESCRIPTION

dataserver update rrs time Function to update the incident data timeout element in the Data Server timeout
shared memory segment.

dataserver write data file Function to write an open data file. The function reads the data from the client
process and writes it to the file.

dataserver write status Function to send a return status to the client process.

ds open file Data Server Subsystem File Library routine to open a file and return statistics
about the file.

process status message MDI Proces Status Common Library routine used to log a status message for the
specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the
message is written to the configured status log file. process_status_message will
also keep track of the current status value of the status type specified by the
caller so that the current status can be retrieved later.

The dataserver_update_rrs_time function updates the incident data timeout element in the Data
Server timeout shared memory segment.  The dataserver_update_rrs_time structure chart is shown
in Figure 4.59.

dataserver
update 
rrs time

time
dataserver
update data 
time

Figure 4.59 dataserver_update_rrs_time Structure Chart

The functions called by dataserver_update_rrs_time are described in more detail in Table 4.53.

Table 4.53 dataserver_update_rrs_time Functions

ITEM DESCRIPTION

dataserver update data time Function to update the Data Server timeout shared memory segment.

time C Library Function that returns the time in UNIX calendar format (i.e., number
of seconds since January 1, 1970 UTC).

The dataserver_process_rrs_read function processes a railroad sensor read request from the client.
The function reads the data from the Data Server railroad sensor data file and sends it to the client.
The dataserver_process_rrs_read structure chart is shown in Figure 4.60.



Data Server 88 System Design Document

dataserver
process 
rrs read

ds
open 
file

process
status 
message

dataserver
write 
status

dataserver
write 
size

dataserver
read data 
file

Figure 4.60 dataserver_process_rrs_read Structure Chart

The functions called by dataserver_process_rrs_read are described in more detail in Table 4.54.

Table 4.54 dataserver_process_rrs_read Functions

ITEM DESCRIPTION

dataserver read data file Function to read an open data file and send it to the client. The function reads
the data and writes it to the client socket.

dataserver write size Function to send a data size to the client process.

dataserver write status Function to send a return status to the client process.

ds open file Data Server Subsystem File Library routine to open a file and return statistics
about the file.

process status message MDI Proces Status Common Library routine used to log a status message for the
specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the
message is written to the configured status log file. process_status_message will
also keep track of the current status value of the status type specified by the
caller so that the current status can be retrieved later.

The dataserver_process_rrc_write function processes a railroad crossing write request from the
client. The client sends the rrc record and the function stores it in the Data Server railroad crossing
data file.  The dataserver_process_rrc_write structure chart is shown in Figure 4.61.



Data Server 89 System Design Document

dataserver
process 
rrc write

process
status 
message

ds
open 
file

dataserver
write 
status

dataserver
write data 
file

dataserver
update 
rrc time

Figure 4.61 dataserver_process_rrc_write Structure Chart

The functions called by dataserver_process_rrc_write are described in more detail in Table 4.55.

Table 4.55 dataserver_process_rrc_write Functions

ITEM DESCRIPTION

dataserver update rrc time Function to update the incident data timeout element in the Data Server timeout
shared memory segment.

dataserver write data file Function to write an open data file. The function reads the data from the client
process and writes it to the file.

dataserver write status Function to send a return status to the client process.

ds open file Data Server Subsystem File Library routine to open a file and return statistics
about the file.

process status message MDI Proces Status Common Library routine used to log a status message for
the specified status type. If the process status library was configured to use a
status logger, then the message is forwarded to the status logger. Otherwise the
message is written to the configured status log file. process_status_message
will also keep track of the current status value of the status type specified by
the caller so that the current status can be retrieved later.

The dataserver_update_rrc_time function updates the incident data timeout element in the Data
Server timeout shared memory segment.  The dataserver_update_rrc_time structure chart is shown
in Figure 4.62.



Data Server 90 System Design Document

dataserver
update 
rrc time

time
dataserver
update data 
time

Figure 4.62 dataserver_update_rrc_time Structure Chart

The functions called by dataserver_update_rrc_time are described in more detail in Table 4.56.

Table 4.56 dataserver_update_rrc_time Functions

ITEM DESCRIPTION

dataserver update data time Function to update the Data Server timeout shared memory segment.

time C Library Function that returns the time in UNIX calendar format (i.e., number
of seconds since January 1, 1970 UTC).

The dataserver_process_rrc_read function processes a railroad crossing read request from the
client. The function reads the data from the Data Server railroad crossing data file and sends it to
the client.  The dataserver_process_rrc_read structure chart is shown in Figure 4.63.

dataserver
process 
rrc read

ds
open 
file

process
status 
message

dataserver
write 
status

dataserver
write 
size

dataserver
read data 
file

Figure 4.63 dataserver_process_rrc_read Structure Chart

The functions called by dataserver_process_rrc_read are described in more detail in Table 4.57.



Data Server 91 System Design Document

Table 4.57 dataserver_process_rrc_read Functions

ITEM DESCRIPTION

dataserver read data file Function to read an open data file and send it to the client. The function reads
the data and writes it to the client socket.

dataserver write size Function to send a data size to the client process.

dataserver write status Function to send a return status to the client process.

ds open file Data Server Subsystem File Library routine to open a file and return statistics
about the file.

process status message MDI Proces Status Common Library routine used to log a status message for the
specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the
message is written to the configured status log file. process_status_message will
also keep track of the current status value of the status type specified by the
caller so that the current status can be retrieved later.

The dataserver_process_file_write function processes a client file write request. The function reads
the data from the client, creates a file in the Data Server data file area, and writes the file.  The
dataserver_process_file_write structure chart is shown in Figure 4.64.

dataserver
process 
file write

process
status 
message

ds
open 
file

dataserver
write data 
file

dataserver
write 
status

Figure 4.64 dataserver_process_file_write Structure Chart

The functions called by dataserver_process_file_write are described in more detail in Table 4.58.

Table 4.58 dataserver_process_file_write Functions

ITEM DESCRIPTION

dataserver write data file Function to write an open data file. The function reads the data from the client
process and writes it to the file.

dataserver write status Function to send a return status to the client process.

ds open file Data Server Subsystem File Library routine to open a file and return statistics
about the file.



Data Server 92 System Design Document

ITEM DESCRIPTION

process status message MDI Proces Status Common Library routine used to log a status message for
the specified status type. If the process status library was configured to use a
status logger, then the message is forwarded to the status logger. Otherwise the
message is written to the configured status log file. process_status_message
will also keep track of the current status value of the status type specified by
the caller so that the current status can be retrieved later.

The dataserver_process_file_delete function processes a client file delete request. The client
specifies the file that is to be deleted and the function deletes the file from the Data Server Data
File area.  The dataserver_process_file_delete structure chart is shown in Figure 4.65.

dataserver
process file 
delete

process
status 
message

dataserver
write 
status

ds
delete 
file

Figure 4.65 dataserver_process_file_delete Structure Chart

The functions called by dataserver_process_file_delete are described in more detail in Table 4.59.

Table 4.59 dataserver_process_file_delete Functions

ITEM DESCRIPTION

dataserver write status Function to send a return status to the client process.

ds delete file Data Server Subsystem Common Library routine to delete a file from the Data
Server.

process status message MDI Proces Status Common Library routine used to log a status message for
the specified status type. If the process status library was configured to use a
status logger, then the message is forwarded to the status logger. Otherwise
the message is written to the configured status log file.
process_status_message will also keep track of the current status value of the
status type specified by the caller so that the current status can be retrieved
later.

The dataserver_process_file_read function processes a client file read request. The client specifies
the file name and the function reads the file from the Data Server Data File area and sends the file
data directly to the client.  The dataserver_process_file_read structure chart is shown in Figure
4.66.



Data Server 93 System Design Document

dataserver
process 
file read

process
status 
message

ds
open 
file

dataserver
write 
status

dataserver
write 
size

dataserver
read data 
file

Figure 4.66 dataserver_process_file_read Structure Chart

The functions called by dataserver_process_file_read are described in more detail in Table 4.60.

Table 4.60 dataserver_process_file_read Functions

ITEM DESCRIPTION

dataserver read data file Function to read an open data file and send it to the client. The function reads
the data and writes it to the client socket.

dataserver write size Function to send a data size to the client process.

dataserver write status Function to send a return status to the client process.

ds open file Data Server Subsystem File Library routine to open a file and return statistics
about the file.

process status message MDI Proces Status Common Library routine used to log a status message for the
specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the
message is written to the configured status log file. process_status_message will
also keep track of the current status value of the status type specified by the
caller so that the current status can be retrieved later.

The dataserver_process_file_time function processes a request to obtain the file time. The client
sends the name of the file and the function determines the last time the file was modified and
returns the time directly to the client.  The dataserver_process_file_time structure chart is shown in
Figure 4.67.



Data Server 94 System Design Document

dataserver
process 
file time

process
status 
message

ds
open 
file

dataserver
write 
status

dataserver
write file 
time

Figure 4.67 dataserver_process_file_time Structure Chart

The functions called by dataserver_process_file_time are described in more detail in Table 4.61.

Table 4.61 dataserver_process_file_time Functions

ITEM DESCRIPTION

dataserver write file time Function to send a file time to the client process.

dataserver write status Function to send a return status to the client process.

ds open file Data Server Subsystem File Library routine to open a file and return statistics
about the file.

process status message MDI Proces Status Common Library routine used to log a status message for the
specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the
message is written to the configured status log file. process_status_message will
also keep track of the current status value of the status type specified by the
caller so that the current status can be retrieved later.

The dataserver_write_file_time function sends a file time to the client process.  The
dataserver_write_file_time structure chart is shown in Figure 4.68.

dataserver
write file 
time

sock_writen
process
status 
message

Figure 4.68 dataserver_write_file_time Structure Chart



Data Server 95 System Design Document

The functions called by dataserver_write_file_time are described in more detail in Table 4.62.

Table 4.62 dataserver_write_file_time Functions

ITEM DESCRIPTION

process status message MDI Proces Status Common Library routine used to log a status message for the
specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the message
is written to the configured status log file. process_status_message will also keep
track of the current status value of the status type specified by the caller so that the
current status can be retrieved later.

sock_writen MDI Socket routine that write a specified number of bytes to the specified socket.

The dataserver_process_file_list function obtains a directory-style listing of the data files that are
available. The function returns a list of file names and times to the client.  The
dataserver_process_file_list structure chart is shown in Figure 4.69.

dataserver
process 
file list

dataserver
get directory 
list

malloc

dataserver
write 
size

free

dataserver
write 
status

dataserver
write file 
list

ds get
file 
timestamp

Figure 4.69 dataserver_process_file_list Structure Chart

The functions called by dataserver_process_file_list are described in more detail in Table 4.63.



Data Server 96 System Design Document

Table 4.63 dataserver_process_file_list Functions

ITEM DESCRIPTION

dataserver get directory list Function to obtain a list of file names from a directory. The function allocates
the space needed to store the listing, then reads the file names into the allocated
space, returning them to the caller.

dataserver write file list Function to send a file list, which consists of the file names and their
corresponding timestamps, to the client.

dataserver write size Function to send a data size to the client process.

dataserver write status Function to send a return status to the client process.

ds get file timestamp Data Server Subsystem File Library routine to retrieve the timestamp of a
particular file.

free C Library Function used to free previously allocated memory and make it
available for further allocation.

malloc C Library Function to allocate the specified amount of memory.

The dataserver_get_directory_list function obtains a list of file names from a directory. The
function allocates the space needed to store the listing, then reads the file names into the allocated
space, returning them to the caller.  The dataserver_get_directory_list structure chart is shown in
Figure 4.70.

dataserver
get directory 
list

dataserver
directory 
exists

opendir readdir malloc closedir free

Figure 4.70 dataserver_get_directory_list Structure Chart

The functions called by dataserver_get_directory_list are described in more detail in Table 4.64.

Table 4.64 dataserver_get_directory_list Functions

ITEM DESCRIPTION

closedir C Library Function to close a directory structure that has been opened with
opendir().

dataserver directory exists Function to determine if a directory exists.

free C Library Function used to free previously allocated memory and make it
available for further allocation.

malloc C Library Function to allocate the specified amount of memory.



Data Server 97 System Design Document

ITEM DESCRIPTION

opendir C Library Function to obtain information about a directory and to initialize a
DIR structure for processing directory entries.

readdir C Library Function to read a directory entry. The directory entry must have first
been opened with opendir().

The dataserver_directory_exists function determines if a directory exists.  The
dataserver_directory_exists structure chart is shown in Figure 4.71.

dataserver
directory 
exists

lstat S_ISDIR

Figure 4.71 dataserver_directory_exists Structure Chart

The functions called by dataserver_directory_exists are described in more detail in Table 4.65.

Table 4.65 dataserver_directory_exists Functions

ITEM DESCRIPTION

lstat C Library Function to obtain information about a file.

S_ISDIR C Library Macro to determine if a specified file is a directory.

The ds_get_file_timestamp function is a Data Server Subsystem File Library routine to retrieve the
timestamp of a particular file.  The ds_get_file_timestamp structure chart is shown in Figure 4.72.



Data Server 98 System Design Document

ds get
file 
timestamp

stat

Figure 4.72 ds_get_file_timestamp Structure Chart

The function called by ds_get_file_timestamp is described in more detail in Table 4.66.

Table 4.66 ds_get_file_timestamp Function

ITEM DESCRIPTION

stat C Library Function to obtain the status information about a file.

The dataserver_write_file_list function sends a file list, which consists of the file names and their
corresponding timestamps, to the client.  The dataserver_write_file_list structure chart is shown in
Figure 4.73.

dataserver
write file 
list

sock
writen

process
status 
message

Figure 4.73 dataserver_write_file_list Structure Chart

The functions called by dataserver_write_file_list are described in more detail in Table 4.67.



Data Server 99 System Design Document

Table 4.67 dataserver_write_file_list Functions

ITEM DESCRIPTION

process status message MDI Proces Status Common Library routine used to log a status message for the
specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the message is
written to the configured status log file. process_status_message will also keep track
of the current status value of the status type specified by the caller so that the current
status can be retrieved later.

sock writen MDI Socket Common Library routine used to write a specified number of bytes to a
specified socket.

The dataserver_process_status_read function handles a client subsystem status request. The
function obtains the status of the specified subsystem and returns it to the client.  The
dataserver_process_status_read structure chart is shown in Figure 4.74.

dataserver
process 
status read

process
status 
message

read
segment 
element

dataserver
write 
status

dataserver
write 
data

Figure 4.74 dataserver_process_status_read Structure Chart

The functions called by dataserver_process_status_read are described in more detail in Table 4.68.

Table 4.68 dataserver_process_status_read Functions

ITEM DESCRIPTION

dataserver write data Function to write data to a client process.

dataserver write status Function to send a return status to the client process.

process status message MDI Proces Status Common Library routine used to log a status message for
the specified status type. If the process status library was configured to use a
status logger, then the message is forwarded to the status logger. Otherwise
the message is written to the configured status log file.
process_status_message will also keep track of the current status value of the
status type specified by the caller so that the current status can be retrieved
later.

read segment element MDI Shared Memory Manager routine to read the contents of a specified
shared memory segment element.  The contents are stored in a memory area
allocated by the caller.



Data Server 100 System Design Document

The dataserver_process_equipment_write function processes an equipment status write request.
The client specifies the type of equipment and the function writes the status to the appropriate
equipment status file in the Data Server data file area.  The dataserver_process_equipment_write
structure chart is shown in Figure 4.75.

dataserver
process 
equipment wri

process
status 
message

ds
open 
file

dataserver
write 
status

dataserver
write data 
file

dataserver
update 
equip time

Figure 4.75 dataserver_process_equipment_write Structure Chart

The functions called by dataserver_process_equipment_write are described in more detail in Table
4.69.

Table 4.69 dataserver_process_equipment_write Functions

ITEM DESCRIPTION

dataserver update equip time Function to update the equipment status data timeout element in the
Data Server timeout shared memory segment.

dataserver write data file Function to write an open data file. The function reads the data from the
client process and writes it to the file.

dataserver write status Function to send a return status to the client process.

ds open file Data Server Subsystem File Library routine to open a file and return
statistics about the file.

process status message MDI Proces Status Common Library routine used to log a status message
for the specified status type. If the process status library was configured
to use a status logger, then the message is forwarded to the status logger.
Otherwise the message is written to the configured status log file.
process_status_message will also keep track of the current status value
of the status type specified by the caller so that the current status can be
retrieved later.

The dataserver_update_equip_time function updates the equipment status data timeout element in
the Data Server timeout shared memory segment.  The dataserver_update_equip_time structure
chart is shown in Figure 4.76.



Data Server 101 System Design Document

dataserver
update 
equip time

time
dataserver
update data 
time

Figure 4.76 dataserver_update_equip_time Structure Chart

The functions called by dataserver_update_equip_time are described in more detail in Table 4.70.

Table 4.70 dataserver_update_equip_time Functions

ITEM DESCRIPTION

dataserver update data time Function to update the Data Server timeout shared memory segment.

time C Library Function that returns the time in UNIX calendar format (i.e.,
number of seconds since January 1, 1970 UTC).

The dataserver_process_equipment_read function processes an equipment status request. The
function obtains the status of the specified equipment by reading the appropriate data file and sends
the status to the client. The function can handle a request for a single type of equipment or for all
types of equipment.  The dataserver_process_equipment_read structure chart is shown in Figure
4.77.

dataserver
process 
equipment rea

ds
open 
file

dataserver
write 
status

dataserver
write 
size

dataserver
read data 
file

process
status 
message

close

Figure 4.77 dataserver_process_equipment_read Structure Chart

The functions called by dataserver_process_equipment_read are described in more detail in Table
4.71.



Data Server 102 System Design Document

Table 4.71 dataserver_process_equipment_read Functions

ITEM DESCRIPTION

close C Library Function to close a file descriptor. The descriptor can be for a
variety of things, including a file or socket.

dataserver read data file Function to read an open data file and send it to the client. The function
reads the data and writes it to the client socket.

dataserver write size Function to send a data size to the client process.

dataserver write status Function to send a return status to the client process.

ds open file Data Server Subsystem File Library routine to open a file and return
statistics about the file.

process status message MDI Proces Status Common Library routine used to log a status message
for the specified status type. If the process status library was configured
to use a status logger, then the message is forwarded to the status logger.
Otherwise the message is written to the configured status log file.
process_status_message will also keep track of the current status value
of the status type specified by the caller so that the current status can be
retrieved later.

4.3.1.3 Communication Protocol

The communication protocol between the client and the Data Server subsystem can be best defined
by a set of structure charts which indicate the type and sequence of data that is passed between the
client and server. Figure 4.78 through Figure 4.83 show the protocol for passing client data, lane
data, incident data, equipment data, railroad data, and file data respectively. The data couples on
the diagram indicate the type of data that is passed. The order of the couples (i.e., top to bottom)
indicates the sequence in time in which the data must be passed.



Data Server 103 System Design Document

Client
Data
Server

Client
Data
Server

Client
Data
Server

Init Req

Status

HB Req

Status

Close Req

Status

Figure 4.78. Client Data Protocol



Data Server 104 System Design Document

Data
ServerClient

Data
ServerClient

Link Write
Req

status

Link Read Req

status

Link Data

Figure 4.79. Link Data Protocol

Client Server

Client Server

Incident Write
Req

Status

Incident Read
Req

Status

Incident Data

Figure 4.80. Incident Data Protocol



Data Server 105 System Design Document

Client Server

Client Server

Equipment
Write Req

Status

Equipment Read
Req

Status

Equipment Data

Figure 4.81. Equipment Data Protocol



Data Server 106 System Design Document

Client Server

Client Server

Client Server

Client Server

RRS Write Req

Status

RRC Write Req

Status

RRS Read Req

Status

RRC Read Req

Status

RRS Data

RRC Data

Figure 4.82. Railroad Data Protocol



Data Server 107 System Design Document

Client Server

Client Server

Client Server

Client Server

File Write
Req

Status

File Read Req

Status

File Data

File Time Req

Status

File Time

File Delete
Req

Status

Figure 4.83. File Data Protocol



Data Server 108 System Design Document

4.3.2 Status GUI

The Status GUI allows the user to determine at a glance the overall status of the Data Server and
the systems that interface with it.  The user can also obtain detailed process status for each of the
systems. The Status GUI component is a Unix process.

Each of the external Data Generators, the external Data Consumers and the Data Server has a sub-
window on the Status GUI, which shows the high-level status of that process.  The color of the
sub-window header’s background indicates the overall status for the process: green, yellow or red
(OK, Warning and Error, respectively).  The sub-window also shows the last request received from
that process, the time (in seconds) since this request, the time elapsed since the last heartbeat was
received from the process, the time when the process was started, and the node ID where the
process is running.  Clicking the picture button on the sub-window launches a process that displays
the process Status GUI of the indicated Data Consumer or Data Generator. Figure 4.84 shows the
MDI Status GUI screen, and Figure 4.85 shows the Data Server Process Status GUI screen.



Data Server 109 System Design Document

Figure 4.84  MDI Status GUI



Data Server 110 System Design Document

4.3.2.1 Process Design

The Status GUI flow diagram is shown in Figure 4.86.  The main routine of the Status GUI is
periodic_update, which is called periodically to update the status displayed at the configurable
update rate, once the process initialization is complete.  The Status GUI process attaches directly
to the MDI Status shared memory that was created by the Data Server process.  When
periodic_update is called, it reads the shared memory element and uses the data to update the GUI
sub-windows for each MDI Subsystem.  When the picture button on a sub-window is pressed, the
process forks another process to display the process status window of the selected subsystem.

Figure 4.85  Data Server Process Status GUI Screen



Data Server 111 System Design Document

4.3.2.2 Model Design

Mdisg teleuse_main is the main routine of the MDI Status GUI. This routine is supplied by the
TeleUSE UIMS tool and is used as the entry point into the process. This routine is responsible for
setting up any TeleUSE specific environment and then invoking the application main module
followed by the INITIALLY events in the associated D modules.  The mdisg teleuse_main
structure chart is shown in Figure 4.87.

The functions called by mdisg teleuse_main are described in more detail in Table 4.72.

Table 4.72  mdisg teleuse_main Functions

ITEM DESCRIPTION

INITIALLY This D event is the initial event that gets executed on startup of the MDI Status GUI
application.  This routine is responsible for displaying the top-level shell, invoking the
application initialization routine, and setting the periodic timer to allow for periodic
updates.

2.7

periodic
update

2.8

mdisg
display 
detailed status

Display Process
Status

MDI Status
Data

Figure 4.86. Status GUI Data Flow Diagram

mdisg
teleuse_main

mdisg
main INITIALLY

Figure 4.87  mdisg teleuse_main Structure Chart



Data Server 112 System Design Document

ITEM DESCRIPTION

Mdisg main This is the main routine of the MDI Status GUI.  This routine is responsible for loading the
configuration information, configuring the shared memory manager library, and attaching
to the Data Server status shared memory segments.

Mdisg_main is the main routine of the MDI Status GUI.  This routine is responsible for loading the
configuration information, configuring the shared memory manager library, and attaching to the
Data Server status shared memory segments. The mdisg_main structure chart is shown in Figure
4.88.

The functions called by mdisg_main are described in more detail in Table 4.73.

Table 4.73  mdisg_main Functions

ITEM DESCRIPTION

cfg get value MDI Configuration File Common Library routine used to return the value of the
specified configuration name.

cfg load configuration data MDI Configuration File Common Library routine used to read the configuration
name-value pairs from the specified configuration file.  These name-value pairs are
loaded into memory so they can be accessed on demand by the calling program.

signal setup Function to establish the signal handler, catch_signal(), and set signals to ignore and
catch.

Sigset C Library Function used to modify the disposition of a signal. The signal can be
caught, ignored, or returned to the default disposition.

sl new Library function to create a new status log file.

mdisg
main

signal
setup

sigset
cfg load
configuration 
data

cfg
get 
value

sl
new

Figure 4.88  mdisg_main Structure Chart



Data Server 113 System Design Document

The INITIALLY D event is the initial event that gets executed on startup of the MDI Status GUI
application.  This routine is responsible for displaying the top-level shell, invoking the application
initialization routine, and setting the periodic timer to allow for periodic updates.  The INITIALLY
structure chart is shown in Figure 4.89.

The functions called by INITIALLY are described in more detail in Table 4.74.

Table 4.74  INITIALLY Functions

ITEM DESCRIPTION

create widget create widget is used to create a widget of a particular TeleUSE template allowing
for the specification of a widget name and a parent for the widget.

GET UPDATE RATE A bridge layer routine used to obtain the update rate value from the application layer.

initialize application A GUI layer event used to inform the application layer to perform any initialization
required as  part of the application start up.

initialize subsystem ids The GUI layer routine responsible for initializing the userData resource for each of
the subsystem buttons.

periodic update A GUI layer event used to perform the steps necessary to update the details of the
GUI on a periodic basis.

send A TeleUSE statement used to trigger events immediately or queue events for later
dispatch.

The GET_UPDATE_RATE function is a bridge layer routine used to obtain the update rate value
from the application layer.  The GET_UPDATE_RATE structure chart is shown in Figure 4.90.

INITIALLY

create
widget

send

initialize
subsystem 
ids

initialize
application

periodic
update

GET
UPDATE 
RATE

Figure 4.89  INITIALLY Structure Chart



Data Server 114 System Design Document

The functions called by GET_UPDATE_RATE are described in more detail in Table 4.75.

Table 4.75  GET_UPDATE_RATE Functions

ITEM DESCRIPTION

cfg get value MDI Configuration File Common Library routine used to return the value of the
specified configuration name.

mdisg get update rate The application layer routine responsible for returning the configured update rate for
the MDI Status GUI.

The initialize_application function is a GUI layer event used to inform the application layer to
perform any initialization required as  part of the application start up.  The initialize_application
structure chart is shown in Figure 4.91.

The function called by initialize_application is described in more detail in Table 4.76.

GET
UPDATE 
RATE

mdisg
get update 
rate

cfg
get 
value

Figure 4.90  GET_UPDATE_RATE

initialize
application

APPLICATION
INIT

Figure 4.91  initialize_application Structure Chart



Data Server 115 System Design Document

Table 4.76  initialize_application Function

ITEM DESCRIPTION

APPLICATION INIT A bridge layer routine used to invoke the application layer's initialization function.

The periodic_update function is a GUI layer event used to perform the steps necessary to update
the details of the GUI on a periodic basis. The periodic_update structure chart is shown in Figure
4.92.

The functions called by periodic_update are described in more detail in Table 4.77.

Table 4.77  periodic_update Functions

ITEM DESCRIPTION

PERIODIC  UPDATE The bridge layer routine that invokes the application layer routine responsible for
handling the periodic update requests.

send A TeleUSE statement used to trigger events immediately or queue events for later
dispatch.

The PERIODIC_UPDATE function is a bridge layer routine that invokes the application layer
routine responsible for handling the periodic update requests.  The PERIODIC_UPDATE structure
chart is ahown in Figure 4.93.

periodic
update

PERIODIC
 UPDATE send

Figure 4.92  periodic_update Structure Chart



Data Server 116 System Design Document

The functions called by PERIODIC UPDATE are described in more detail in Table 4.78.

Table 4.78  PERIODIC_UPDATE Functions

ITEM DESCRIPTION

mdisg periodic update The application layer routine responsible for updating the graphical user interface
components.  This routine is invoked periodically based on the graphical user
interface update rate.

read segment element MDI Shared Memory Manager routine to read the contents of a specified shared
memory segment element.  The contents are stored in a memory area allocated by the
caller.

UPDATE STATUS A bridge layer routine invoked when the application layer wants to modify the status
information for a particular MDI subsystem indicator.  The information in the
indicator is modified based on the input parameters.

The UPDATE_STATUS function is a bridge layer routine invoked when the application layer
wants to modify the status information for a particular MDI subsystem indicator.  The information
in the indicator is modified based on the input parameters.  The UPDATE_STATUS structure
chart is shown in Figure 4.94.

PERIODIC
 UPDATE

mdisg
periodic 
update

read
segment 
element

UPDATE
STATUS

Figure 4.93  PERIODIC_UPDATE Structure Chart



Data Server 117 System Design Document

The functions called by UPDATE_STATUS are described in more detail in Table 4.79.

Table 4.79 UPDATE_STATUS Functions

ITEM DESCRIPTION

tu assign event field TeleUSE Library Function used to associate the contents of a C variable with the
contents of an event attribute.

Tu create named event TeleUSE Library Function used to create the data structure necessary to interface the C
code with the D code event.

Tu dispatch event TeleUSE Library Function used to dispatch the created event.  This causes the event to
be executed.

Tu free event TeleUSE Library Function used to free up any memory that was allocated to the event
data structure using tu_create_named_event.

Update status The D event that receives the status information and updates the appropriate GUI
components.

The display_detailed _status function is the GUI layer event that is invoked when the user selects
one of the status indicators from the status display.  The structure charts for
display_detailed_status and the bridge layer function DISPLAY_DETAILED_STATUS are shown
in Figure 4.95 and Figure 4.96, respectively.

UPDATE
STATUS

tu create
named 
event

tu assign
event 
field

tu
dispatch 
event

tu
free 
event

update
status

Figure 4.94  UPDATE_STATUS Structure Chart



Data Server 118 System Design Document

The functions called by display_detailed_status and DISPLAY_DETAILED_STATUS are shown
in Table 4.80.

display
detailed 
status

DISPLAY 
DETAILED 
STATUS

Figure 4.95  display_detailed_status Structure Chart

DISPLAY 
DETAILED 
STATUS

mdisg
display 
detailed status

fork execl

Figure 4.96  DISPLAY_DETAILED_STATUS Structure Chart



Data Server 119 System Design Document

Table 4.80  display_detailed_status Functions

ITEM DESCRIPTION

DISPLAY  DETAILED STATUS The bridge layer routine used to invoke the display of the detailed
status GUI for the specified MDI subsystem.

Execl System library function. Executes a file by overlaying a new process
image on an old process.  The new process image is constructed from an
ordinary executable file.

Fork System library function. Creates a child process that is dedicated to
handling the newly-connected client.

Mdisg display detailed status The application layer routine used to display the detailed status of the
specified MDI subsystem.  This routine is called as a result of the user
selecting an MDI subsystem button.



Data Server 120 System Design Document

4.3.3 Realtime Collect

The TransGuide ATMS acts as both a Data Generator and a Data Consumer to the Data Server.
This section describes the data received from the ATMS.  The Realtime Collect process (in
conjunction with the Realtime Broadcast process) replaces the functionality that was implemented
by the TransGuide program “SunBroadcast”, which was created for the first-generation Data
Server.

4.3.3.1 Process Design

The Realtime Collect process receives data synchronously from the TransGuide ATMS; the
ATMS sends the data every five seconds.  On startup the Realtime Collect process loads
configuration files that contain information about the ATMS equipment and MDI LinkIDs.  These
data are stored in a sorted fashion so that the data can be transmitted without including specific
equipment/LinkID names.  Information is then accessed by the positional relationship of the data
and its index in the configuration file.

The information received by the Realtime Collect system includes realtime data for each
instrumented ATMS lane, CMS, LCS, CCTV, Traffic Signal (TS) and for each active incident.
This information is formatted and sent to the Data Server process to be stored in shared memory or
in files.  The information is also sent directly to the Realtime Broadcast process to prevent it from
having to be re-retrieved from the Data Server.

The Realtime Collect process creates and initializes a socket which is used to receive data from the
ATMS.  A socket is also utilized to send data to the Realtime Broadcast process.  A connection is
also established to the data server.  The Realtime Collect process waits to receive data from the
ATMS, once received the information is written to the Data Server and then transmitted to the
Realtime Broadcast program for transmission to the various data consumers. The Realtime Collect
process sends a heartbeat message at regular intervals to the Data Server, which uses it to update
the status of the process in shared memory.

The Realtime Collect Data Flow diagram is shown in Figure 4.97.

4.3.3.2 Model Design

The Realtime Collect Main function receives ATMS Data from the VAX, which it sends to the
Realtime Broadcast program, and to the Data Server.  The Realtime Collect Main structure chart
is shown in Figure 4.98.

1.9.1

Realtime
Collect

ATMS Data

Incident Data

Heartbeat
Incident Data
ReqATMS Data

Figure 4.97  Realtime Collect Data Flow Diagram



Data Server 121 System Design Document

The functions called by Realtime Collect Main are described in more detail in Table 4.81.

select

Realtime
Collect 
Main

getservbyname

initialize
dsif 
connection

sock
listen 
with 
reuse

socket
activity

establish
lane 
pointers

sock
accept

send
to 
broadcast

receive
broadcast 
data

dsif
send 
heartbeat

update
atms 
linkid 
data

update
incident 
data

ds
signal 
setup

sigset

cfg load
configuration 
data

cfg
get 
value

log
error 
heartbeat

alloc
data 
space

allocate
incident 
storage

fail
atms 
data

update
linkid 
data

Figure 4.98  Realtime Collect Main Structure Chart



Data Server 122 System Design Document

Table 4.81  Realtime Collect Main Functions

ITEM DESCRIPTION

alloc data space Creates data structures for each of the data types to be received from the ATMS.

allocate incident storage Allocates space to hold incidents.

cfg get value MDI Configuration File Common Library routine used to return the value of the
specified configuration name.

cfg load configuration data MDI Configuration File Common Library routine used to read the configuration
name-value pairs from the specified configuration file.  These name-value pairs
are loaded into memory so they can be accessed on demand by the calling
program.

ds signal setup Data Server Subsystem Common Library function that sets a common signal
handler routine for all catchable signals.

dsif send heartbeat Sends the heartbeat and responds to any errors.  If the ds_hb service is not
connected, an attempt is made to connect to it.  Once the connection is
established, this routine takes the specified process status and sends it to the
ds_hb process.

establish lane pointers Builds a table of pointers into the ATMS lane data so that an average speed can
be computed for each corresponding link.

fail atms data Marks all ATMS LinkID's as inactive.  Writes the resulting data to the Data
Server.

getservbyname C Library Function used to obtain an entry for the specified Internet service.

initialize dsif connection Retrieves necessary configuration items and establishes a connection to the Data
Server Interface process.

log error heartbeat Logs an error heartbeat to the Data Server.

receive broadcast data Reads the ATMS data request and associated data from the VAX.  Returns the
data request and loads the data into the buffer pointed to by the incoming data
parameter.

select C Library Function used to multiplex synchronous I/O.  The list of file
descriptors for reading, writing, and receiving exceptions are examined and any
file descriptors that are ready for reading, writing, or have an exceptional
condition pending are identified.

send to broadcast Sends data to the Realtime Broadcast program.

sigset C Library Function used to modify the disposition of a signal. The signal can be
caught, ignored, or returned to the default disposition.

sock accept MDI Socket Common Library routine that accepts a connection on the specified
socket.

sock listen with reuse MDI Socket Common Library routine used to set up a socket to listen for
connections and to make the socket address reusable.

socket activity Waits for activity on multiple sockets.

update atms linkid data Computes the current speed value for each active TransGuide ATMS LinkID.
Writes the resulting data to the Data Server.

update incident data Creates data structures for each of the data types to be received from the ATMS.
Accesses appropriate data file to determine sizing information to allocate
sufficient memory for each type of data.



Data Server 123 System Design Document

ITEM DESCRIPTION

update linkid data Reads the GPS, Theoretical and AVI data from the Data Server, and copies the
data to local storage.

The initialize_dsif_connection function is responsible for retrieving necessary configuration items
and establishing a connection to the Data Server Interface process.  The initialize_dsif_connection
structure chart is shown in Figure 4.99.

initialize
dsif 
connection

cfg
get 
value

process
status config 
with logfi

ds dsif
connect

dsif
send 
heartbeat

Figure 4.99  initialize_dsif_connection Structure Chart

The functions called by initialize_dsif_connection are described in more detail in Table 4.82.

Table 4.82  initialize_dsif_connection

ITEM DESCRIPTION

cfg get value MDI Configuration File Common Library routine used to return the value
of the specified configuration name.

ds dsif connect MDI dsif Library routine that is used to connect to the Data Server Interface
process specified by the service name passed to this routine.

dsif send heartbeat Sends the heartbeat and responds to any errors.  If the ds_hb service is not
connected, an attempt is made to connect to it.  Once the connection is
established, this routine takes the specified process status and sends it to
the ds_hb process.

process status config with logfi process_status_config_with_logfile is an MDI Process Status Common
Library routine used to configure the process status handling for the
process. This routine is used to set up a logfile that will be used by the
calling program.

The dsif_send_heartbeat function sends the heartbeat and responds to any errors.  If the ds_hb
service is not connected, an attempt is made to connect to it.  Once the connection is established,
this routine takes the specified process status and sends it to the ds_hb process.  The
dsif_send_heartbeat structure chart is shown in Figure 4.100.



Data Server 124 System Design Document

The functions called by dsif_send_heartbeat are described in more detail in Table 4.83.

Table 4.83  dsif_send_heartbeat Functions

ITEM DESCRIPTION

ph connect MDI Process Heartbeat Common Library routine used to connect to the specified
process-level heartbeat service.  The host name and service name are used to make
the connection.

ph disconnect MDI Process Heartbeat Common Library routine used to disconnect from the
process-level heartbeat service.

ph send heartbeat MDI Process Heartbeat Common Library routine used to send the specified status
value to the heartbeat service configured by the ph_connect call.

process status message MDI Proces Status Common Library routine used to log a status message for the
specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the message is
written to the configured status log file. process_status_message will also keep track
of the current status value of the status type specified by the caller so that the current
status can be retrieved later.

The log_error_heartbeat function is responsible for logging an error heartbeat to the Data Server.
The log_error_heartbeat structure chart is shown in Figure 4.101.

dsif
send 
heartbeat

ph send
heartbeat

ph
disconnect

ph
connect

process
status 
message

Figure 4.100  dsif_send_heartbeat Structure Chart



Data Server 125 System Design Document

The functions called by log_error_heartbeat are described in more detail in Table 4.84.

Table 4.84  log_error_heartbeat Functions

ITEM DESCRIPTION

dsif send heartbeat Sends the heartbeat and responds to any errors.  If the ds_hb service is not connected,
an attempt is made to connect to it.  Once the connection is established, this routine
takes the specified process status and sends it to the ds_hb process.

process status message MDI Proces Status Common Library routine used to log a status message for the
specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the message is
written to the configured status log file. process_status_message will also keep track
of the current status value of the status type specified by the caller so that the current
status can be retrieved later.

The fail_atms_data function marks all ATMS LinkID's as inactive and writes the resulting data to
the Data Server.  The fail_atms_data structure chart is shown in Figure 4.102.

log
error 
heartbeat

process
status 
message

dsif
send 
heartbeat

Figure 4.101  log_error_heartbeat Structure Chart



Data Server 126 System Design Document

The functions called by fail_atms_data are described in more detail in Table 4.85.

Table 4.85  fail_atms_data Functions

ITEM DESCRIPTION

ds dsif connect Data Server Interface Library routine to connect with the Data Server
Interface Process.

ds dsif send link write request Data Server Interface Library routine to send a link write request and link
data to the Data Server Interface process. The Data Server Interface process
will attempt to forward the data to the Data Server.

dsif reconnect Reconnects to the Data Server i/f.

process status message MDI Proces Status Common Library routine used to log a status message for
the specified status type. If the process status library was configured to use a
status logger, then the message is forwarded to the status logger. Otherwise
the message is written to the configured status log file.
process_status_message will also keep track of the current status value of
the status type specified by the caller so that the current status can be
retrieved later.

The update_linkid_data function reads the GPS, Theoretical and AVI data from the Data Server,
and copies the data to local storage.  The update_linkid_data structure chart is shown in Figure
4.103.

fail
atms 
data

ds dsif send
link write 
request

dsif
reconnect

ds dsif
connect

process
status 
message

Figure 4.102  fail_atms_data Structure Chart



Data Server 127 System Design Document

The functions called by update_linkid_data are described in more detail in Table 4.86.

Table 4.86  update_linkid_data Functions

ITEM DESCRIPTION

ds dsif connect Data Server Interface Library routine to connect with the Data Server
Interface Process.

ds dsif send link read request Data Server Interface Library routine to send a link read request to, and read
link data from the Data Server Interface process. The Data Server Interface
process will attempt to forward the request to the Data Server, and return the
data.

dsif reconnect Reconnects to the Data Server i/f.

process status message MDI Proces Status Common Library routine used to log a status message for
the specified status type. If the process status library was configured to use a
status logger, then the message is forwarded to the status logger. Otherwise
the message is written to the configured status log file.
process_status_message will also keep track of the current status value of the
status type specified by the caller so that the current status can be retrieved
later.

The send_to_broadcast function is responsible for sending data to the Realtime Broadcast
program.  The send_to_broadcast structure chart is shown in Figure 4.104.

ds dsif send
link read 
request

dsif
reconnect

update
linkid 
data

ds dsif
connect

process
status 
message

Figure 4.103  update_linkid_data Structure Chart



Data Server 128 System Design Document

The functions called by send_to_broadcast are described in more detail in Table 4.87.

Table 4.87  send_to_broadcast Functions

ITEM DESCRIPTION

sock connect MDI Socket routine used to create a socket connection to the specified host and port.

sock writen MDI Socket Common Library routine used to write a specified number of bytes to a
specified socket.

The receive_broadcast_data function reads the ATMS data request and associated data from the
VAX.  It returns the data request and loads the data into the buffer pointed to by the incoming data
parameter.  The receive_broadcast_data structure chart is shown in Figure 4.105.

The function called by receive_broadcast_data is described in more detail in Table 4.88.

sock
connect

sock
writen

send
to 
broadcast

Figure 4.104  send_to_broadcast  Structure Chart

receive
broadcast 
data

sock
readn

Figure 4.105  receive_broadcast_data Structure Chart



Data Server 129 System Design Document

Table 4.88  receive_broadcast_data Function

ITEM DESCRIPTION

sock readn MDI Socket Common Library routine that reads a specified number of bytes from the
specified socket.

The update_atms_linkid_data function computes the current speed value for each active
TransGuide ATMS LinkID.  It writes the resulting data to the Data Server.  The structure chart for
update_atms_linkid_data is shown in Figure 4.106.

The functions called by update_atms_linkid are described in more detail in Table 4.89.

Table 4.89  update_atms_linkid_data Functions

ITEM DESCRIPTION

ds dsif send link write request Data Server Interface Library routine to send a link write request and link
data to the Data Server Interface process. The Data Server Interface
process will attempt to forward the data to the Data Server.

dsif reconnect Reconnects to the Data Server i/f.

log error heartbeat Logs an error heartbeat to the Data Server.

The update_incident_data function creates data structures for each of the data types to be received
from the ATMS.  It accesses the appropriate data file to determine sizing information to allocate
sufficient memory for each type of data.

update
atms 
linkid data

ds dsif send
link write 
request

dsif
reconnect

log
error 
heartbeat

Figure 4.106  update_atms_linkid_data Structure Chart



Data Server 130 System Design Document

The functions called by update_incident_data are described in more detail in Table 4.90.

Table 4.90  update_incident_data Functions

ITEM DESCRIPTION

ds dsif send inc write request A ds_dsif library function that packages the link data into the appropriate
ds_dsif message and sends it out to the ds_dsif_socket.

dsif reconnect Reconnects to the Data Server i/f.

update
incident 
data

ds dsif send
inc write 
request

dsif
reconnect

Figure 4.107  update_incident_data Structure Chart



Data Server 131 System Design Document

4.3.4 GPS/Theoretical Subsystem

The GPS/Theoretical subsystem reads GPS and theoretical lane data from the GPS/Theoretical
Database and sends it to the Data Server. The data is selected from the database based on the time
of the day, the day of the week, and a set of parameters that can be specified in a calendar file
through a user interface. The following sections provide the process and model designs of the
GPS/Theoretical subsystem.

4.3.4.1 Process Design

The external environment of the GPS TH Data process is depicted in the Data Server data flow
diagram shown in Figure 4.2. The diagram shows the GPS TH Data process interacting with the
Data Server process. The GPS TH Data process sends client data and lane data requests to the
Data Server process. The GPS TH Data process is a pure data generator in that no data flows
enter the process.

The GPS TH Data process data flow diagram is shown in Figure 4.108. The GPS TH Data
process is composed of three processes: the GPS TH Main process, the GPS TH GUI process, and
the GPS TH Read Data process. Each of these processes are described in more detail in Table 4.91
and the GPS TH Read Data process data flow diagram is presented in Figure 4.109.

The GPS Main Process is responsible for initializing the GPS/Theoretical subsystem and
coordinating the processes that cooperate to generate the GPS and theoretical link data. Initial
configuration information is read from the GPS TH Configuration File.

The GPS/Theoretical link data is read from the GPS TH Database by the Read GPS TH Data
process. This process reads the data whenever it is sent a set of GPS TH Parameters by the GPS
TH Main process. The data is selected from the database based on the time of day and day of week
and is adjusted based on the values of the parameters. The GPS TH Parameters can be defined by
a 3-tuple of Boolean flags {holiday, school day, weather event}. The data in the GPS TH Database
can be characterized using this 3-tuple as {false, true, false}. The GPS Theoretical subsystem uses
the GPS TH Calendar and input from the user to determine when to adjust these default values.

The GPS TH Calendar file is read by the GPS TH Main process each time the day changes. The
calendar file contains definitions of days or ranges of days that are defined as holiday or non-
school day. The GPS Calendar GUI allows the user to alter the current GPS TH Parameters and
change the values of the 3-tuple to reflect the current conditions.

The GPS TH Adjustment Factors quantify the adjustment that is to be applied to the speed data
when the GPS TH Parameters are in effect. The adjustment factors are fractional percentages that
increase or decrease the speed values. When the value in the 3-tuple of Boolean flags is true, the
corresponding adjustment factor is applied. The result of applying the adjustment factors is the
transformation from GPS TH Lane Data Records to GPS TH Adjusted Lane Data Records.



Data Server 132 System Design Document

7.1

GPS
TH 
Main

7.2
Read GPS
TH Data

GPS TH Data

GPS TH Shared Memory

7.4
GPS TH
GUI

GPS
TH 
User

GPS TH Configuration

GPS TH Calendar File

GPS TH
Parameters 
File

7.5
GPS TH
Calendar GUI

HB Req

Lane Write
Req

Init Req

Close Req

Con Req

GPS TH Adjusted
Lane Data 
Record

GPS TH Link
Data Record

GPS TH Parameters

GPS TH Time
Parameters

GPS TH Parameters

GPS TH Parameters

GPS TH Parameters

GPS TH Config
Data

Client Data
Req

Lane Data Req GPS TH Parameters

GPS TH Parameters

GPS TH Default
Parameters GPS TH Adjustment

Factors

GPS TH Parameters

GPS TH Parameters

Figure 4.108. GPS TH Data Data Flow Diagram



Data Server 133 System Design Document

Table 4.91. GPS TH Main Processes

ITEM DESCRIPTION

GPS TH Calendar GUI A GUI that allows the user to define or view the settings of the School and Holiday
parameters for a selected date or a range of dates during the year.   When the user
changes them, the GUI updates the GPS TH Calendar File with the new parameters.

GPS TH GUI A GUI that allows the user to change the current GPS TH parameters. The current
parameters are displayed on the screen. When the user changes them, the GUI updates
the GPS TH Shared Memory with the new parameters.

GPS TH Main The main process of the GPS/Theoretical subsystem. The process initializes the
connection with the Data Storage process, reads configuration data from the GPS TH
Configuration file and reads the default GPS TH Parameters and adjustment factors from
the GPS TH Calendar File.

On a periodic basis (defined in the configuration file), the process passes the current
GPS TH Parameters to the Read GPS Data process to read the data from the GPS TH
Data file. It then packages the data into a Lane Write Req and sends the data to the Data
Server process.

The process also sends a HB Req to the subsystem heartbeat process periodically to
report the status of the process.

Read GPS TH Data A process that reads GPS TH Link Data Records from the GPS TH Database. The
records are read when the process receives GPS TH Time Parameters and GPS TH
Parameters from the GPS TH Main process.

The process uses the time parameters to select the data that is read from the database.
The GPS TH Parameters are used to adjust the data once it is read. The data is then
passed to the GPS TH Main process.



Data Server 134 System Design Document

7.2.1
Read
Data

7.2.2
Adjust
Data

GPS TH Time
Parameters

GPS TH Parameters

GPS TH Link
Data Record

GPS TH Adjusted
Link Data 
Record

GPS TH Link
Data Record

GPS TH Adjustment
Factors

Figure 4.109. Read GPS TH Data Data Flow Diagram

The Read GPS TH Data process data flow diagram is presented in Figure 4.109. The process
obtains the time and GPS TH Parameters and accesses the GPS TH Database to obtain the GPS
TH Link Data Records. Adjustment factors are applied according to the flags specified in GPS TH
Parameters and the process outputs GPS TH Adjusted Link Data Records. The processes of the
Read GPS Data process are described in more detail in Table 4.92.

Table 4.92. Read GPS TH Data Processes

ITEM DESCRIPTION

Adjust Data Applies adjustment factors to the GPS TH Link Data Records to create GPS TH Adjusted Link
Data Records. The adjustment factors are read from the GPS TH Parameter File and are applied
according to the values of the GPS TH Parameters values.

Read Data Reads GPS Link Data Records from the GPS TH Database.



Data Server 135 System Design Document

4.3.4.2 Model Design

The primary functions of the GPS/Theoretical subsystem are:

• read and adjust GPS and theoretical link data on a periodic basis and send the data to the
Data Server, and

• provide a mechanism for the user to alter the setting of the parameters that determine how
the data is adjusted.

The GPS TH Subsystem structure chart is shown in Figure 4.110. The GPS TH Subsystem
functions are described in more detail in Table 4.93.



Data Server 136 System Design Document

gps
th 
main

process
status 
set status 
type v

process
status 
get 
status

gpsth
send 
heartbeat

init
shared 
memory

init
link 
data

gpsth
connect 
to dsif

cal
to 
gpsth 
date

init
cal 
file

process
link 
data

send
link 
data 
with retry

sleep

gpsth
send 
heartbeat

process
status 
get 
status

ds
signal 
setup

sigset

process
status 
message

process
status 
config 
with logfi

load
cfg 
data

init
status 
table

gpsth
time

Figure 4.110. GPS TH Subsystem Structure Chart



Data Server 137 System Design Document

Table 4.93. GPS TH Subsystem Functions

ITEM DESCRIPTION

cal to gpsth date Converts a date value from UNIX calendar format to an internal gpsth date
format.

ds signal setup Data Server Subsystem Common Library function that sets a common
signal handler routine for all catchable signals.

gpsth connect to dsif Connects the GPS TH process to the Data Server Interface process.

gpsth send heartbeat Sends the process-level heartbeat to the Subsystem Heartbeat process.

gpsth time Function to return the current time in UNIX calendar format. The function
is a wrapper to the UNIX time() function and provides special behavior
when the TEST flag is on to allow the caller to specify the time that is
returned in subsequent calls.

init cal file Reads the current gpsth parameters from the calendar file and writes them
to the parameter shared memory. If the parameters cannot be found in the
calendar file, the default parameters from the configuration file are used.

init link data Initializes the data structures necessary to manage the link data in the data
file.

init shared memory Function to create the GPS TH parameter shared memory segment.

init status table Initializes the status table data structure passed by the caller.

load cfg data Function to load configuration data from the configuration and data files.
The data is read using functions from the MDI Configuration Library and is
stored in a table that is passed by the caller.

process link data A function to determine the current speed for each of the GPS TH links.
The speed is determined by reading the entries in the GPS TH database file
for the current day of the week and current time.

process status config with logfi process_status_config_with_logfile is an MDI Process Status Common
Library routine used to configure the process status handling for the
process. This routine is used to set up a logfile that will be used by the
calling program.

process status get status MDI Process Status Common Library routine used to obtain the most
severe process-level status. This is an aggregation of the status for each of
the status types defined for the process.

process status message MDI Proces Status Common Library routine used to log a status message
for the specified status type. If the process status library was configured to
use a status logger, then the message is forwarded to the status logger.
Otherwise the message is written to the configured status log file.
process_status_message will also keep track of the current status value of
the status type specified by the caller so that the current status can be
retrieved later.

process status set status type v process_status_set_status_type_value is used to set the value associated
with the specified status type.

send link data with retry Attempts to write link data to the Data Server Interface process. If the
attempt fails, the function attempts to reconnect to the Data Server Interface
and send the data again. If the second attempt fails, the function returns an
error.

sigset C Library Function used to modify the disposition of a signal. The signal
can be caught, ignored, or returned to the default disposition.



Data Server 138 System Design Document

ITEM DESCRIPTION

sleep C Library function to suspend the execution of the process for a specified
number of seconds.

The ds_signal_setup function is the Data Server Subsystem Common Library function that sets a
common signal handler routine for all catchable signals. The structure chart for ds_signal_setup is
shown in Figure 4.111.

ds
signal 
setup

sigset

Figure 4.111  ds_signal_setup Structure Chart

The function called by ds_signal_setup is described in more detail in Table 4.94

Table 4.94 ds_signal_setup Function

ITEM DESCRIPTION

sigset C Library Function used to modify the disposition of a signal. The signal can be caught,
ignored, or returned to the default disposition.

The load_cfg_data function loads configuration data from the configuration and data files. The
data is read using functions from the MDI Configuration Library and is stored in a table that is
passed by the caller. The structure chart for load_cfg_data is shown in Figure 4.112.



Data Server 139 System Design Document

cfg load
configuration 
data

cfg
get 
value

LinkIDCount LinkIDData
load
num 
params

load
params

load
cfg 
data

Figure 4.112  load_cfg_data Structure Chart

The functions called by load_cfg_data are described in more detail in Table 4.95.

Table 4.95 load_cfg_data Functions

ITEM DESCRIPTION

cfg get value MDI Configuration File Common Library routine used to return the value of the
specified configuration name.

cfg load configuration data MDI Configuration File Common Library routine used to read the configuration
name-value pairs from the specified configuration file.  These name-value pairs
are loaded into memory so they can be accessed on demand by the calling
program.

LinkIDCount MDI Realtime Common Library routine that returns the number of link
identifiers defined for the link type that is specified by the caller.

LinkIDData MDI Realtime Common Library routine to return a list of link identifiers of the
link type specified by the caller.

load num params Function to determine the number of parameters that are defined in the GPS TH
parameter data file.

load params Function to retrieve the default parameters and the adjustment factors from the
GPS TH parameter data file.

The load_num_params function determines the number of parameters that are defined in the GPS
TH parameter data file.  The structure chart for load_num_params is shown in Figure 4.113.



Data Server 140 System Design Document

load
num 
params

ds
fopen 
file

fscanf fclose

Figure 4.113  load_num_params Structure Chart

The functions called by load_num_params are described in more detail in Table 4.96

Table 4.96 load_num_params Functions

ITEM DESCRIPTION

ds fopen file Data Server Subsystem File Library routine to open a file using formatted I/O and return
statistics about the file.

fclose C Library Function to close a file.

fscanf C Library Function to read a formatted string from a file and parse the contents of the string
into individual elements.

The ds_fopen_file function is the Data Server Subsystem File Library routine to open a file using
formatted I/O and return statistics about the file.  The structure chart for ds_fopen_file is shown in
Figure 4.114.

ds
fopen 
file

fopen stat

Figure 4.114  ds_fopen_file Structure Chart



Data Server 141 System Design Document

The functions called by ds_fopen_file are described in more detail in Table 4.97

Table 4.97 ds_fopen_file Functions

ITEM DESCRIPTION

open C Library Function to open a file.

stat C Library Function to obtain the status information about a file.

The load_params function retrieves the default parameters and the adjustment factors from the
GPS TH parameter data file.  The structure chart for load_params is shown in Figure 4.115.

load
params

ds
fopen 
file

malloc fclose free fscanf

Figure 4.115  load_params Structure Chart

The functions called by load_params are described in more detail in Table 4.98.

Table 4.98 load_params Functions

ITEM DESCRIPTION

ds fopen file Data Server Subsystem File Library routine to open a file using formatted I/O and return statistics
about the file.

fclose C Library Function to close a file.

free C Library Function used to free previously allocated memory and make it available for further
allocation.

fscanf C Library Function to read a formatted string from a file and parse the contents of the string into
individual elements.

malloc C Library Function to allocate the specified amount of memory.

The init_status_table function initializes the status table data structure passed by the caller.  The
structure chart for init_status_table is shown in Figure 4.116.



Data Server 142 System Design Document

init
status 
table

init
gpsth 
date

Figure 4.116  init_status_table Structure Chart

The function called by init_status_table is described in more detail in Table 4.99.

Table 4.99 init_status_table Function

ITEM DESCRIPTION

init gpsth date Function to initialize an internal GPS TH date structure.

The init_shared_memory function creates the GPS TH parameter shared memory segment.  The
structure chart for init_shared_memory is shown in Figure 4.117.

init
shared 
memory

config
shm 
mgr

process
status 
message

create
segment

Figure 4.117  init_shared_memory Structure Chart

The functions called by init_shared_memory are described in more detail in Table 4.100.

Table 4.100 init_shared_memory Functions



Data Server 143 System Design Document

ITEM DESCRIPTION

config shm mgr MDI Shared Memory Manager Common Library routine used to initialize and
configure the shared memory manager library routines for the calling program.

create segment MDI Shared Memory Manager Common Library routine used to create a shared
memory segment of the specified size.  The shared memory segment is automatically
attached to the calling process.

process status message MDI Proces Status Common Library routine used to log a status message for the
specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the message is
written to the configured status log file. process_status_message will also keep track
of the current status value of the status type specified by the caller so that the current
status can be retrieved later.

The gpsth_send_heartbeat function sends the process-level heartbeat to the Subsystem Heartbeat
process.  The structure chart for gpsth_send_heartbeat is shown in Figure 4.118.

gpsth
send 
heartbeat

ph send
heartbeat

ph
disconnect gethostname

ph
connect

process
status 
message

Figure 4.118  gpsth_send_heartbeat Structure Chart

The functions called by gpsth_send_heartbeat are described in more detail in Table 4.101.

Table 4.101 gpsth_send_heartbeat Functions

ITEM DESCRIPTION

gethostname C Library Function which returns a string containing the name of the host machine.

ph connect MDI Process Heartbeat Common Library routine used to connect to the specified
process-level heartbeat service.  The host name and service name are used to make
the connection.

ph disconnect MDI Process Heartbeat Common Library routine used to disconnect from the
process-level heartbeat service.

ph send heartbeat MDI Process Heartbeat Common Library routine used to send the specified status
value to the heartbeat service configured by the ph_connect call.



Data Server 144 System Design Document

ITEM DESCRIPTION

process status message MDI Proces Status Common Library routine used to log a status message for the
specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the message is
written to the configured status log file. process_status_message will also keep track
of the current status value of the status type specified by the caller so that the current
status can be retrieved later.

The init_link_data function initializes the data structures necessary to manage the link data in the
data file.  The structure chart for init_link_data is shown in Figure 4.119.

init
link 
data

malloc
process
status 
message

init
data 
file

Figure 4.119 init_link_data Structure Chart

The functions called by init_link_data are described in more detail in Table 4.102.

Table 4.102 init_link_data Functions

ITEM DESCRIPTION

init data file Function to initialize the system to process the GPS TH data file. The GPS TH data
file defines the speed values for each of the link identifiers based on day of the week
and time of day.

malloc C Library Function to allocate the specified amount of memory.

process status message MDI Proces Status Common Library routine used to log a status message for the
specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the message is
written to the configured status log file. process_status_message will also keep track
of the current status value of the status type specified by the caller so that the current
status can be retrieved later.

The init_data_file function initializes the system to process the GPS TH data file. The GPS TH
data file defines the speed values for each of the link identifiers based on day of the week and time
of day.  The structure chart for init_data_file is shown in Figure 4.120.



Data Server 145 System Design Document

init
data 
file

ds
fopen 
file

process
status 
message

init
key 
table

process
status set 
status type v

Figure 4.120 init_data_file Structure Chart

The functions called by init_data_file are described in more detail in Table 4.103.

Table 4.103 init_data_file Functions

ITEM DESCRIPTION

ds fopen file Data Server Subsystem File Library routine to open a file using formatted
I/O and return statistics about the file.

init key table Function to initialize a table of keys to index the GPS TH data file. The
keys are used to facilitate efficient searching of the data file during
processing.

process status message MDI Proces Status Common Library routine used to log a status message for
the specified status type. If the process status library was configured to use a
status logger, then the message is forwarded to the status logger. Otherwise
the message is written to the configured status log file.
process_status_message will also keep track of the current status value of
the status type specified by the caller so that the current status can be
retrieved later.

process status set status type v process_status_set_status_type_value is used to set the value associated
with the specified status type.

The init_key_table function initializes a table of keys to index the GPS TH data file. The keys are
used to facilitate efficient searching of the data file during processing.  The structure chart for
init_key_table is shown in Figure 4.121.



Data Server 146 System Design Document

init
key 
table

malloc
process
status 
message

build
key 
table

Figure 4.121  init_key_table Structure Chart

The functions called by init_key_table are described in more detail in Table 4.104.

Table 4.104 init_key_table Functions

ITEM DESCRIPTION

build key table Function to build the key table from the GPS TH data file. The function searches the
file for each key and marks an entry in the key table indicating the position in the file
that the key can be found.

malloc C Library Function to allocate the specified amount of memory.

process status message MDI Proces Status Common Library routine used to log a status message for the
specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the message is
written to the configured status log file. process_status_message will also keep track
of the current status value of the status type specified by the caller so that the current
status can be retrieved later.

The build_key_table function builds the key table from the GPS TH data file. The function
searches the file for each key and marks an entry in the key table indicating the position in the file
that the key can be found.  The structure chart for build_key_table is shown in Figure 4.122.



Data Server 147 System Design Document

build
key 
table

read
next 
key

feof
process
status 
message

append
to key 
table

copy
key

Figure 4.122 build_key_table Structure Chart

The functions called by build_key_table are described in more detail in Table 4.105.

Table 4.105 build_key_table Functions

ITEM DESCRIPTION

append to key table Function to add a key entry to the end of the key table.

copy key Function to copy the contents of one key structure to another key structure.

feof C Library Function to determine if the end of file has been reached while reading a
file.

process status message MDI Proces Status Common Library routine used to log a status message for the
specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the message is
written to the configured status log file. process_status_message will also keep track
of the current status value of the status type specified by the caller so that the current
status can be retrieved later.

read next key Function to read the GPS TH data file and locate the next key in the file.

The read_next_key function reads the GPS TH data file and locates the next key in the file.  The
structure chart for read_next_key is shown in Figure 4.123.



Data Server 148 System Design Document

read
next 
key

strtok
process
status 
message

strcmp strcpy

Figure 4.123 read_next_key Structure Chart

The functions called by read_next_key are described in more detail in Table 4.106.

Table 4.106 read_next_key Functions

ITEM DESCRIPTION

process status message MDI Proces Status Common Library routine used to log a status message for the
specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the message is
written to the configured status log file. process_status_message will also keep track
of the current status value of the status type specified by the caller so that the current
status can be retrieved later.

strcmp C Library Function used to compare two strings.

strcpy C Library Function used to copy characters from a source string to a destination
string.

Strtok C Library Function used to break the specified string into a sequence of tokens.

The append_to_key_table function adds a key entry to the end of the key table.  The structure chart
for append_to_key_table is shown in Figure 4.124.



Data Server 149 System Design Document

append
to key 
table

process
status 
message

copy
key

Figure 4.124 append_to_key_table Structure Chart

The functions called by append_to_key_table are described in more detail in Table 4.107.

Table 4.107 append_to_key_table Functions

ITEM DESCRIPTION

copy key Function to copy the contents of one key structure to another key structure.

process status message MDI Proces Status Common Library routine used to log a status message for the
specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the message is
written to the configured status log file. process_status_message will also keep track
of the current status value of the status type specified by the caller so that the current
status can be retrieved later.

The gpsth_connect_to_dsif function connects the GPS TH process to the Data Server Interface
process. The structure chart for gpsth_connect_to_dsif is shown in Figure 4.125.

gpsth
connect 
to dsif

process
status 
message

gethostname
ds dsif
connect

Figure 4.125 gpsth_connect_to_dsif Structure Chart

The functions called by gpsth_connect_to_dsif are described in more detail in Table 4.108.



Data Server 150 System Design Document

Table 4.108 gpsth_connect_to_dsif Functions

ITEM DESCRIPTION

ds dsif connect Data Server Interface Library routine to connect with the Data Server Interface
Process.

gethostname C Library Function which returns a string containing the name of the host machine.

process status message MDI Proces Status Common Library routine used to log a status message for the
specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the message is
written to the configured status log file. Process_status_message will also keep track
of the current status value of the status type specified by the caller so that the current
status can be retrieved later.

The ds_dsif_connect function is the Data Server Interface Library routine to connect with the Data
Server Interface Process.  The structure chart for ds_dsif_connect is shown in Figure 4.126.

ds dsif
connect

process
status 
message

sock get
service 
port

sock
connect

Figure 4.126 ds_dsif_connect Structure Chart

The functions called by ds_dsif_connect are described in more detail in Table 4.109.

Table 4.109 ds_dsif_connect Functions

ITEM DESCRIPTION

process status message MDI Proces Status Common Library routine used to log a status message for the
specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the message is
written to the configured status log file. process_status_message will also keep track
of the current status value of the status type specified by the caller so that the current
status can be retrieved later.

sock connect MDI Socket routine used to create a socket connection to the specified host and port.

sock get service port MDI Socket Common Library routine that returns the port number associated with
the specified service name.



Data Server 151 System Design Document

The gpsth_time function returns the current time in UNIX calendar format. The function is a
wrapper to the UNIX time() function and provides special behavior when the TEST flag is on to
allow the caller to specify the time that is returned in subsequent calls.  The structure chart for
gpsth_time is shown in Figure 4.127.

gpsth
time

time

Figure 4.127 gpsth_time Structure Chart

The function called by gpsth_time is described in more detail in Table 4.110.

Table 4.110 gpsth_time Function

ITEM DESCRIPTION

time C Library Function that returns the time in UNIX calendar format (i.e., number of seconds since
January 1, 1970 UTC).

The cal_to_gpsth_date function converts a date value from UNIX calendar format to an internal
gpsth date format.  The structure chart for cal_to_gpsth_date is shown in Figure 4.128.

cal to
gpsth 
date

localtime
bd to
gpsth 
date

Figure 4.128  cal_to_gpsth_date Structure Chart

The functions called by cal_to_gpsth_date are described in more detail in Table 4.111.



Data Server 152 System Design Document

Table 4.111 cal_to_gpsth_date Functions

ITEM DESCRIPTION

bd to gpsth date Function to convert the time in UNIX broken-down format to the internal GPS TH date
format.

localtime C Library Function that converts a UNIX calendar time value to a UNIX broken-down
structure (struct tm). The function takes into account the local time zone and daylight saving
time flag.

The init_cal_file function reads the current gpsth parameters from the calendar file and writes them
to the parameter shared memory. If the parameters cannot be found in the calendar file, the default
parameters from the configuration file are used.  The structure chart for init_cal_file is shown in
Figure 4.129.

read
cal 
file

process
status 
message

process
status set 
status type v

free
params 
struct

set
params

init
params 
struct

init
cal 
file

Figure 4.129 init_cal_file Structure Chart

The functions called by init_cal_file are described in more detail in Table 4.112.

Table 4.112 init_cal_file Functions

ITEM DESCRIPTION

free params struct Function to free the memory allocated for a GPS TH parameter structure.

init params struct Function to allocate space and initialize a GPS TH parameter structure.

process status message MDI Proces Status Common Library routine used to log a status message for
the specified status type. If the process status library was configured to use a
status logger, then the message is forwarded to the status logger. Otherwise
the message is written to the configured status log file.
process_status_message will also keep track of the current status value of
the status type specified by the caller so that the current status can be
retrieved later.

process status set status type v process_status_set_status_type_value is used to set the value associated
with the specified status type.



Data Server 153 System Design Document

ITEM DESCRIPTION

read cal file Function to read and process the calendar file to locate the parameters that
are defined for the current day and month.

set params Function to write the parameters passed by the caller to the GPS TH
parameter shared memory segment.

The read_cal_file function reads and processes the calendar file to locate the parameters that are
defined for the current day and month.  The structure chart for read_cal_file is shown in Figure
4.130.

read
cal 
file

ds
fopen 
file

process
status 
message

fgets

feof

extract
date

match
daymo

strtok

Figure 4.130 read_cal_file Structure Chart

The functions called by read_cal_file are described in more detail in Table 4.113.



Data Server 154 System Design Document

Table 4.113 read_cal_file Functions

ITEM DESCRIPTION

ds fopen file Data Server Subsystem File Library routine to open a file using formatted I/O and
return statistics about the file.

process status message MDI Proces Status Common Library routine used to log a status message for the
specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the message is
written to the configured status log file. process_status_message will also keep track
of the current status value of the status type specified by the caller so that the current
status can be retrieved later.

fgets C Library Function to read a string from a file.

feof C Library Function to determine if the end of file has been reached while reading a
file.

extract date Function to extract a month and day value from a string. The sting should contain the
month and day separated by a '/', as in 5/25 or 4/24. The function checks the date to
make sure the values are valid.

match daymo Function to compare a date specified by the caller with the current date to determine
if the day and month of the date match the current date.

strtok C Library Function used to break the specified string into a sequence of tokens.

The init_params_struct function allocates space and initializes a GPS TH parameter structure.
The structure chart for init_params_struct is shown in Figure 4.131.

init
params 
struct

malloc

Figure 4.131 init_params_struct Structure Chart

The function called by init_params_struct is described in more detail in Table 4.114.

Table 4.114 init_params_struct Function

ITEM DESCRIPTION

Malloc C Library Function to allocate the specified amount of memory.



Data Server 155 System Design Document

The extract_date function extracts a month and day value from a string. The string should contain
the month and day separated by a '/', as in 5/25 or 4/24. The function checks the date to make sure
the values are valid.  The structure chart for extract_date_struct is shown in Figure 4.132.

extract
date

strtok
process
status 
message

sscanf
check
daymo

Figure 4.132 extract_date Structure Chart

The functions called by extract_date are described in more detail in Table 4.115.

Table 4.115 extract_date Functions

ITEM DESCRIPTION

check daymo Function to check the validity of a day/month pair. The function checks that the day
falls within 1..31, and the month falls within 1..12.

process status message MDI Proces Status Common Library routine used to log a status message for the
specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the message is
written to the configured status log file. process_status_message will also keep track
of the current status value of the status type specified by the caller so that the current
status can be retrieved later.

sscanf C Library Function to create a formatted string from a set of variable-type arguments.

strtok C Library Function used to break the specified string into a sequence of tokens.

The check_daymo function checks the validity of a day/month pair. The function checks that the
day falls within 1..31, and the month falls within 1..12.  The structure chart for check_daymo is
shown in Figure 4.133.



Data Server 156 System Design Document

check
daymo

process
status 
message

Figure 4.133 check_daymo Structure Chart

The function called by check_daymo is described in more detail in Table 4.116.

Table 4.116 check_daymo Function

ITEM DESCRIPTION

process status message MDI Proces Status Common Library routine used to log a status message for the
specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the message is
written to the configured status log file. process_status_message will also keep track
of the current status value of the status type specified by the caller so that the current
status can be retrieved later.

The match_daymo function compares a date specified by the caller with the current date to
determine if the day and month of the date match the current date.  The structure chart for
match_daymo is shown in Figure 4.134.

match
daymo

gpsth
time localtime

gpsth
date 
to bd

Figure 4.134 match_daymo Structure Chart

The functions called by match_daymo are described in more detail in Table 4.117.



Data Server 157 System Design Document

Table 4.117 match_daymo Functions

ITEM DESCRIPTION

gpsth date to bd Function to convert a GPS TH date structure to a UNIX broken-down date structure (i.e.,
struct tm).

gpsth time Function to return the current time in UNIX calendar format. The function is a wrapper to the
UNIX time() function and provides special behavior when the TEST flag is on to allow the
caller to specify the time that is returned in subsequent calls.

localtime C Library Function that converts a UNIX calendar time value to a UNIX broken-down
structure (struct tm). The function takes into account the local time zone and daylight saving
time flag.

The set_params function writes the parameters passed by the caller to the GPS TH parameter
shared memory segment.  The structure chart for set_params is shown in Figure 4.135.

set
params

write
segment

Figure 4.135 set_params Structure Chart

The function called by set_params is described in more detail in Table 4.118.

Table 4.118 set_params Function

ITEM DESCRIPTION

write segment MDI Shared Memory Manager Common Library routine that writes data to the specified shared
memory segment.

The free_params_struct function frees the memory allocated for a GPS TH parameter structure.
The structure chart for free_params_struct is shown in Figure 4.136.



Data Server 158 System Design Document

free
params 
struct

free

Figure 4.136 free_params_struct Structure Chart

The function called by free_params is described in more detail in Table 4.119.

Table 4.119 free_params_struct Function

ITEM DESCRIPTION

free C Library Function used to free previously allocated memory and make it available for
further allocation.

The process_link_data function frees the memory allocated for a GPS TH parameter structure.
The structure chart for process_link_data is shown in Figure 4.137.

read
link 
record

get
params

adjust
link 
record

free
params 
struct

process
link 
data

init
params 
struct

process
status 
message

Figure 4.137 process_link_data Structure Chart

The functions called by process_link_data are described in more detail in Table 4.120.

Table 4.120 process_link_data Functions

ITEM DESCRIPTION

adjust link record Function to adjust the speed of a link identifier based on the current GPS TH
parameters and adjustment factors.



Data Server 159 System Design Document

ITEM DESCRIPTION

free params struct Function to free the memory allocated for a GPS TH parameter structure.

get params Function to retrieve the GPS TH parameters from the GPS TH parameter shared
memory segment.

init params struct Function to allocate space and initialize a GPS TH parameter structure.

process status message MDI Proces Status Common Library routine used to log a status message for the
specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the message is
written to the configured status log file. process_status_message will also keep track
of the current status value of the status type specified by the caller so that the current
status can be retrieved later.

read link record Function to read a single GPS TH link record from the GPS TH data file based on
the link identifier, day of week, and time of day.

The get_params function retrieves the GPS TH parameters from the GPS TH parameter shared
memory segment.  The structure chart for get_params is shown in Figure 4.138.

get
params

malloc
read
segment

free

Figure 4.138 get_params Structure Chart

The functions called by get_params are described in more detail in Table 4.121.

Table 4.121 get_params Functions

ITEM DESCRIPTION

free C Library Function used to free previously allocated memory and make it available for further
allocation.

malloc C Library Function to allocate the specified amount of memory.

read segment MDI Shared Memory Manager Common Library routine to read the contents of the specified
shared memory segment.  The contents are stored in a memory area allocated by the caller.



Data Server 160 System Design Document

The read_link_record function reads a single GPS TH link record from the GPS TH data file based
on the link identifier, day of week, and time of day.  The structure chart for read_link_record is
shown in Figure 4.139.

read
link 
record

get
key 
index

process
status 
message

ds
fopen 
file

find
active 
record

fclose
process
status set 
status type v

Figure 4.139 read_link_record Structure Chart

The functions called by read_link_record are described in more detail in Table 4.122.

Table 4.122 read_link_record Functions

ITEM DESCRIPTION

ds fopen file Data Server Subsystem File Library routine to open a file using formatted
I/O and return statistics about the file.

fclose C Library Function to close a file.

find active record Function to search the GPS TH data file for the record that is currently
active. The search begins with the record that is specified by the caller. The
currently active record is the last record in the data file which has an hour
and minute that fall before the current hour and minute.

get key index Function to search the key table and retrieve the index of the key in the GPS
TH data file. This step greatly reduces the time required to search the GPS
TH data file by refining the location that the search should start from.

process status message MDI Proces Status Common Library routine used to log a status message for
the specified status type. If the process status library was configured to use a
status logger, then the message is forwarded to the status logger. Otherwise
the message is written to the configured status log file.
process_status_message will also keep track of the current status value of
the status type specified by the caller so that the current status can be
retrieved later.

process status set status type v process_status_set_status_type_value is used to set the value associated
with the specified status type.

The compare_key_entries function compares key entries to determine if one is greater than the
other, less than the other, or if they are equal.  The structure chart for compare_key_entries is
shown in Figure 4.140.



Data Server 161 System Design Document

compare
key 
entries

compare
keys

Figure 4.140 compare_key_entries Structure Chart

The function called by compare_key_entries is described in more detail in Table 4.123.

Table 4.123 compare_key_entries Function

ITEM DESCRIPTION

compare keys Function to compare two keys to determine if one is greater than the other, less than the
other, or if they are equal.

The compare_keys function compares key entries to determine if one is greater than the other, less
than the other, or if they are equal.  The structure chart for compare_keys is shown in Figure
4.141.

compare
keys

strcmp

Figure 4.141 compare_keys Structure Chart

The function called by compare_keys is described in more detail in Table 4.98.

Table 4.124 compare_keys Function

ITEM DESCRIPTION

strcmp C Library Function used to compare two strings.



Data Server 162 System Design Document

The get_key_index function searches the key table and retrieves the index of the key in the GPS
TH data file. This step greatly reduces the time required to search the GPS TH data file by refining
the location that the search should start from.  The structure chart for get_key_index is shown in
Figure 4.142.

get
key 
index

bsearch

compare
key 
entries

Figure 4.142 get_key_index Structure Chart

The functions called by get_key_index are described in more detail in Table 4.125.

Table 4.125 get_key_index Functions

ITEM DESCRIPTION

bsearch C Library Function implementing a binary search algorithm.  A function is passed to this
routine specifying the comparison routine to be used during the binary search.  A pointer
to the element found is returned or NULL if no element matching the search criteria is
found.

compare key entries Function to compare key entries to determine if one is greater than the other, less than
the other, or if they are equal.

The find_active_record function searches the GPS TH data file for the record that is currently
active. The search begins with the record that is specified by the caller. The currently active record
is the last record in the data file which has an hour and minute that fall before the current hour and
minute.  The structure chart for find_active_record is shown in Figure 4.143.



Data Server 163 System Design Document

find
active 
record

fseek
read
record

compare
headers

copy
data 
record

Figure 4.143 find_active_record Structure Chart

The functions called by find_active_record are described in more detail in Table 4.126.

Table 4.126 find_active_record Functions

ITEM DESCRIPTION

compare headers Function to compare two record headers to determine if one is greater than the other, less
than the other, or if they are equal.

copy data record Function to copy one record structure to another.

fseek Standard I/O function to reposition a file pointer in a stream.

read record Function to read a record from the data file at the location indicated by the file pointer
passed by the caller.

The read_record function reads a record from the data file at the location indicated by the file
pointer passed by the caller.  The structure chart for read_record is shown in Figure 4.144.

read
record

fscanf

Figure 4.144 read_record Structure Chart



Data Server 164 System Design Document

The function called by read_record is described in more detail in Table 4.127.

Table 4.127 read_record Function

ITEM DESCRIPTION

fscanf C Library Function to read a formatted string from a file and parse the contents of the string into
individual elements.

The compare_headers function compares two record headers to determine if one is greater than the
other, less than the other, or if they are equal.  The structure chart for compare_headers is shown in
Figure 4.145.

compare
headers

compare
keys

Figure 4.145 compare_headers Structure Chart

The function called by compare_headers is described in more detail in Table 4.128.

Table 4.128 compare_headers Function

ITEM DESCRIPTION

compare keys Function to compare two keys to determine if one is greater than the other, less than the
other, or if they are equal.

The copy_data_record function copies one record structure to another.  The structure chart for
copy_data_record is shown in Figure 4.146.



Data Server 165 System Design Document

copy
data 
record

copy
key

Figure 4.146 copy_data_record Structure Chart

The function called by copy_data_record is described in more detail in Table 4.129.

Table 4.129 copy_data_record Function

ITEM DESCRIPTION

copy key Function to copy the contents of one key structure to another key structure.

The send_link_data_with_retry function attempts to write link data to the Data Server Interface
process. If the attempt fails, the function attempts to reconnect to the Data Server Interface and
send the data again. If the second attempt fails, the function returns an error.  The structure chart
for send_link_data_with_retry is shown in Figure 4.147.

send link
data with 
retry

write
link 
data

ds dsif
disconnect

gpsth
connect 
to dsif

process
status 
message

Figure 4.147 send_link_data_with_retry Structure Chart

The functions called by send_link_data_with_retry are described in more detail in Table 4.130.



Data Server 166 System Design Document

Table 4.130 send_link_data_with_retry Functions

ITEM DESCRIPTION

ds dsif disconnect Data Server Interface Library routine to close the connection with the Data Server
Interface process.

gpsth connect to dsif Connects the GPS TH process to the Data Server Interface process.

process status message MDI Proces Status Common Library routine used to log a status message for the
specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the message
is written to the configured status log file. process_status_message will also keep
track of the current status value of the status type specified by the caller so that the
current status can be retrieved later.

write link data Function to write link data to the Data Server Interface Process. Link data is stored
in a local array and transferred to the interface process using a Data Server Interface
Library function.

The write_link_data function writes link data to the Data Server Interface Process. Link data is
stored in a local array and transferred to the interface process using a Data Server Interface
Library function.  The structure chart for write_link_data is shown in Figure 4.148.

write
link 
data

ds dsif send
link write 
request

process
status 
message

Figure 4.148 write_link_data Structure Chart

The functions called by write-link_data are described in more detail in Table 4.131.

Table 4.131 write_link_data Functions

ITEM DESCRIPTION

ds dsif send link write request Data Server Interface Library routine to send a link write request and link
data to the Data Server Interface process. The Data Server Interface process
will attempt to forward the data to the Data Server.



Data Server 167 System Design Document

ITEM DESCRIPTION

process status message MDI Proces Status Common Library routine used to log a status message for
the specified status type. If the process status library was configured to use a
status logger, then the message is forwarded to the status logger. Otherwise
the message is written to the configured status log file.
process_status_message will also keep track of the current status value of
the status type specified by the caller so that the current status can be
retrieved later.

The ds_dsif_send_link_write_request function is a Data Server Interface Library routine to send a
link write request and link data to the Data Server Interface process. The Data Server Interface
process will attempt to forward the data to the Data Server.  The structure chart for
ds_dsif_send_link_write_request is shown in Figure 4.149.

ds dsif send
link write 
request

ds dsif is
socket 
connected

sock
writen

process
status 
message

ds dsif
read 
status

Figure 4.149 ds_dsif_send_link_write_request Structure Chart

The functions called by ds_dsif_send_link_write_request are described in more detail in Table
4.132.

Table 4.132 ds_dsif_send_link_write_request Functions

ITEM DESCRIPTION

ds dsif is socket connected Function to determine if the socket is currently connected. If the socket value
is not -1, it is assumed to be connected.

ds dsif read status Function to read a status response from the Data Server Interface process.

process status message MDI Proces Status Common Library routine used to log a status message for
the specified status type. If the process status library was configured to use a
status logger, then the message is forwarded to the status logger. Otherwise
the message is written to the configured status log file.
process_status_message will also keep track of the current status value of
the status type specified by the caller so that the current status can be
retrieved later.

sock writen MDI Socket Common Library routine used to write a specified number of
bytes to a specified socket.



Data Server 168 System Design Document

The ds_dsif_read_status function reads a status response from the Data Server Interface process.
The structure chart for ds_dsif_read_status is shown in Figure 4.150.

ds dsif
read 
status

sock
readn

process
status 
message

ntohl

Figure 4.150 ds_dsif_read_status Structure Chart

The functions called by ds_dsif_read_status are described in more detail in Table 4.133.

Table 4.133 ds_dsif_read_status Functions

ITEM DESCRIPTION

ntohl Network Function used to convert between network and host byte order.

process status message MDI Proces Status Common Library routine used to log a status message for the
specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the message is
written to the configured status log file. process_status_message will also keep track
of the current status value of the status type specified by the caller so that the current
status can be retrieved later.

sock readn MDI Socket Common Library routine that reads a specified number of bytes from the
specified socket.

The gpsth_connect_to_dsif function connects the GPS TH process to the Data Server Interface
process.  The structure chart for gpsth_connect_to_dsif is shown in Figure 4.151.



Data Server 169 System Design Document

gpsth
connect 
to dsif

process
status 
message

gethostname
ds dsif
connect

Figure 4.151 gpsth_connect_to_dsif Structure Chart

The functions called by gpsth_connect_to_dsif are described in more detail in Table 4.134.

Table 4.134 gpsth_connect_to_dsif Functions

ITEM DESCRIPTION

ds dsif connect Data Server Interface Library routine to connect with the Data Server Interface
Process.

gethostname C Library Function which returns a string containing the name of the host machine.

process status message MDI Proces Status Common Library routine used to log a status message for the
specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the message is
written to the configured status log file. process_status_message will also keep track
of the current status value of the status type specified by the caller so that the current
status can be retrieved later.

The ds_dsif_connect function is a Data Server Interface Library routine to connect with the Data
Server Interface Process.  The structure chart for ds_dsif_connect is shown in Figure 4.152.



Data Server 170 System Design Document

ds dsif
connect

process
status 
message

sock get
service 
port

sock
connect

Figure 4.152 ds_dsif_connect Structure Chart

The functions called by ds_dsif_connect are described in more detail in Table 4.135.

Table 4.135 ds_dsif_connect Functions

ITEM DESCRIPTION

process status message MDI Proces Status Common Library routine used to log a status message for the
specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the message is
written to the configured status log file. Process_status_message will also keep track
of the current status value of the status type specified by the caller so that the current
status can be retrieved later.

sock connect MDI Socket routine used to create a socket connection to the specified host and port.

sock get service port MDI Socket Common Library routine that returns the port number associated with
the specified service name.

The gpsth_send_heartbeat function is a Data Server Interface Library routine to connect with the
Data Server Interface Process.  The structure chart for gpsth_send_heartbeat is shown in Figure
4.153.



Data Server 171 System Design Document

gpsth
send 
heartbeat

ph send
heartbeat

ph
disconnect

gethostname
ph
connect

process
status 
message

Figure 4.153 gpsth_send_heartbeat Structure Chart

The functions called by gpsth_send_heartbeat are described in more detail in Table 4.136.

Table 4.136 gpsth_send_heartbeat Functions

ITEM DESCRIPTION

Gethostname C Library Function which returns a string containing the name of the host machine.

ph connect MDI Process Heartbeat Common Library routine used to connect to the specified
process-level heartbeat service.  The host name and service name are used to make
the connection.

ph disconnect MDI Process Heartbeat Common Library routine used to disconnect from the
process-level heartbeat service.

ph send heartbeat MDI Process Heartbeat Common Library routine used to send the specified status
value to the heartbeat service configured by the ph_connect call.

process status message MDI Proces Status Common Library routine used to log a status message for the
specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the message is
written to the configured status log file. process_status_message will also keep track
of the current status value of the status type specified by the caller so that the current
status can be retrieved later.



Data Server 172 System Design Document

4.3.5 Lane Closure GUI

The Lane Closure GUI process was previously developed for TransGuide.  Under the MDI project,
this process was integrated with the TransGuide Realtime Map and the Data Server.

The Lane Closure GUI process allows the operator to enter TransGuide lane closure information
into the TransGuide system.  The Lane Closure GUI process displays the TransGuide Lane
Closure Control GUI with a form containing fields similar to the lane closure paper form.  Figure
4.154 shows the layout of the window containing the form.

Modifications to the Lane Closure GUI process allow the operator to enter a lane closure by
pointing to the location of the lane closure on the Realtime Map.  If this location is on an
instrumented segment, the Link ID of that segment is retrieved.  The coordinates and any available
segment information is automatically included in the lane closure form.  When the operator is ready
to save the lane closures before exiting the form, the current lane closures are converted to incident
format, and sent to the Data Server.  If the operator exits without saving the data, no lane closures
are sent to the Data Server.



Data Server 173 System Design Document

Figure 4.154  Lane Closure Control GUI



Data Server 174 System Design Document

4.3.5.1 Process Design

The Lane Closure GUI flow diagram is shown in Figure 4.155. The Lane Closure GUI process is
started from the Realtime Map.  Only one instance of the Lane Closure GUI process can be
running at a time. The map supplies the coordinates of the lane closure and the TransGuide LinkID
of any segment at that location to the Lane Closure GUI process.

Due to the transient nature of the Lane Closure GUI, it does not send status information
(heartbeats) to the Data Server.

The connection to the Data Server process is established by the ds_lc_init process, which is called
during initialization of the Lane Closure GUI.  This process sends an initialization request to the
Data Server.  When the operator exits the Lane Closure GUI and chooses to save the modifications
to the lane closure file, the send_lc_ds process converts the lane closures to incident format, sends
them to the Data Server and terminates the connection to the Data Server.  If the operator does not
choose to save the lane closures, only the termination request is sent to the Data Server.

The processes shown on the Lane Closure GUI data flow diagram are described in more detail in
Table 4.137.

Table 4.137  Lane Closure GUI Processes

ITEM DESCRIPTION

ds_lc_init Initializes the Data Sever related parts of the application.  It loads the configuration
information, sets up status logging and initializes the connection to the Data Server.

Lane Closure GUI Existing Lane Closure GUI that has been intergated into Data Server, with minor
modifictions to incorporate the map coordinates, and to communicate with the Data Server
process. When all current lane closures are written to a file, the incident portion of the
information is sent to the Data Server as Lane Closure incidents.

send_lc_ds This function calls the Data Server interface library function ds_write_inc_data to send all
current lane closures to the Data Server.  If the Data Server is not connected, this function
attempts a new connection.

1.1

Lane
Closure 
GUI

1.2

ds_lc_init

1.4

send_lc_ds

Launch LC GUI

Map Coordinate

Incident Write
Req

Con Req

Close Req

Incident Data
Req

Init Req
Init

Client Data
Req

Exit

Lane Closure
Incident Data

Figure 4.155  Lane Closure GUI Data Flow Diagram



Data Server 175 System Design Document

4.3.5.2 Model Design

The ds_lc_init routine is responsible for initializing the Data Server related portion of the
application.  It loads the configuration data, sets up logging and initializes the connection to the
Data Server.  The structure chart of ds_lc_init is shown in Figure 4.156.

ds
lc 
init

cfg load
configuration 
data

cfg
get 
value

sl
new

sl
write

read
config 
file

ds
init

cfg
get 
value

Figure 4.156  ds_lc_init Structure Chart

The functions called by ds_lc_init are described in more detail in Table 4.138.

Table 4.138  ds_lc_init Functions

ITEM DESCRIPTION

cfg get value MDI Configuration File Common Library routine used to return the value of the
specified configuration name.

cfg load configuration data MDI Configuration File Common Library routine used to read the configuration
name-value pairs from the specified configuration file.  These name-value pairs
are loaded into memory so they can be accessed on demand by the calling
program.

ds init MDI Data Server Common Library routine used to initialize the connection to
the Data Server.

read config file Initializes the values of the configurable variables with data read from the
configuration file.

sl new MDI Status Logging Library routine that creates a new instance of a log file
using the specified path and filename.  Any log messages directed to this log file
are appended to the end of the log file.

sl write MDI Status Logging Library routine used to write a message to the specified log
file.



Data Server 176 System Design Document

The send_lc_to_ds routine sends all the current lane closure records as incidents to the Data
Server.  The structure chart of send_lc_to_ds is shown in Figure 4.157.

The functions called by send_lc_to_ds are described in more detail in Table 4.139.

Table 4.139  send_lc_to_ds Functions

ITEM DESCRIPTION

ds init MDI Data Server Common Library routine used to initialize the connection to the Data
Server.

ds write inc data MDI Data Server Common Library routine to send incident data to the Data Server.

send data with retry This function sends all current lane closures to the Data Server.  If no connection to the
Data Server exists, this function attempts to re-connect.

sl write MDI Statuslog common library function used to write a message to the specified log file.

send
lc to 
ds

sl
write

send
data 
with retry

ds
write 
inc data

ds
init

Figure 4.157  send_lc_to_ds Structure Chart



Data Server 177 System Design Document

4.3.6 Road Closed Interface

The Road Closed Interface, is implemented by the transferfiles process and a Road Closed
configuration file.  The transferfiles process is described in the Kiosk System Design Document,
and the configurable items for the Road Closed interface are described in Table 4.140.

Table 4.140  transferfiles configuration items for the Road Closed Interface.

CONFIGURATION ITEM DESCRIPTION

DIRECTORY_PATH Name of directory where the Highway Condition file is stored by the Texas
State Roadway Closed Database.

FILE_TYPE The name of the type of file that will be transferred.

MAX_FILES Maximum number of files.

TIMEOUT Not used.

FREQUENCY Time in seconds between file retrievals.

SLOG_PATH Status log path.



Data Server 178 System Design Document

4.3.7 911 Interface Subsystem

The 911 Interface subsystem receives 911 incident information from the City of San Antonio 911
Data Dispatch Computer. The data is read and processed for transmission to the Data Server.  The
coordinates of the traffic related 911 incidents are converted from Texas State Plane to geographic
coordinates1, the data is converted to incident format and forwarded to the Data Server. The
following sections provide the process and model designs of the 911 Interface subsystem.

4.3.7.1 Process Design

The external environment of the 911 IF process is depicted in the Data Server data flow diagram
shown in Figure 4.158. The diagram shows the 911 IF process interacting with the Data Server
process of the Data Server. The 911 IF process sends client data and incident data requests to the
Data Server process. The 911 IF process is a pure data generator in that no data flows enter the
process.

The 911 IF process is composed of subsystems: the 911 External Interface subsystem, and the
Convert Coordinates subsystem. Each of these subsystems are described in more detail in Table
4.141 and the Convert Coordinates subsystem data flow diagram is presented below in Figure
4.159.

The 911 External Interface subsystem is responsible for initializing the 911 Interface connection
with the 911 Dispatch System, and reading the 911 Incident Data. It then passes coordinate data to
the Convert Coordinates subsystem, then sends the data to the Data Server.

                                                  
1 It is necessary to convert the coordinates because the locations of the 911

Incidents are specified in NAD-27 Texas State Plane Coordinates and the data
consumers of the Data Server expect locations to be specified in NAD-83 geographic
coordinates.



Data Server 179 System Design Document

3.1
911 External
Interface

3.2
Convert
Coordinates

SP Coordinates

Geo Coordinates

Con Req

911 Incident

911 Incident
Write Req

HB Req

Init Req

Close Req

Client Data
Req

Incident Data
Req

Figure 4.158. 911 IF Data Flow Diagram

The subsystems shown on the 911 IF data flow diagram are described in more detail in Table
4.141.

Table 4.141. 911 IF Subsystem

ITEM DESCRIPTION

911 External
Interface

The subsystem that interfaces with the City of San Antonio 911 Dispatch System. The 911 System
sends 911 incident information to the subsystem. The subsystem then passes each accident related
traffic incident to the Convert Coordinates subsystem to convert the incident state plane
coordinates to geographic coordinates. The subsystem then passes the incident data to the Data
Server in the form of an Incident Write Req.

Convert
Coordinates

A subsystem to convert NAD-27 Texas State Plane coordinates to NAD-83 geographic
coordinates.

3.2.1

SP NAD27
to Geo 
NAD27

3.2.2

Geo NAD27
to Geo 
NAD83

SP Coordinates Intermediate
Geo Coordinates

Geo Coordinates

Figure 4.159. Convert Coordinates Data Flow Diagram

The Convert Coordinates data flow diagram is shown in Figure 4.159. The SP Coordinates are
received by the SP NAD27 to Geo NAD27 process which first transforms the coordinates from
NAD-27 Texas State Plane to NAD-27 geographical coordinates. The Geo NAD27 to Geo NAD
83 process then completes the conversion by converting from NAD-27 geographic to NAD-83
geographic. The components of the Convert Coordinates subsystem are described in more detail in
Table 4.142.



Data Server 180 System Design Document

Table 4.142. Convert Coordinates Processes

ITEM DESCRIPTION

Geo NAD27 to
Geo NAD83

A function to convert NAD-27 geographic coordinates into NAD-83 geographic coordinates.

SP NAD27 to
Geo NAD27

A function to convert NAD-27 Texas State Plane coordinates to NAD-27 geographic coordinates.

4.3.7.2 Model Design

The 911 Main structure chart is shown in Figure 4.160. The 911 Main function reads the
configuration information, initializes status logging, initializes the 911 interface process by
connecting to the 911 Dispatch System and the Data Server Interface process. It then reads the 911
Incident data from the 911 Dispatch System, converts the coordinates of the accident related traffic
incidents, and writes the incident data to the Data Server.

911 Main also issues a heartbeat request to the Data Server periodically to report the status of the
process.

Coordinates are converted using two functions adapted from the United States Government
Corpscon application. These functions, PCGP27 and CNAD, convert from state plane coordinates
to geographic coordinates.



Data Server 181 System Design Document

911
Main

open
status 
log

initialize
dsif 
connection

sock
get 
service 
port

socket
activity

sock
listen

sock
accept

sock
readn

sock
close

dsif
send 
heartbeat

process
911 
data

ds dsif
send inc 
write 
request

ds
signal 
setup

sigset

cfg load
configuration 
data

cfg
get 
value

log
error 
heartbeat

select
sl
new

Figure 4.160. 911 Main Structure Chart

The functions called by 911 Main are described in more detail in Table 4.143.



Data Server 182 System Design Document

Table 4.143. 911 Main Functions

ITEM DESCRIPTION

911 Main The main function of the 911 Interface subsystem. This function initializes
the 911 interface process by connecting to the 911 Dispatch System and the
Data Server. It then reads the 911 Incident data from the 911 Dispatch
System, converts the coordinates, and writes the incident data to the Data
Server.

The process also issues a heartbeat request to the Data Server periodically to
report the status of the process.

cfg get value MDI Configuration File Common Library routine used to return the value of
the specified configuration name.

cfg load configuration data MDI Configuration File Common Library routine used to read the
configuration name-value pairs from the specified configuration file.  These
name-value pairs are loaded into memory so they can be accessed on demand
by the calling program.

ds dsif send inc write request A ds_dsif library function that packages the link data into the appropriate
ds_dsif message and sends it out to the ds_dsif_socket.

ds signal setup Data Server Subsystem Common Library function that sets a common signal
handler routine for all catchable signals.

dsif send heartbeat Sends the heartbeat and responds to any errors.  If the ds_hb service is not
connected, an attempt is made to connect to it.  Once the connection is
established, this routine takes the specified process status and sends it to the
ds_hb process.

initialize dsif connection Retrieves necessary configuration items and establishes a connection to the
Data Server Interface process.

log error heartbeat Logs an error heartbeat to the Data Server.

open status log Opens a status log file with the given path and filename.

Process 911 data This function processes the data for an incident.  Only accident related
incidents are processed.  Incident location coordinates are converted from
Texas State Plane to lat/long.

Select C Library Function used to multiplex synchronous I/O.  The list of file
descriptors for reading, writing, and receiving exceptions are examined and
any file descriptors that are ready for reading, writing, or have an exceptional
condition pending are identified.

Sigset C Library Function used to modify the disposition of a signal. The signal can
be caught, ignored, or returned to the default disposition.

Sl new MDI Status Logging Library routine that creates a new instance of a log file
using the specified path and filename.  Any log messages directed to this log
file are appended to the end of the log file.

Sock accept MDI Socket Common Library routine that accepts a connection on the
specified socket.

Sock close MDI Socket Common Library routine used to close the specified socket
connection.

Sock get service port MDI Socket Common Library routine that returns the port number associated
with the specified service name.

Sock listen MDI Socket Common Library routine that creates a socket, binds it to the
specified port number, and sets up the listen queue for the socket.



Data Server 183 System Design Document

ITEM DESCRIPTION

Sock readn MDI Socket Common Library routine that reads a specified number of bytes
from the specified socket.

Socket activity Waits for activity on multiple sockets.

The open_status_log routine opens a log file with a given path and filename.  The structure chart
for open_status_log is shown in Figure 4.161.

The function called by open_status_log is described in more detail in Table 4.144.

Table 4.144  open_status_log Function

ITEM DESCRIPTION

sl new Library function to create a new status log file.

The process_911_data routine processes the data for an incident.  Only accident related incidents
are processed.  Incident location coordinates are converted from Texas State Plane coordinates to
to latitude/longitude.  The structure chart for process_911_data is shown in Figure 4.162.

open
status 
log

sl
new

Figure 4.161  open_status_log Structure Chart



Data Server 184 System Design Document

The functions called by process_911_data are described in more detail in Table 4.145.

Table 4.145  process_911_data Functions

ITEM DESCRIPTION

dispatcher2manager Converts dispatcher code to manager text.

disposition2status Converts disposition code to status.

mil2time_t Converts date and time to time_t format.

PCGP27 A library function adapted from the U.S. Government Corpscon software. The function
converts coordinates from NAD-27 Texas State Plane to NAD-27 geographic.

process
911 
data

PCGP27 mil2time_t disposition2status dispatcher2manager

Figure 4.162  process_911_data Structure Chart



Data Server 185 System Design Document

4.3.8 Realtime Broadcast

The Realtime Broadcast process replaces functionality that was previously implemented by the
TransGuide program “SunBroadcast”.  Realtime Broadcast retrieves ATMS/ATIS data from the
Data Server, and from Realtime Collect, and broadcasts this data over the TransGuide network to
receivers.  The Realtime Receive process is used to receive the data from Realtime Broadcast.

4.3.8.1 Process Design

The ATMS data that is broadcast by the Realtime Broadcast process is received by an instance of
the Realtime Receive process running on a workstation. The data broadcast by the Realtime
Broadcast program includes:

• LinkID data
• ATMS Lane data
• VMS data
• LCS data
• TS data
• MDI Equipment data
• Incident data

Realtime Broadcast receives the ATMS data directly from the Realtime Collect process.  The non-
ATMS specific data is retrieved from the Data Server.  The data is then combined into a single
packet and broadcast over the network. The TransGuide environment has two ethernets, these
ethernets are connected by a ethernet bridge that does not interchange UDP packets.  As a result,
the Realtime Broadcast program must broadcast the UDP packets twice, once over each network.

The Realtime Broadcast process sends a heartbeat message at regular intervals to Data Server,
which uses it to update the status of the process in shared memory.  The Realtime Broadcast data
flow diagram is shown in Figure 4.163.

4.3.8.2 Model Design

The Realtime Broadcast Main function receives ATMS Data from the Realtime Collect program
and MDI data from the Data Server, which it then broadcasts on the TransGuide network.  The
Realtime Broadcast Main structure chart is shown in Figure 4.164.

1.8.1

Realtime
Broadcast

Link Data

ATMS Data

Incident Data

Lane Data Req

Incident Data
Req

Status Info
Heartbeat

Broadcast Data

Figure 4.163  Realtime Broadcast Data Flow Diagram



Data Server 186 System Design Document

The functions called by Realtime Broadcast Main are described in more detail in Table 4.146.

Table 4.146  Realtime Broadcast Main Functions

ITEM DESCRIPTION

cfg get value MDI Configuration File Common Library routine used to return the value of
the specified configuration name.

cfg load configuration data MDI Configuration File Common Library routine used to read the
configuration name-value pairs from the specified configuration file.  These
name-value pairs are loaded into memory so they can be accessed on demand
by the calling program.

select

Realtime
Broadcast 
Main

getservbyname

initialize
dsif 
connection

sock
listen 
with 
reuse

socket
activity

receive
atms 
data

sock
accept

send
broadcast

CompressData

dsif
send 
heartbeat

udpopenwrite

ds dsif
send inc 
read 
request

ds
signal 
setup

sigset

cfg load
configuration 
data

cfg
get 
value

socket setsockopt

sock
readn

Figure 4.164  Realtime Broadcast Main Structure Chart



Data Server 187 System Design Document

ITEM DESCRIPTION

CompressData Compresses data from one data structure into another using the PKWARE
implode() routine.

ds dsif send inc read request A ds_dsif library function that packages a request to read incident data from
the Data Server and sends the request to the dsif process.  It then reads the
incident data returned by the dsif process.

ds signal setup Data Server Subsystem Common Library function that sets a common signal
handler routine for all catchable signals.

dsif send heartbeat Sends the heartbeat and responds to any errors.  If the ds_hb service is not
connected, an attempt is made to connect to it.  Once the connection is
established, this routine takes the specified process status and sends it to the
ds_hb process.

getservbyname C Library Function used to obtain an entry for the specified Internet service.

initialize dsif connection Retrieves necessary configuration items and establishes a connection to the
Data Server Interface process.

receive atms data Reads data size followed by the data from the Data Server.

Select C Library Function used to multiplex synchronous I/O.  The list of file
descriptors for reading, writing, and receiving exceptions are examined and
any file descriptors that are ready for reading, writing, or have an exceptional
condition pending are identified.

send broadcast Broadcasts the packet type and the data to the clients.

Setsockopt C Library Function used to set options on sockets.

Sigset C Library Function used to modify the disposition of a signal. The signal can
be caught, ignored, or returned to the default disposition.

sock accept MDI Socket Common Library routine that accepts a connection on the
specified socket.

sock listen with reuse MDI Socket Common Library routine used to set up a socket to listen for
connections and to make the socket address reusable.

sock readn MDI Socket Common Library routine that reads a specified number of bytes
from the specified socket.

Socket C Library Function used to create an endpoint for communication.

socket activity Waits for activity on multiple sockets.

Udpopenwrite Opens and initializes the UPD socket for broadcasting.

The initialize_dsif_connection function is responsible for retrieving necessary configuration items
and establishes a connection to the Data Server Interface process.  The initialize_dsif_connection
structure chart is shown in Figure 4.165.



Data Server 188 System Design Document

The functions called by initialize_dsif_connection are described in more detail in Table 4.147.

Table 4.147  initialize_dsif_connection Functions

ITEM DESCRIPTION

cfg get value MDI Configuration File Common Library routine used to return the value
of the specified configuration name.

ds dsif connect MDI dsif Library routine that is used to connect to the Data Server Interface
process specified by the service name passed to this routine.

dsif send heartbeat Sends the heartbeat and responds to any errors.  If the ds_hb service is not
connected, an attempt is made to connect to it.  Once the connection is
established, this routine takes the specified process status and sends it to
the ds_hb process.

process status config with logfi process_status_config_with_logfile is an MDI Process Status Common
Library routine used to configure the process status handling for the
process. This routine is used to set up a logfile that will be used by the
calling program.

The dsif_send_heartbeat function sends the heartbeat to the ds_hb heartbeat process, and responds
to any errors.  If the ds_hb service is not connected, an attempt is made to connect to it.  Once the
connection is established, this routine takes the specified process status and sends it to the ds_hb
process.  The structure chart for dsif_send_heartbeat is shown in Figure 4.166.

initialize
dsif 
connection

cfg
get 
value

process
status config 
with logfi

ds dsif
connect

dsif
send 
heartbeat

Figure 4.165  initialize_dsif_connection Structure Chart



Data Server 189 System Design Document

The functions called by dsif_send_heartbeat are described in more detail in Table 4.148.

Table 4.148  dsif_send_heartbeat Functions

ITEM DESCRIPTION

ph connect MDI Process Heartbeat Common Library routine used to connect to the specified
process-level heartbeat service.  The host name and service name are used to make
the connection.

ph disconnect MDI Process Heartbeat Common Library routine used to disconnect from the
process-level heartbeat service.

ph send heartbeat MDI Process Heartbeat Common Library routine used to send the specified status
value to the heartbeat service configured by the ph_connect call.

process status message MDI Proces Status Common Library routine used to log a status message for the
specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the message is
written to the configured status log file. process_status_message will also keep track
of the current status value of the status type specified by the caller so that the current
status can be retrieved later.

The send_broadcast function broadcasts the packet type and the data to the clients.  The
send_broadcast structure chart is shown in Figure 4.167.

dsif
send 
heartbeat

ph send
heartbeat

ph
disconnect

ph
connect

process
status 
message

Figure 4.166  dsif_send_heartbeat Structure Chart



Data Server 190 System Design Document

The functions called by send_broadcast are described in more detail in Table 4.149.

Table 4.149  send_broadcast Functions

ITEM DESCRIPTION

sendto C Library Function used to send a message from a socket.

udpwrite Broadcasts data to the clients.

send
broadcast

udpwrite

sendto

Figure 4.167  send_broadcast Structure Chart



Data Server 191 System Design Document

4.3.9 Realtime Receive

The Realtime Receive process is executed on each workstation which needs access to the realtime
data stream that is being transmitted by the Realtime Broadcast process.  The Realtime Receive
process is typically started in the system startup procedure.  The Realtime Receive process acts as
a server in the sense that applications “connect” to the process and request realtime data refreshes.
The Realtime receive process continually monitors the networking waiting for a UDP packet
(which is transmitted from the Realtime Broadcast process).  Once this data is received it is stored
in local memory and then transmitted to client processes as the data is requested.  All
communication to clients is performed over TCP/IP sockets.

4.3.9.1 Process Design

The Realtime Receive process monitors and controls two types of socket connections The socket
connections are:

• UDP socket connection which waits for UDP packets (transmitted by the Realtime Broadcast
program) to be received.  Once the data is received it is stored in local memory.

• TCP/IP socket which waits for requests from client applications (e.g. Map). When a client
initially connects to the Realtime Receive program, configuration information about the
currently active realtime data stream is transmitted to the client.  The client then periodically
requests data refreshes from the Realtime Receive program.

The Realtime Receive data flow diagram is shown in Figure 4.168.

1

Realtime
Receive

TG
Network

Realtime
Receive 
Memory

Clients

MDI Data

Initialize
Connection

MDI Data

MDI Data

Request Data
Refresh

Figure 4.168. Realtime Receive Data Flow Diagram



Data Server 192 System Design Document

4.3.9.2 Model Design

The Realtime Receive Main function receives data from the Realtime Broadcast program and data
requests from various clients (which use a set of library routines to access the Realtime Receive
data). The Realtime Receive main structure chart is shown in Figure 4.169.

select

Realtime
Receive 
Main

getservbyname

upd
read

sock
listen 
with reuse

socket
activity

AllocateDataSpace

UncompressData

cfg load
configuration 
data

VerifyIncidentStorage

cfg
get 
value

sock
accept

sock
readn

CreateRealTimeData

udp
open 
read

send
configuration

send
data 
refresh

udp
close

Figure 4.169. Realtime Receive Structure Chart

The functions that are invoked by the Realtime Receive main process are described in Table 4.150.

Table 4.150. Realtime Receive Functions

ITEM DESCRIPTION



Data Server 193 System Design Document

ITEM DESCRIPTION

AllocateDataSpace Creates data structures for each of the data types to be received from the Data
Server. The function determines the sizing information from the data file and
allocates memory to hold the configuration data for each entry.

Cfg get value MDI Configuration File Common Library routine used to return the value of the
specified configuration name.

Cfg load configuration data MDI Configuration File Common Library routine used to read the configuration
name-value pairs from the specified configuration file.  These name-value pairs
are loaded into memory so they can be accessed on demand by the calling
program.

CreateRealTimeData Creates the Realtime memory.

Getservbyname C Library Function used to obtain an entry for the specified Internet service.

Select C Library Function used to multiplex synchronous I/O.  The list of file
descriptors for reading, writing, and receiving exceptions are examined and any
file descriptors that are ready for reading, writing, or have an exceptional
condition pending are identified.

Send configuration Sends the size of each of the statically defined realtime data elements to the
client application, so that it can allocate appropriate space.

Send data refresh Sends a copy of the Realtime data to the requesting client application using
send_data().

Sock accept MDI Socket Common Library routine that accepts a connection on the specified
socket.

Sock listen with reuse MDI Socket Common Library routine used to set up a socket to listen for
connections and to make the socket address reusable.

Sock readn MDI Socket Common Library routine that reads a specified number of bytes
from the specified socket.

Socket activity Waits for activity on multiple sockets.

Udp close Terminates communication on the specified socket by issuing a shutdown()
command to the socket, followed by a close() command.

Udp open read Creates and initializes a UDP socket for receiving broadcast messages.

UncompressData Uncompresses data from one data structure into another using the PKWARE
explode() routine.

Upd read Network function used to receive a message from a socket.

VerifyIncidentStorage Increases the incident storage space if the number of incidents exceeds the
number of incidents for which space is currently allocated.

The udp_open function is responsible for establishing the UDP socket that is utilized to receive
data from the Realtime Broadcast program.  The udp_open structure chart is shown in Figure
4.170.



Data Server 194 System Design Document

udp
open 
read

socket setsockopt htonl htons bind
udp
make 
blocking

fcntl

Figure 4.170. udp_open Structure Chart

The functions that are invoked during the execution of udp_open are described in Table 4.151.

Table 4.151. udp_open Functions

ITEM DESCRIPTION

bind Network function used to bind a name to a socket.

fcntl Unix system call used to provide control over open files.

Htonl Network function used to convert a long integer from host to network byte format.

Htons Network function used to convert a short integer from host to network byte format.

Setsockopt C Library Function used to set options on sockets.

Socket C Library Function used to create an endpoint for communication.

Udp make blocking Sets up the UDP socket to block the read until data arrives.

upd open read Creates and initializes a UDP socket for receiving broadcast messages.

The send_configuration function is responsible for transmitting realtime configuration information
to client applications when they connect to the Realtime Receive program.  The send_configuration
structure chart is shown in Figure 4.171.



Data Server 195 System Design Document

send
configuration

send
data

sock
writen

Figure 4.171. send_configuration Structure Chart

The functions that are invoked during the execution of send_configuration are described in Table
4.152.

Table 4.152. send_configuration Functions

ITEM DESCRIPTION

send data Writes the value of the variable that was passed to it, to the client socket.

sock writen MDI Socket Common Library routine used to write a specified number of bytes to a
specified socket.

The send_data_refresh function is responsible for transmitting realtime data information to client
applications when they request a data refresh from the Realtime Receive program.  The
send_configuration structure chart is shown in Figure 4.172.



Data Server 196 System Design Document

send
data 
refresh

send
data

Figure 4.172. send_data_refresh Structure Chart

The function that is invoked during the execution of send_data_refresh is described in Table 4.153.

Table 4.153. send_data_refresh Function

ITEM DESCRIPTION

send data Writes the value of the variable that was passed to it, to the client socket.



Data Server 197 System Design Document

4.3.10 World Wide Web Interface

The World Wide Web (WWW) Interface is the interface to the TransGuide WWW server.  The
WWW Interface receives Realtime Map data by attaching to the shared memory area created by an
instance of Realtime Receive on that workstation.  The WWW Interface process displays a version
of the Realtime Map on the TransGuide Web-page.  Only speeds for the ATMS instrumented
segments, the AVI instrumented segments, and incidents are displayed on the WWW Map.  The
speeds are color-coded by range of speed, as they are on the Realtime Map.  The WWW Map
shows only a single lane for multi-lane ATMS segments, the color of which is determined by the
calculated aggregate speed for all lanes of that segment.  This corresponds to the non-schematic
display mode on the Realtime Map.

The WWW Map can be accessed by Internet users.  The initial view of the map shows the map
with the realtime traffic conditions.  The user can click on a segment to display the speed of that
segment on the top of the Web-page along with a textual description of the location of that
segment.  The user can also select a view which overlays the traffic map with icons that indicate
current incidents.  If there are any incidents, the user can select an incident to see more detailed
information about that incident.  The user can also request a textual listing of all current incidents.
In the third map view, the user sees a view which overlays the traffic map with current lane
closures.  The Web-page also contains a link to the Texas State Roadway Closed Database web-
page for state-wide road closures.

4.3.10.1 Process Design

The WWW Interface System consists of two processes:

• an update task that accesses the shared memory created by Realtime Receive, and
• a Hypertext Transfer Protocol daemon (HTTPd) Common Gateway Interface (cgi)

program, launched by the HTTPd.

The cgi program services each HTTPd request, determines what information is requested and then
builds or includes the page components and provides the Hypertext Markup Language (HTML)
document to the HTTPd.

The file update task retrieves ATMS and AVI segment speed data, Lane Closure incident data and
ATMS incident data from the Realtime shared memory.  It then uses this information and static
data to generate image files, image map files, information listing files and a data lookup file.

The file update task generates the following three time stamped image files: a gif-format image of
the map with color coded road segments, a gif-format image with lane closure icons overlaid on the
segment map, and a gif-format image with ATMS incident icons overlaid on the segment map.  It
also generates an HTML formatted image map file for each of the three above mentioned images.
Two information listing files, in HTML table format, are also created.  One contains the lane
closure listings, and the other the incident listings.  The file update task also creates a data lookup
file, which is an image map anchor reference data file.  This data file is used by the cgi task to
locate information selected via the image map anchors.  The data corresponding to the matching
line will be formatted and included in the requested map page.  The lookup file itself will not be
sent to the client.



Data Server 198 System Design Document

When a user of the web-page clicks on an object on the screen, the cgi task, which processes user
interaction with the image map, determines the location on the map that was selected and displays
the corresponding information.

The WWW Interface system consists of the main WWW interface process (www_main), a WWW
Data Server Interface process (www_dsif), a WWW heartbeat process (www_hb), and a WWW
status logger process (www_slogger).

The www_dsif process provides the single point of interface between the WWW system and the
Data Server.  The www_dsif is responsible for receiving messages from the other WWW
processes, and passing these messages on to the Data Server.  The www_main process is
responsible for initialization, connecting to the project level heartbeat process and the Data Server
interface process, and for sending periodic heartbeats to the project level heartbeat process.  The
WWW Interface data flow diagram is shown in Figure 4.173.

4.3.10.2 Model Design

The WWW Interface process is based on code that was developed for the Realtime Map.  Data
Server interface code was added, as well as cgi code to implement the map on the Web-page.

The initial routine of the WWW Interface Subsystem is www_main.  This routine is responsible
for reading the configuration file, setting up logging and connecting to the process level heartbeat
service.

The www_main structure chart is shown in Figure 4.174.

1

www_main

2

www_hb

3

www_slogger

4

www_dsif
Realtime
Data Shared 
Memory

Heartbeat
Heartbeat

Status Info

Heartbeat

Status Info

Heartbeat

Client Data
Req

Status Info

MDI Data

Figure 4.173  WWW Interface Data Flow Diagram



Data Server 199 System Design Document

The functions called by www_main are described in more detail in Table 4.154.

Table 4.154  www_main Functions

ITEM DESCRIPTION

cfg get value MDI Configuration File Common Library routine used to return the value
of the specified configuration name.

cfg load configuration data MDI Configuration File Common Library routine used to read the
configuration name-value pairs from the specified configuration file.
These name-value pairs are loaded into memory so they can be accessed
on demand by the calling program.

Gethostname C Library Function which returns a string containing the name of the host
machine.

ph connect MDI Process Heartbeat Common Library routine used to connect to the
specified process-level heartbeat service.  The host name and service
name are used to make the connection.

process status config with logge process_status_config_with_logger is an MDI Process Status Common
Library routine used to configure the process status handling for the
process.  This routine is used to set up the connection to the status logger
used by the calling program.

process status message MDI Proces Status Common Library routine used to log a status message
for the specified status type. If the process status library was configured to
use a status logger, then the message is forwarded to the status logger.
Otherwise the message is written to the configured status log file.
process_status_message will also keep track of the current status value of
the status type specified by the caller so that the current status can be
retrieved later.

read config file Initializes the values of the configurable variables with data read from the
configuration file.

www
main

sigset

gethostname
cfg load
configuration 
data

read
config 
file

process
status config 
with logge

ph
connect

process
status 
message

cfg
get 
value

Figure 4.174  www_main Structure Chart



Data Server 200 System Design Document

ITEM DESCRIPTION

Sigset C Library Function used to modify the disposition of a signal. The signal
can be caught, ignored, or returned to the default disposition.

Update_Data_CB is a WWW callback function that is called in response to timer events which
occur at the configurable update rate.  It calls Update_Data to update the Realtime data and the
active incidents.  This information is used to update the WWW Map display and to create and
write the various lookup files, cross reference files and cgi files.



Data Server 201 System Design Document

The functions called by Update_Data_CB are described in more detail in Table 4.155.

Update
Data 
CB

gifDispCreate

Update
Data

gifDispSave

gifDispFree

open

close

Write
xref 
File

Generate
Map 
Imap

Write
Imap 
File

Write
Incidents 
File

Write
Lookup 
File

process
status 
message

unlink

unlink
gifs

process
status 
set status 
type v

send
www 
heartbeat

XtAppAddTimeOut

Figure 4.175  Update_Data_CB Structure Chart



Data Server 202 System Design Document

Table 4.155 Update_Data_CB Functions

ITEM DESCRIPTION

close System library function.  Closes a file.

Generate Map Imap Generates the image map file for the WWW map.

GifDispCreate Creates a gif display (GD) image for drawing a new map, and builds the
color table.

GifDispFree Destroys the current GD object using the GD Library gdImageDestroy()
function.

GifDispSave Saves the current GD image displayed to the specified file using the GD
Library function gdImageGif().

Open System library function.  Opens file for reading or writing.

process status message MDI Proces Status Common Library routine used to log a status message for
the specified status type. If the process status library was configured to use a
status logger, then the message is forwarded to the status logger. Otherwise
the message is written to the configured status log file.
process_status_message will also keep track of the current status value of
the status type specified by the caller so that the current status can be
retrieved later.

process status set status type v process_status_set_status_type_value is used to set the value associated
with the specified status type.

send www heartbeat Retrieves the overall process status and sends it to the heartbeat process.

Unlink Unix system call used to remove a specified directory entry.

unlink gifs Deletes old gif image files corresponding to the last time stamp.

Update Data This function updates the Realtime data and the active incidents.  It then
uses this data to update each intelligent map object and any popup windows
currently displayed.

Write Imap File Writes the specified client-side image-map file for the WWW page.  Each
image-map file contains the unique time stamped gif file name which
corresponds to the image map file. The cgi program will include this image
map file data into the HTML document which is sent to the client browser.
This function also generates the incident image map file and the lane
closure incident image map file.

Write Incidents File Writes the HTML file corresponding to the specified incident type for all
active incidents of that type.  The file data is included in the WWW page
sent to the client.

Write Lookup File Writes the lookup file for the WWW page.  The lookup file is used by the
cgi program to find data corresponding to a selected query, format that data
and send it to the client browser.  This file is not sent to the client browser.

Write xref File Generates and writes the default cross reference file.

XtAppAddTimeOut X Toolkit library function used to register a procedure to be called when a
specified time elapses.

The gifDispCreate routine is responsible for building a color map and for creating a gif Display
image for drawing a new map.  The structure chart for gifDispCreate is shown in Figure 4.176.



Data Server 203 System Design Document

The functions called by gifDisplayCreate are described in more detail in Table 4.156.

Table 4.156  gifDispCreate Functions

ITEM DESCRIPTION

gdImageAColorTransparent GD Library function used to make the specified color transparent.

gdImageColorAllocate GD Library function used to allocate a color.

gdImageCopy GD Library function used to copy an image.

gdImageCreate GD Library function used to create an image.

gdImageInterlace GD Library function used to turn interlaced mode on or off.

process status message MDI Proces Status Common Library routine used to log a status message for
the specified status type. If the process status library was configured to use a
status logger, then the message is forwarded to the status logger. Otherwise the
message is written to the configured status log file. process_status_message
will also keep track of the current status value of the status type specified by
the caller so that the current status can be retrieved later.

The Update_Data routine is responsible for updating the Realtime data and the active incidents.  It
then uses this data to update the colors on the map to reflect the current speeds, and any incident
icons that are displayed.  The structure chart for Update_Data is shown in Figure 4.177.

gifDispCreate

gdImageCreate

gdImageColorAllocate

gdImageAColorTransparent gdImageInterlace

gdImageCopy

process
status 
message

Figure 4.176  gifDispCreate Structure Chart



Data Server 204 System Design Document

The functions called by Update_Data  are described in more detail in Table 4.157.

Table 4.157  Update_Data Functions

ITEM DESCRIPTION

AccessActiveIncidents MDI Realtime library function used to return a list of active incidents.

RefreshRealTimeData MDI Realtime Library function used to request and receive the data from the
realtimereceive server.

The send_www_heartbeat routine is called when the overall WWW Interface process status is to
be sent to the Data Server.  It retrieves the current overall status and calls send_heartbeat_pulse to
send it. The structure chart for send_www_heartbeat is shown in Figure 4.178.

Update
Data

RefreshRealTimeData AccessActiveIncidents

Figure 4.177  Update_Data Structure Chart



Data Server 205 System Design Document

The functions called by send_www_heartbeat are described in more detail in Table 4.158.

Table 4.158  send_www_heartbeat Functions

ITEM DESCRIPTION

process status get status MDI Process Status Common Library routine used to obtain the most severe
process-level status. This is an aggregation of the status for each of the status types
defined for the process.

send heartbeat pulse Sends the process-level heartbeat to the Subsystem Heartbeat process.

send
www 
heartbeat

process
status 
get status

send
heartbeat 
pulse

Figure 4.178  send_www_heartbeat Structure Chart



Data Server 206 System Design Document

4.3.11 Data Server Common Interface Library

Due to the strong similarity of the interactions between the various MDI processes that interface
with the Data Server process, a set of common library functions were developed for interfacing
with the Data Server.  In addition to establishing and terminating the connection with the Data
Server, library functions can send messages containing status information, or lane-, incident- or
railroad data to the Data Server.  The library also contains functions to read, write or delete a
specific file, and to retrieve a file’s time and date stamp. The following is a list of the functions
included in the library, and a detailed description of them is contained in the sections below:

• ds_init
• ds_close
• ds_send_heartbeat
• ds_write_lane_data
• ds_write_inc_data
• ds_write_rr_sens_data
• ds_write_rr_cross_data
• ds_write_equip_status
• ds_read_lane_data
• ds_read_inc_data
• ds_read_rr_sens_data
• ds_read_rr_cross_data
• ds_read_equip_status
• ds_write_file
• ds_delete_file
• ds_read_file
• ds_get_file_time, and
• ds_get_file_type_time

4.3.11.1 ds_init

The ds_init function initializes a socket connection to the Data Server’s Data Server process.  This
function must be called prior to sending any other message, including status messages, to the Data
Server.  If a connection already exists, or if the input parameter is invalid, an error is returned.  On
a successful return, the connection is established.

The ds_init function structure chart is shown in Figure 4.179.



Data Server 207 System Design Document

ds
init

gethostbyname

getservbyname

gethostname
sock
connect

sock
set 
blocking

sock rd
uninterrupted

sock wr
uninterrupted

Figure 4.179 ds_init Structure Chart

The functions called by ds_init are described in more detail in Table 4.159.

Table 4.159 ds_init Functions

ITEM DESCRIPTION

gethostbyname C Library Function used to get information for a host with the specified host name.

gethostname C Library Function which returns a string containing the name of the host machine.

getservbyname C Library Function used to obtain an entry for the specified Internet service.

sock connect MDI Socket routine used to create a socket connection to the specified host and port.

sock rd uninterrupted A wrapper around sock_readn, to prevent a socket read from failing because an
interrupt was received.

sock set blocking MDI Socket routine that sets the specified socket to be a blocking socket

sock wr uninterrupted A wrapper around sock_writen, to prevent a socket write from failing because an
interrupt was received.

4.3.11.2 ds_close

The ds_close function terminates the socket connection to the Data Server’s Data Server process.
After this function has been called, no more messages can be sent to the Data Server, until another
connection has been established by calling ds_init.  If no connection exists when ds_close is called,
or if the input parameter is invalid, an error is returned.  On a successful return, the socket
connection is terminated.  Any buffers that were allocated for file and data transfers are released,
and the global static values are reset whether the connection was successfully terminated, or not.



Data Server 208 System Design Document

The ds_close function structure chart is shown in Figure 4.180.

ds
close

sock wr
uninterrupted

sock rd
uninterrupted

sock
close free

Figure 4.180  ds_close Structure Chart

The functions called by ds_close are described in more detail in Table 4.160.

Table 4.160 ds_close Functions

ITEM DESCRIPTION

free C Library Function used to free previously allocated memory and make it available for
further allocation.

sock close MDI Socket Common Library routine used to close the specified socket connection.

sock rd uninterrupted A wrapper around sock_readn, to prevent a socket read from failing because an
interrupt was received.

sock wr uninterrupted A wrapper around sock_writen, to prevent a socket write from failing because an
interrupt was received.

4.3.11.3 ds_send_heartbeat

The ds_send_heartbeat function sends a status message to the Data Server.  A connection must
have already been successfully established when this function is called.  The Data Server expects
to get status messages at regular intervals from the processes.  When no status message has been
received within the expected time, the Data Server assumes that the process’ status is unknown.

The ds_send_heartbeat function first checks that a connection to the Data Server has been
initialized, and that the input parameters are valid.  If either test fails, an error is returned.
Otherwise the status is sent to the Data Server, which sends a response back to acknowledge the
receipt of the message.  If the transmission of the status message was unsuccessful, one retry is
attempted.  Retries are only attempted if the first call to the socket library function sock_writen



Data Server 209 System Design Document

fails.  Before retrying, a new socket connection to the Data Server is attempted.  If the retry fails,
an error is returned.

The ds_send_heartbeat function structure chart is shown in Figure 4.181

resend
buf

check
conn 
init

sock rd
uninterrupted

sock wr
uninterrupted

ds send
heartbeat

Figure 4.181  ds_send_heartbeat Structure Chart

The functions called by ds_send_heartbeat are described in more detail in Table 4.161.

Table 4.161  ds_send_heartbeat Functions

ITEM DESCRIPTION

check conn init Checks that the connection has been initialized.

resend buf Re-sends a buffer to Data Server, that was previously unsuccessfully sent.  Attempts to
reconnect, and sends the buffer if the reconnection is successful.  Saves the socket
descriptor of the new connection on successful transmission.

sock rd uninterrupted A wrapper around sock_readn, to prevent a socket read from failing because an
interrupt was received.

sock wr uninterrupted A wrapper around sock_writen, to prevent a socket write from failing because an
interrupt was received.

4.3.11.4 ds_write_lane_data

The ds_write_lane_data function sends lane speed or travel time information for one or more lanes
to the Data Server.  A connection must have already been successfully established when this
function is called.  The information passed to this function is the type of data being sent (which
implies the source of the data), the number of lane data structures being sent, followed by the data
for each lane.  The data for each individual lane includes the status and the speed of the lane.  The
data does not include a TransGuide LinkID, because the LinkID is automatically implied by the



Data Server 210 System Design Document

index of the data for each lane data type.  Because of this, each call to ds_write_lane_data should
contain the data for all lanes of the selected data type.

The ds_write_lane_data function first checks that a connection to the Data Server has been
initialized, and that the input parameters are valid.  If either test fails, an error is returned.
Otherwise the data is sent to the Data Server, which sends a response back to acknowledge the
receipt of the message.  If the transmission of the message was unsuccessful, one retry is
attempted.  Retries are only attempted if the first call to the socket library function sock_writen
fails.  Before retrying, a new socket connection to the Data Server is attempted.  If the retry fails,
an error is returned.

The ds_write_lane_data function structure chart is shown in Figure 4.182

ds write
lane 
data

resend
buf

check
conn 
init

sock rd
uninterrupted

sock wr
uninterrupted

Figure 4.182  ds_write_lane_data Structure Chart

The functions called by ds_write_lane_data are described in more detail in Table 4.162.

Table 4.162  ds_write_lane_data Functions

ITEM DESCRIPTION

check conn init Checks that the connection has been initialized.

resend buf Re-sends a buffer to Data Server, that was previously unsuccessfully sent.  Attempts to
reconnect, and sends the buffer if the reconnection is successful.  Saves the socket
descriptor of the new connection on successful transmission.

sock rd uninterrupted A wrapper around sock_readn, to prevent a socket read from failing because an
interrupt was received.

sock wr uninterrupted A wrapper around sock_writen, to prevent a socket write from failing because an
interrupt was received.



Data Server 211 System Design Document

4.3.11.5 ds_write_inc_data

The ds_write_inc_data function sends incident information for one or more traffic incidents to the
Data Server’s Data Server process.  A connection must have already been successfully established
when this function is called.  The information passed to this function is the source of the incident
data, the number of incident data structures being sent, followed by the data for each incident.
Each call to ds_write_inc_data causes all the existing incidents of  the specified type to be replaced
by this new set of incidents.  The data that is being passed for each incident, depends on the
incident source.

The ds_write_inc_data function first checks that a connection to the Data Server has been
initialized, and that the input parameters are valid.  If either test fails, an error is returned.
Otherwise the data is sent to the Data Server, which sends a response back to acknowledge the
receipt of the message.  If the transmission of the message was unsuccessful, one retry is
attempted. Retries are only attempted if the first call to the socket library function sock_writen
fails.  Before retrying, a new socket connection to the Data Server is attempted.  If the retry fails,
an error is returned.

The ds_write_inc_data function structure chart is shown in Figure 4.183.

ds
write 
inc data

resend
buf

check
conn 
init

sock rd
uninterrupted

sock wr
uninterrupted

Figure 4.183  ds_write_inc_data Structure Chart

The functions called by ds_write_inc_data are described in more detail in Table 4.163.

Table 4.163  ds_write_inc_data Functions

ITEM DESCRIPTION

check conn init Checks that the connection has been initialized.

resend buf Re-sends a buffer to Data Server, that was previously unsuccessfully sent.  Attempts to
reconnect, and sends the buffer if the reconnection is successful.  Saves the socket
descriptor of the new connection on successful transmission.



Data Server 212 System Design Document

sock rd uninterrupted A wrapper around sock_readn, to prevent a socket read from failing because an
interrupt was received.

sock wr uninterrupted A wrapper around sock_writen, to prevent a socket write from failing because an
interrupt was received.

4.3.11.6 ds_write_rr_sens_data

The ds_write_rr_sens_data function sends information for the currently active railroad sensors to
the Data Server.  A connection must have already been successfully established when this function
is called. The information passed to this function is the number of railroad sensor data structures
being sent, followed by the data for each sensor.  Each call to ds_write_rr_sens_data causes all the
existing sensor data to be replaced by the new data.  If there are no active sensors,
ds_write_rr_sens_data is called with the number of sensor data structures being sent set to zero.
The information for the sensor includes the sensor’s TransGuide LinkID, status, speed,
acceleration and the time since the last update of the sensor.

The ds_write_rr_sens_data function first checks that a connection to the Data Server has been
initialized, and that the input parameters are valid.  If either test fails, an error is returned.
Otherwise the data is sent to the Data Server, which sends a response back to acknowledge the
receipt of the message.  If the transmission of the message was unsuccessful, one retry is
attempted. Retries are only attempted if the first call to the socket library function sock_writen
fails.  Before retrying, a new socket connection to the Data Server is attempted.  If the retry fails,
an error is returned.

The ds_write_rr_sens_data function structure chart is shown in Figure 4.184.

ds write
rr sens 
data

resend
buf

check
conn 
init

sock rd
uninterrupted

sock wr
uninterrupted

Figure 4.184  ds_write_rr_sens_data Structure Chart

The functions called by ds_write_rr_sens_data are described in more detail in Table 4.164.



Data Server 213 System Design Document

Table 4.164  ds_write_rr_sens_data Functions

ITEM DESCRIPTION

check conn init Checks that the connection has been initialized.

resend buf Re-sends a buffer to Data Server, that was previously unsuccessfully sent.  Attempts to
reconnect, and sends the buffer if the reconnection is successful.  Saves the socket
descriptor of the new connection on successful transmission.

sock rd uninterrupted A wrapper around sock_readn, to prevent a socket read from failing because an
interrupt was received.

sock wr uninterrupted A wrapper around sock_writen, to prevent a socket write from failing because an
interrupt was received.

4.3.11.7 ds_write_rr_cross_data

The ds_write_rr_cross_data function sends information for the railroad crossings to the Data
Server.  A connection must have already been successfully established when this function is called.
The information passed to this function is the number of crossing data structures being sent,
followed by the data for each crossing.  Each call to ds_write_rr_cross_data causes all the existing
crossing data to be replaced by the new data.  If there is no crossing data, ds_write_rr_cross_data
is called with the number of crossing data structures being sent set to zero.  The information for the
crossing includes the crossing’s TransGuide LinkID, estimated time of arrival of the front and the
rear of the train, the length of the train and the expected duration of the blockage.

The ds_write_rr_cross_data function first checks that a connection to the Data Server has been
initialized, and that the input parameters are valid.  If either test fails, an error is returned.
Otherwise the data is sent to the Data Server, which sends a response back to acknowledge the
receipt of the message.  If the transmission of the message was unsuccessful, one retry is
attempted. Retries are only attempted if the first call to the socket library function sock_writen
fails.  Before retrying, a new socket connection to the Data Server is attempted.  If the retry fails,
an error is returned.

The ds_write_rr_cross_data function structure chart is shown in Figure 4.185.



Data Server 214 System Design Document

ds write
rr cross 
data

resend
buf

check
conn 
init

sock rd
uninterrupted

sock wr
uninterrupted

Figure 4.185  ds_write_rr_cross_data Structure Chart

The functions called by ds_write_rr_cross_data are described in more detail in Table 4.165.

Table 4.165  ds_write_rr_cross_data Functions

ITEM DESCRIPTION

check conn init Checks that the connection has been initialized.

resend buf Re-sends a buffer to Data Server, that was previously unsuccessfully sent.  Attempts to
reconnect, and sends the buffer if the reconnection is successful.  Saves the socket
descriptor of the new connection on successful transmission.

sock rd uninterrupted A wrapper around sock_readn, to prevent a socket read from failing because an
interrupt was received.

sock wr uninterrupted A wrapper around sock_writen, to prevent a socket write from failing because an
interrupt was received.

4.3.11.8 ds_write_equip_status

The ds_write_equip_status function sends equipment status information to the Data Server.  A
connection must have already been successfully established when this function is called.  The
information passed to this function is the type of equipment whose status is being sent, the number
of equipment status values being sent, followed by the status for each piece of equipment.  The
data for each individual piece of equipment does not include the TransGuide LinkID of the
equipment, because this ID is automatically implied by the index of the data for that equipment
type. Because of this, each call to ds_write_equip_status should contain the data for all pieces of
equipment of the selected type.



Data Server 215 System Design Document

The ds_write_write_equip function first checks that a connection to the Data Server has been
initialized, and that the input parameters are valid.  If either test fails, an error is returned.
Otherwise the data is sent to the Data Server, which sends a response back to acknowledge the
receipt of the message.  If the transmission of the message was unsuccessful, one retry is
attempted. Retries are only attempted if the first call to the socket library function sock_writen
fails.  Before retrying, a new socket connection to the Data Server is attempted.  If the retry fails,
an error is returned.

The ds_write_equip_status function structure chart is shown in Figure 4.186.

ds write
equip 
status

resend
buf

check
conn 
init

sock rd
uninterrupted

sock wr
uninterrupted

Figure 4.186 ds_write_equip_status Structure Chart

The functions called by ds_write_equip_status are described in more detail in Table 4.166.

Table 4.166 ds_write_equip_status Functions

ITEM DESCRIPTION

check conn init Checks that the connection has been initialized.

resend buf Re-sends a buffer to Data Server, that was previously unsuccessfully sent.  Attempts to
reconnect, and sends the buffer if the reconnection is successful.  Saves the socket
descriptor of the new connection on successful transmission.

sock rd uninterrupted A wrapper around sock_readn, to prevent a socket read from failing because an
interrupt was received.

sock wr uninterrupted A wrapper around sock_writen, to prevent a socket write from failing because an
interrupt was received.



Data Server 216 System Design Document

4.3.11.9 ds_read_lane_data

The ds_read_lane_data function reads lane data from the Data Server.  A connection must already
have been successfully established when this function is called.  The ds_read_lane_data function
returns all available lane data of the requested type that was stored on the Data Server.  The
information passed to this function is the type of data being requested (which implies the source of
the data).  The function returns a pointer to the number of lane data values, and a pointer to the
array of lane data.

The ds_read_lane_data function first checks that a connection to the Data Server has been
initialized, and that the input parameters are valid.  If either test fails, an error is returned.
Otherwise the request is sent to the Data Server.  If the transmission of the request was
unsuccessful, one retry is attempted.  Retries are only attempted if the first call to the socket library
function sock_writen fails.  Before retrying, a new socket connection to the Data Server is
attempted.  If the retry fails, an error is returned.

On a successful transmission, a status response is sent back.  If the status response indicates that
the request was successful, the number of values to follow is read from the socket, followed by the
lane data.  If a buffer had not been previously allocated to store this data, or if the allocated buffer
is too small, a buffer is allocated for the data read.

The data for each individual lane is a single byte that contains the lane data (speed or time) in the
lower 7 bits and the status in the highest bit.  The data does not include a TransGuide LinkID,
because the LinkID is automatically implied by the index of the data for each lane data type.

ds read
lane 
data

sock rd
uninterrupted

resend
buf

check
conn 
init

sock wr
uninterrupted

Figure 4.187 ds_read_lane_data Structure Chart

The ds_read_lane_data function structure chart is shown in Figure 4.187.

The functions called by ds_read_lane_data are described in more detail in Table 4.167.



Data Server 217 System Design Document

Table 4.167 ds_read_lane_data Functions

ITEM DESCRIPTION

check conn init Checks that the connection has been initialized.

resend buf Re-sends a buffer to Data Server, that was previously unsuccessfully sent.  Attempts to
reconnect, and sends the buffer if the reconnection is successful.  Saves the socket
descriptor of the new connection on successful transmission.

sock rd uninterrupted A wrapper around sock_readn, to prevent a socket read from failing because an
interrupt was received.

sock wr uninterrupted A wrapper around sock_writen, to prevent a socket write from failing because an
interrupt was received.

4.3.11.10 ds_read_inc_data

The ds_read_inc_data function requests incident information from the Data Server.  A connection
must have already been successfully established when this function is called.  The information
passed to this function is the source of the incident data requested. The function returns a pointer to
the number of incidents, and a pointer to the array of incidents.

The ds_read_inc_data function first checks that a connection to the Data Server has been
initialized, and that the input parameters are valid.  If either test fails, an error is returned.
Otherwise the request is sent to the Data Server.  If the transmission of the message was
unsuccessful, one retry is attempted. Retries are only attempted if the first call to the socket library
function sock_writen fails.  Before retrying, a new socket connection to the Data Server is
attempted.  If the retry fails, an error is returned.

On a successful transmission, a status response is sent back.  If the status response indicates that
the request was successful, the number of values to follow is read from the socket, followed by the
incident data.  If a buffer had not been previously allocated to store this data, or if the allocated
buffer is too small, a buffer is allocated for the data read.

The data for each individual incident is stored in a RealTimeIncidentData structure.  Which fields
of the structure are significant, depend on the type of the incident.

The ds_read_inc_data function structure chart is shown in Figure 4.188.



Data Server 218 System Design Document

ds read
inc 
data

sock rd
uninterrupted

resend
buf

check
conn 
init

sock wr
uninterrupted

Figure 4.188 ds_read_inc_data Structure Chart

The functions called by ds_read_inc_data are described in more detail in Table 4.168.

Table 4.168 ds_read_inc_data Functions

ITEM DESCRIPTION

check conn init Checks that the connection has been initialized.

resend buf Re-sends a buffer to Data Server, that was previously unsuccessfully sent.  Attempts to
reconnect, and sends the buffer if the reconnection is successful.  Saves the socket
descriptor of the new connection on successful transmission.

sock rd uninterrupted A wrapper around sock_readn, to prevent a socket read from failing because an
interrupt was received.

sock wr uninterrupted A wrapper around sock_writen, to prevent a socket write from failing because an
interrupt was received.

4.3.11.11 ds_read_rr_sens_data

The ds_read_rr_sens_data function reads railroad sensor information from the Data Server.  A
connection must have already been successfully established when this function is called. The
ds_read_rr_sens_data function returns all available sensor data that was stored on the Data Server.
The function returns a pointer to the number of railroad sensor data structures, and a pointer to the
array of railroad sensor structures.

The ds_read_rr_sens_data function first checks that a connection to the Data Server has been
initialized, and that the input parameters are valid.  If either test fails, an error is returned.
Otherwise the data is sent to the Data Server.  If the transmission of the request was unsuccessful,
one retry is attempted. Retries are only attempted if the first call to the socket library function



Data Server 219 System Design Document

sock_writen fails.  Before retrying, a new socket connection to the Data Server is attempted.  If the
retry fails, an error is returned.

On a successful transmission, a status response is sent back.  If the status response indicates that
the request was successful, the number of bytes to follow is read from the socket, followed by the
railroad sensor data.  If a buffer had not been previously allocated to store this data, or if the
allocated buffer is too small, a buffer is allocated for the data.

The ds_read_rr_sens_data function structure chart is shown in Figure 4.189.

ds read
rr sens 
data

sock rd
uninterrupted

resend
buf

check
conn 
init

sock wr
uninterrupted

Figure 4.189 ds_read_rr_sens_data Structure Chart

The functions called by ds_read_rr_sens_data are described in more detail in Table 4.169.

Table 4.169 ds_read_rr_sens_data Functions

ITEM DESCRIPTION

check conn init Checks that the connection has been initialized.

resend buf Re-sends a buffer to Data Server, that was previously unsuccessfully sent.  Attempts to
reconnect, and sends the buffer if the reconnection is successful.  Saves the socket
descriptor of the new connection on successful transmission.

sock rd uninterrupted A wrapper around sock_readn, to prevent a socket read from failing because an
interrupt was received.

sock wr uninterrupted A wrapper around sock_writen, to prevent a socket write from failing because an
interrupt was received.



Data Server 220 System Design Document

4.3.11.12 ds_read_rr_cross_data

The ds_read_rr_cross_data function reads railroad crossing information from the Data Server.  A
connection must have already been successfully established when this function is called. The
ds_read_rr_cross_data function returns all available crossing data that was stored on the Data
Server.  The function returns a pointer to the number of railroad crossing data structures, and a
pointer to the array of railroad crossing structures.

The ds_read_rr_cross_data function first checks that a connection to the Data Server has been
initialized, and that the input parameters are valid.  If either test fails, an error is returned.
Otherwise the data is sent to the Data Server.  If the transmission of the request was unsuccessful,
one retry is attempted. Retries are only attempted if the first call to the socket library function
sock_writen fails.  Before retrying, a new socket connection to the Data Server is attempted.  If the
retry fails, an error is returned.

On a successful transmission, a status response is sent back.  If the status response indicates that
the request was successful, the number of bytes to follow is read from the socket, followed by the
railroad crossing data.  If a buffer had not been previously allocated to store this data, or if the
allocated buffer is too small, a buffer is allocated for the data.

The ds_read_rr_cross_data function structure chart is shown in Figure 4.190.

ds read
rr cross 
data

sock rd
uninterrupted

resend
buf

check
conn 
init

sock wr
uninterrupted

Figure 4.190 ds_read_rr_cross_data Structure Chart

The functions called by ds_read_rr_cross_data are described in more detail in Table 4.170.

Table 4.170 ds_read_rr_cross_data Functions

ITEM DESCRIPTION

check conn init Checks that the connection has been initialized.

resend buf Re-sends a buffer to Data Server, that was previously unsuccessfully sent.  Attempts to
reconnect, and sends the buffer if the reconnection is successful.  Saves the socket
descriptor of the new connection on successful transmission.



Data Server 221 System Design Document

sock rd uninterrupted A wrapper around sock_readn, to prevent a socket read from failing because an
interrupt was received.

sock wr uninterrupted A wrapper around sock_writen, to prevent a socket write from failing because an
interrupt was received.

4.3.11.13 ds_read_equip_status

The ds_read_equip_status function reads equipment status information from the Data Server.  A
connection must have already been successfully established when this function is called. The
ds_read_equip_status function returns all available equipment status data of the requested type that
was stored on the Data Server.  The information passed to this function is the type of equipment
whose status is being requested.  The function returns a pointer to the number of status values, and
a pointer to the array of status values.

The ds_read_equip_status function first checks that a connection to the Data Server has been
initialized, and that the input parameters are valid.  If either test fails, an error is returned.
Otherwise the request is sent to the Data Server.  If the transmission of the request was
unsuccessful, one retry is attempted. Retries are only attempted if the first call to the socket library
function sock_writen fails.  Before retrying, a new socket connection to the Data Server is
attempted.  If the retry fails, an error is returned.

On a successful transmission, a status response is sent back.  If the status response indicates that
the request was successful, the number of bytes to follow is read from the socket, followed by the
equipment status data.  If the status information is requested for all equipment types, the returned
status data is grouped by equipment type, and the equipment types themselves are ordered by their
enumerated value.  If a buffer had not been previously allocated to store this data, or if the
allocated buffer is too small, a buffer is allocated for the data.

The status data does not include an equipment ID because the ID is automatically implied by the
index of the data for each equipment type.  If equipment status is requested for all equipment types,
the status data in the array is ordered by the enumerated values of the equipment types.

The ds_read_equip_status function structure chart is shown in Figure 4.191.



Data Server 222 System Design Document

ds read
equip 
status

check
conn 
init

sock wr
uninterrupted

resend
buf

sock rd
uninterrupted

Figure 4.191 ds_read_equip_status Structure Chart

The functions called by ds_read_equip_status are described in more detail in Table 4.171.

Table 4.171 ds_read_equip_status Functions

ITEM DESCRIPTION

check conn init Checks that the connection has been initialized.

resend buf Re-sends a buffer to Data Server, that was previously unsuccessfully sent.  Attempts to
reconnect, and sends the buffer if the reconnection is successful.  Saves the socket
descriptor of the new connection on successful transmission.

sock rd uninterrupted A wrapper around sock_readn, to prevent a socket read from failing because an
interrupt was received.

sock wr uninterrupted A wrapper around sock_writen, to prevent a socket write from failing because an
interrupt was received.

4.3.11.14 ds_write_file

The ds_write_file function sends a local file to the Data Server, where it is stored in a predefined
directory.  The filename of the local and remote file do not have to be the same. The remote
filename cannot include path information, and the total length of the remote file name (including
any extensions) is limited to 12 characters. A connection must have already been successfully
established when this function is called.

The ds_write_file function first checks that a connection to the Data Server has been initialized,
and that the input parameters are valid.  If either test fails, an error is returned. Otherwise the local
file is opened, and a file buffer is allocated, if it had not already been allocated previously. If the
file is larger than the allocated buffer, the file is sent in pieces the size of the buffer.  When the
entire file has been sent to the Data Server, it sends a response back to acknowledge the receipt of



Data Server 223 System Design Document

the data.  If the transmission of the message was unsuccessful, one retry is attempted. Retries are
only attempted if the first call to the socket library function sock_writen fails.  Before retrying, a
new socket connection to the Data Server is attempted.  If the retry fails, an error is returned.

The ds_write_file function structure chart is shown in Figure 4.192.

ds
write 
file

check
conn 
init

sock wr
uninterrupted

file rd
uninterrupted

resend
buf

sock rd
uninterrupted

Figure 4.192  ds_write_file Structure Chart

The functions called by ds_write_file are described in more detail in Table 4.172.

Table 4.172  ds_write_file Functions

ITEM DESCRIPTION

check conn init Checks that the connection has been initialized.

file rd uninterrupted A wrapper around read, to prevent a file read from failing because an interrupt was
received.

resend buf Re-sends a buffer to Data Server, that was previously unsuccessfully sent.  Attempts to
reconnect, and sends the buffer if the reconnection is successful.  Saves the socket
descriptor of the new connection on successful transmission.

sock rd uninterrupted A wrapper around sock_readn, to prevent a socket read from failing because an
interrupt was received.

sock wr uninterrupted A wrapper around sock_writen, to prevent a socket write from failing because an
interrupt was received.

4.3.11.15 ds_delete_file

The ds_delete_file function sends a message to the Data Server to delete a file that is stored in a
predefined directory on the Data Server’s disk. The name of the file to delete cannot include path
information, and the total length of the name (including any extensions) is limited to 12 characters.
A connection must have already been successfully established when this function is called.



Data Server 224 System Design Document

The ds_delete_file function first checks that a connection to the Data Server has been initialized,
and that the input parameters are valid.  If either test fails, an error is returned. Otherwise the
message is sent to the Data Server, which sends a response back to indicate the status of the delete
operation.  If the transmission of the message was unsuccessful, one retry is attempted. Retries are
only attempted if the first call to the socket library function sock_writen fails.  Before retrying, a
new socket connection to the Data Server is attempted.  If the retry fails, an error is returned.

The ds_delete_file function structure chart is shown in Figure 4.193.

ds
delete 
file

check
conn 
init

sock wr
uninterrupted

resend
buf

sock rd
uninterrupted

Figure 4.193  ds_delete_file Structure Chart

The functions called by ds_delete_file are described in more detail in Table 4.173.

Table 4.173  ds_delete_file Functions

ITEM DESCRIPTION

check conn init Checks that the connection has been initialized.

resend buf Re-sends a buffer to Data Server, that was previously unsuccessfully sent.  Attempts to
reconnect, and sends the buffer if the reconnection is successful.  Saves the socket
descriptor of the new connection on successful transmission.

sock rd uninterrupted A wrapper around sock_readn, to prevent a socket read from failing because an
interrupt was received.

sock wr uninterrupted A wrapper around sock_writen, to prevent a socket write from failing because an
interrupt was received.

4.3.11.16 ds_read_file

The ds_read_file function requests a remote file from the Data Server, where it was stored in a
predefined directory.  The returned file is then stored locally.  If a file with the same name as the
output filename already exists, it will be overwritten.  The filename of the remote and local file do
not have to be the same. The remote filename cannot include path information, and the total length



Data Server 225 System Design Document

of the remote file name (including any extensions) is limited to 12 characters. A connection must
have already been successfully established when this function is called.

The ds_read_file function first checks that a connection to the Data Server has been initialized, and
that the input parameters are valid.  If either test fails, an error is returned. Otherwise the output
file is opened or created, and a file buffer is allocated if one did not already exist.  Next a message
is sent to the Data Server requesting the file.  The Data Server sends a response back indicating the
status of the operation, followed by the size of the file and the file data. If the response indicates
that the operation was not successful, no data will follow.

If the file is larger than the allocated buffer, the file is received in pieces the size of the buffer, and
written to the output file as they are received. When the entire file has been received, the file is
closed. If the transmission of the message was unsuccessful, one retry is attempted. Retries are
only attempted if the first call to the socket library function sock_writen fails.  Before retrying, a
new socket connection to the Data Server is attempted.  If the retry fails, an error is returned.

The ds_read_file function structure chart is shown in Figure 4.194.

ds
read 
file

check
conn 
init

sock wr
uninterrupted

resend
buf

sock rd
uninterruptedcreat

file wr
uninterrupted

Figure 4.194  ds_read_file Structure Chart

The functions called by ds_read_file are described in more detail in Table 4.174

Table 4.174  ds_read_file Functions

ITEM DESCRIPTION

check conn init This function checks that the connection has been initialized.

prepare output file Allocates a file buffer if none had yet been allocated.  Creates the output file if it does
not exist.  Open and truncate the file if it exists.

read file data Reads a chunk of data from the socket and writes it to the local file.

resend buf Re-sends a buffer to Data Server, that was previously unsuccessfully sent.  Attempts to
reconnect, and sends the buffer if the reconnection is successful.  Saves the socket
descriptor of the new connection on successful transmission.

send read file header Builds the read file header and sends it to the Data Server process.



Data Server 226 System Design Document

ITEM DESCRIPTION

verify input params Checks input parameters for validity.

4.3.11.17 ds_get_file_time

The ds_get_file_time function sends a message to the Data Server to request the time and date
stamp of the specified file that is stored in a predefined directory on the Data Server’s disk. The
name of the file cannot include path information, and the total length of the name (including any
extensions) is limited to 12 characters. A connection must have already been successfully
established when this function is called.

The ds_get_file_time function first checks that a connection to the Data Server has been initialized,
and that the input parameters are valid.  If either test fails, an error is returned. Otherwise the
message is sent to the Data Server, which sends a response back to indicate the status of the
operation.  If the message was successfully sent, the time and date stamp of the file follow the
response.  If the transmission of the message was unsuccessful, one retry is attempted. Retries are
only attempted if the first call to the socket library function sock_writen fails.  Before retrying, a
new socket connection to the Data Server is attempted.  If the retry fails, an error is returned.

The ds_get_file_time function structure chart is shown in Figure 4.195.

ds get
file 
time

check
conn 
init

sock wr
uninterrupted

resend
buf

sock rd
uninterrupted

Figure 4.195  ds_get_file_time Structure Chart

The functions called by ds_get_file_time are described in more detail in Table 4.175.

Table 4.175  ds_get_file_time Functions

ITEM DESCRIPTION

check conn init Checks that the connection has been initialized.



Data Server 227 System Design Document

ITEM DESCRIPTION

resend buf Re-sends a buffer to Data Server, that was previously unsuccessfully sent.  Attempts to
reconnect, and sends the buffer if the reconnection is successful.  Saves the socket
descriptor of the new connection on successful transmission.

sock rd uninterrupted A wrapper around sock_readn, to prevent a socket read from failing because an
interrupt was received.

sock wr uninterrupted A wrapper around sock_writen, to prevent a socket write from failing because an
interrupt was received.

4.3.11.18 ds_get_file_type_time

The ds_get_file_type_time function sends a message to the Data Server to request the names and
corresponding time and date stamps of all files of the specified file type that are stored on the Data
Server’s disk.  A connection must have already been successfully established when this function is
called. The information passed to this function is the file type for which the information was
requested. The function returns a pointer to the number of timestamp structures returned, and a
pointer to the array of timestamp structures.

The ds_get_file_type_time function first checks that a connection to the Data Server has been
initialized, and that the input parameters are valid.  If either test fails, an error is returned.
Otherwise the message is sent to the Data Server.  If the transmission of the message was
unsuccessful, one retry is attempted. Retries are only attempted if the first call to the socket library
function sock_writen fails.  Before retrying, a new socket connection to the Data Server is
attempted.  If the retry fails, an error is returned.

On a successful transmission, a status response is sent back.  If the status response indicates that
the request was successful, the number of values to follow is read from the socket, followed by the
file name and timestamp data.  If a buffer had not been previously allocated to store this data, or if
the allocated buffer is too small, a buffer is allocated for the data read.

The data for each individual file is a structure that contains a string for the name of the file, and the
time/date stamp of the file. The format of the time stamp is seconds since 00:00:00 1/1/1970.

The ds_get_file_type_time function structure chart is shown in Figure 4.196.



Data Server 228 System Design Document

check
conn 
init

sock wr
uninterrupted

resend
buf

sock rd
uninterrupted

ds get
file type 
time

Figure 4.196 ds_get_file_type_time Structure Chart

The functions called by ds_get_file_type_time are described in more detail in Table 4.176.

Table 4.176 ds_get_file_type_time Functions

ITEM DESCRIPTION

check conn init Checks that the connection has been initialized.

resend buf Re-sends a buffer to Data Server, that was previously unsuccessfully sent.  Attempts to
reconnect, and sends the buffer if the reconnection is successful.  Saves the socket
descriptor of the new connection on successful transmission.

sock rd uninterrupted A wrapper around sock_readn, to prevent a socket read from failing because an
interrupt was received.

sock wr uninterrupted A wrapper around sock_writen, to prevent a socket write from failing because an
interrupt was received.



Data Server 229 System Design Document

5. Traceability Matrix
The traceability matrix for the DS System is presented in this section. It lists the requirements of
the system that were presented in Section 3 of this document. Along with each requirement is the
source of the requirement and the test case that verifies the requirement.

This table was used throughout the design, development, and test of the system to ensure that the
requirements have been met. It was updated as requirements and design elements were refined.
During development of the Acceptance Test Plan (ATP), sections of the test plan were referenced
in the TEST CASE(S) column of this table to cross-reference to the ATP.

The requirements in the traceability matrix are organized by requirement number. The general
requirements are presented first, followed by the interface, functional, and physical requirements.



Data Server 230 System Design Document

Table 5.1. Data Server System Traceability Matrix

REQUIREMENT
NUMBER

REQUIREMENT SOURCE TEST CASE(S)

DS-GN-1 An 80% System Design Document shall be delivered. P-2.1.2.8.2 N/A

DS-GN-2 A 100% design document shall be delivered. P-2.1.2.8.2 N/A

DS-GN-3 A Software Acceptance Test Plan shall be delivered. P-2.1.2.8.2 N/A

DS-GN-4 A Version Description Document shall be delivered. P-2.1.2.8.2 N/A

DS-GN-5 Monthly status reports shall be delivered. P-2.1.2.8.2 N/A

DS-GN-6 A training program on the SAAWDB shall be presented after final
software integration has completed.

P-2.1.2.8.5 N/A

DS-GN-7 A videotape of the training program shall be delivered. P-2.1.2.8.5 N/A

DS-GN-8 A final report shall be delivered. P-2.1.2.8.2 N/A

DS-IF-1 The system shall interface with the TG ATMS. P-2.1.2.3p1 DS-RT-02

DS-IF-1.1 The DGIS shall interface with the TG ATMS using protocol
defined by the existing TG ATMS data broadcast.

DS-IF-1 DS-RT-02

DS-IF-1.1.1 The RTCIC shall interface with the TG ATMS using protocol
defined by the existing TG ATMS data broadcast.

DS-IF-1.1 DS-RT-02

DS-IF-2 The system shall interface with the AVI system. P-2.1.2.3p2 DS-AVI-01

DS-IF-2.1 The DSILS shall interface with the MDI AVI system. DS-IF-2 DS-AVI-01

DS-IF-2.1.1 The DSILC shall interface with the MDI AVI system. DS-IF-2.1 DS-AVI-01

DS-IF-3 The system shall interface with the TG Operations user. P-2.1.2.2p1 DS-RD-01
DS-GPSTH-01
DS-RT-01
DS-WWW-01
DS-WWW-02
DS-LC-01
DS-KIOSK/IVN-01
DS-AWARD-01

? � Æ ? �
? ?

? 2? ? ??
DS-IF-3.1 The DGS shall interface with the TG Operations user using a

GUI.
DS-IF-3 DS-RD-01

DS-GPSTH-01
DS-RT-01
DS-WWW-01
DS-WWW-02
DS-LC-01
DS-KIOSK/IVN-01
DS-AWARD-01
DS-AVI-01
DS-911-01
DS-WV-01

DS-IF-3.1.1 The LCGUIC shall interface with the TG Operations user using a
GUI.

DS-IF-3.1 DS-LC-01



Data Server 231 System Design Document

REQUIREMENT
NUMBER

REQUIREMENT SOURCE TEST CASE(S)

DS-IF-3.2 The SGUIS shall interface with the TG Operations user using a
GUI.

P-2.1.2.2
DS-IF-3

DS-RD-01
DS-GPSTH-01
DS-RT-01
DS-WWW-01
DS-KIOSK/IVN-01
DS-AWARD-01
DS-AVI-01
DS-911-01
DS-WV-01

DS-IF-3.2.1 The SGUIC shall interface with the user using a GUI. DS-IF-3.2 DS-RD-01
DS-RT-01
DS-KIOSK/IVN-01
DS-AWARD-01
DS-AVI-01
DS-911-01
DS-WV-01

DS-IF-4 The system shall interface with the Texas State Roadway Closed
database.

P-2.1.2.3p7 DS-RD-02

DS-IF-4.1 The DGIS shall interface with the Texas State Roadway Closed
database.

DS-IF-3 DS-RD-02

DS-IF-4.1.1 The RCIC shall interface with the Texas State Roadway Closed
database.

DS-IF-4.1 DS-RD-02

DS-IF-6 The system shall interface with the IVN/Kiosk system. P-2.1.2.4p3
P.2.1.2.4p4

DS-KIOSK/IVN-01

DS-IF-6.1 The DSILS shall interface with the IVN/Kiosk system. DS-IF-6 DS-KIOSK/IVN-01

DS-IF-6.1.1 The DSILC shall interface with the MDI IVN/Kiosk system. DS-IF-6.1 DS-KIOSK/IVN-01

DS-IF-7 The system shall interface with the San Antonio Police 911
Dispatch system.

P-2.1.2.3p5 DS-911-01
DS-911-02

DS-IF-7.1 The DGIS shall interface with the San Antonio Police 911
Dispatch system.

DS-IF-7 DS-911-01
DS-911-02

DS-IF-7.1.1 The 911IC shall interface with the San Antonio Police 911
Dispatch System.

DS-IF-7.1 DS-911-01

DS-911-02

DS-IF-8 The system shall interface with the TG WWW system. P-2.1.2.4p5 DS-WWW-02

DS-IF-8.1 The DCIS shall interface with the TG WWW system. DS-IF-8 DS-WWW-02

DS-IF-8.1.1 The WWWIC shall interface with the TG WWW system. DS-IF-8.1 DS-WWW-02

DS-IF-10 The system shall interface with the Emergency Response system. P-2.1.2.4p6 DS-RT-02

DS-IF-10.1 The DCIS shall interface with the Emergency Response system. DS-IF-10 DS-RT-02

DS-IF-10.1.1 The RTBC shall interface with the Emergency Response system. DS-IF-10.1 DS-RT-02

DS-IF-12 The system shall interface with the TG ATMS Map system. 2.1.2.4p1 DS-RT-02

DS-IF-12.1 The DCIS shall interface with the TG ATMS Map system. DS-IF-12 DS-RT-02

DS-IF-12.1.1 The RTBC shall interface with TG ATMS Map system using the
protocol defined by the current TG ATMS operations broadcast
system.

DS-IF-12.1 DS-RT-02

DS-IF-13 The system shall interface with the MDI Railroad Delay system. P-2.1.2.3p8 DS-AWARD-01



Data Server 232 System Design Document

REQUIREMENT
NUMBER

REQUIREMENT SOURCE TEST CASE(S)

DS-IF-13.1 The DSILS shall interface with the MDI Railroad Delay system. DS-IF-13 DS-AWARD-01

DS-IF-13.1.1 The DSILC shall interface with the Railroad Delay system. DS-IF-13.1 DS-AWARD-01

DS-FN-1 The system shall maintain road segment data for the TG road
segments.

P-2.1.1p4 DS-RT-02
DS-WWW-02

DS-FN-1.1 The DSS shall store TG Link Identifier data for the TG road
segments.

DS-FN-1 DS-RT-02

DS-FN-1.1.1 The DSC shall store a TG Link Identifier for the TG road
segments.

DS-FN-1.1 DS-RT-02

DS-FN-1.1.2 The DSC shall store TG Equipment Identifier for TG equipment
associated with a segment of interest.

P-2.1.1p4
DS-FN-1.1

DS-RT-02

DS-FN-2 The system shall maintain map data for areas outside of the
segments of interest.

P-2.1.1p5 DS-RT-02

DS-FN-2.1 The system shall store San Antonio map data for areas outside the
TG road segments.

DS-FN-2 DS-RT-02

DS-FN-3 The system shall maintain travel data for the TG road segments. P-2.1.2.1p2 DS-GPSTH-02
DS-GPSTH-03
DS-RT-02
DS-WWW-02
DS-AVI-02

DS-FN-3.1 The DSS shall store TG ATMS travel data for TG ATMS road
segments.

P-2.1.2.3p1
DS-FN-3

DS-RT-02

DS-FN-3.1.1 The DSC shall store the current travel data for the travel data
elements defined by the existing TG ATMS data broadcast
system.

DS-FN-3.1 DS-RT-02

DS-FN-3.2 The DSS shall store MDI AVI travel data for MDI AVI TG road
segments.

P-2.1.2.3p2
DS-FN-3

DS-AVI-02

DS-FN-3.2.1 The DSC shall store the current MDI AVI-measured vehicle travel
time associated with MDI AVI TG road segments.

DS-FN-3.2 DS-AVI-02

DS-FN-3.2.2 The DSC shall store the current MDI AVI-measured vehicle speed
associated with MDI AVI TG road segments.

DS-FN-3.2 DS-AVI-02

DS-FN-3.3 The DSS shall store theoretical travel data for the theoretical TG
road segments.

P-2.1.2.3p3
DS-FN-3

DS-GPSTH-02
DS-GPSTH-03

DS-FN-3.3.1 The DSC shall store the current theoretical vehicle speed
associated with theoretical TG road segments.

DS-FN-3.3 DS-GPSTH-02
DS-GPSTH-03

DS-FN-3.4 The DSS shall store GPS travel data for the GPS TG road
segments.

DS-FN-3 DS-GPSTH-02
DS-GPSTH-03

DS-FN-3.4.1 The DSC shall store the current GPS-measured vehicle speed
associated with GPS TG road segments.

DS-FN-3.4 DS-GPSTH-02
DS-GPSTH-03

DS-FN-3.5 The DGS shall store theoretical travel data for the theoretical TG
road segments at 15-minute time intervals.

P-2.1.2.3p3
DS-FN-3

DS-GPSTH-02
DS-GPSTH-03

DS-FN-3.5.1 The GPSTHC shall store the vehicle speed at 15-minute intervals
for theoretical TG road segments.

DS-FN-3.5 DS-GPSTH-02

DS-GPSTH-03



Data Server 233 System Design Document

REQUIREMENT
NUMBER

REQUIREMENT SOURCE TEST CASE(S)

DS-FN-3.6 The DGS shall store GPS travel data for the GPS TG road
segments at 15-minute intervals.

DS-FN-3 DS-GPSTH-02
DS-GPSTH-03

DS-FN-3.6.1 The GPSTHC shall store the vehicle speed at 15-minute intervals
for GPS TG road segments and theoretical TG road segments.

DS-FN-3.6 DS-GPSTH-02

DS-GPSTH-03

DS-FN-3.7 The DSILS shall acquire TG ATMS travel data for TG ATMS
road segments.

P-2.1.2.3p1
DS-FN-3

DS-RT-02

DS-FN-3.7.1 The RTCIC shall acquire the current travel data for the travel data
elements defined by the existing TG ATMS data broadcast
system.

DS-FN-3.7 DS-RT-02

DS-FN-3.8 The DSILS shall acquire MDI AVI travel data for MDI AVI TG
road segments.

P-2.1.2.3p2
DS-FN-3

DS-AVI-02

DS-FN-3.8.1 The DSILC shall acquire the current MDI AVI-measured vehicle
travel time associated with MDI AVI TG road segments.

DS-FN-3.8 DS-AVI-02

DS-FN-3.8.2 The DSILC shall acquire the current MDI AVI-measured vehicle
speed associated with MDI AVI TG road segments.

DS-FN-3.8 DS-AVI-02

DS-FN-3.9 The DCIS shall provide TG ATMS travel data for TG ATMS road
segments.

P-2.1.2.3p1
DS-FN-3

DS-RT-02
DS-WWW-02

DS-FN-3.9.1 The WWWIC shall provide the current travel data for the travel
data elements defined by the existing TG ATMS data broadcast
system to the TG WWW system.

DS-FN-3.9 DS-WWW-02

DS-FN-3.9.4 The RTBC shall provide the current travel data for the travel data
elements defined by the existing TG ATMS data broadcast system
to the TG ATMS Map system, the MDI IVN/KIOSK System, and
other ATMS data broadcast listeners.

DS-FN-3.9 DS-RT-02
DS-WWW-02

DS-FN-3.10 The DCIS shall provide MDI AVI travel data for MDI AVI TG
road segments.

P-2.1.2.3p2
DS-FN-3

DS-WWW-02
DS-AVI-02

DS-FN-3.10.5 The RTBC shall provide the current MDI AVI-measured vehicle
travel time associated with MDI AVI TG road segments to the TG
ATMS Map system, the MDI IVN/KIOSK System,  and other
ATMS data broadcast listeners.

DS-FN-3.10 DS-WWW-02
DS-AVI-02

DS-FN-3.10.6 The RTBC shall provide the current MDI AVI-measured vehicle
speed associated with MDI AVI TG road segments to the TG
ATMS Map system, the MDI IVN/KIOSK System, and other
ATMS data broadcast listeners.

DS-FN-3.10 DS-WWW-02
DS-AVI-02

DS-FN-3.11 The DCIS shall provide theoretical travel data for the theoretical
TG road segments.

P-2.1.2.3p3
DS-FN-3

DS-GPSTH-02
DS-GPSTH-03

DS-FN-3.11.3 The RTBC shall provide the current theoretical vehicle speed
associated with theoretical TG road segments to the TG ATMS
Map system, the MDI IVN/KIOSK System, and other ATMS data
broadcast listeners.

DS-FN-3.11 DS-GPSTH-02

DS-FN-3.12 The DCIS shall provide GPS travel data for the GPS TG road
segments.

DS-FN-3 DS-GPSTH-02
DS-GPSTH-03



Data Server 234 System Design Document

REQUIREMENT
NUMBER

REQUIREMENT SOURCE TEST CASE(S)

DS-FN-3.12.3 The RTBC shall provide the current GPS-measured vehicle speed
associated with GPS TG road segments to the TG ATMS Map
system, the MDI IVN/KIOSK System, and other ATMS data
broadcast listeners.

DS-FN-3.12 DS-GPSTH-02

DS-FN-4 The system shall maintain lane closure data. P-2.1.2.3p1 DS-RD-02
DS-WWW-02
DS-LC-01

DS-FN-4.1 The DSS shall store State of Texas lane closure data. P-2.1.2.3p7
DS-FN-4

DS-RD-02

DS-FN-4.1.1 The DSC shall store non-construction related lane closure
information for State of Texas roadway closed data.

DS-FN-4.1 DS-RD-02

DS-FN-4.2 The DSS shall store San Antonio lane closure data. DS-FN-4 DS-LC-01

DS-FN-4.2.1 The DSC shall store the lane closure data elements defined in the
current TG Lane Closure system for San Antonio lane closure
data.

DS-FN-4.2 DS-LC-01

DS-FN-4.3 The DGS shall acquire lane closure data. DS-FN-4 DS-LC-01

DS-FN-4.3.1 The LCGUIC shall acquire the lane closure data elements defined
in the current TG Lane Closure system for TG lane closure data.

DS-FN-4.3 DS-LC-01

DS-FN-4.4 The DGIS shall acquire State of Texas roadway closed data. P-2.1.2.3p7
DS-FN-4

DS-RD-02

DS-FN-4.4.1 The RCIC shall acquire non-construction related lane closure
information for State of Texas road closed data.

DS-FN-4.4 DS-RD-02

DS-FN-4.5 The DSILS shall provide State of Texas roadway closed data. P-2.1.2.3p7
DS-FN-4

DS-RD-02

DS-FN-4.6 The DCIS shall provide TG lane closure data. DS-FN-4 DS-WWW-02
DS-LC-01

DS-FN-4.6.2 The RTBC shall provide the lane closure data elements defined in
the current TG Lane Closure system for San Antonio lane closure
data to the TG ATMS Map system, the MDI IVN/KIOSK System,
and other ATMS data broadcast listeners.

DS-FN-4.6 DS-LC-01

DS-FN-6 The system shall maintain traffic incident data. P-2.1.2.3p1
P-2.1.2.3p5
P-2.1.2.3p6

DS-RT-02
DS-WWW-02
DS-AWARD-02
DS-911-02

DS-FN-6.1 The DSS shall store TG ATMS traffic incident data. DS-FN-6 DS-RT-02

DS-FN-6.1.1 The DSC shall store current incident data for the incident data
elements defined in the existing TG ATMS data broadcast system.

DS-FN-6.1 DS-RT-02

DS-FN-6.2 The DSS shall store 911 traffic incident data. P-2.1.2.3p5
DS-FN-6

DS-911-02

DS-FN-6.2.1 The DSC shall store accident related incident data for 911 traffic
incident data.

DS-FN-6.2 DS-911-02

DS-FN-6.3 The DSS shall store Railroad Delay incident data. P-2.1.2.3p8
DS-FN-6

DS-AWARD-02

DS-FN-6.3.1 The DSC shall store current incident data for Railroad Delay
incident data.

DS-FN-6.3 DS-AWARD-02

DS-FN-6.4 The DGIS shall acquire TG ATMS traffic incident data. DS-FN-6 DS-RT-02



Data Server 235 System Design Document

REQUIREMENT
NUMBER

REQUIREMENT SOURCE TEST CASE(S)

DS-FN-6.4.1 The RTCIC shall acquire current incident data for the incident
data elements defined in the existing TG ATMS data broadcast
system.

DS-FN-6.4 DS-RT-02

DS-FN-6.5 The DGIS shall acquire 911 traffic incident data. P-2.1.2.3p5
DS-FN-6

DS-911-02

DS-FN-6.5.1 The 911IC shall acquire accident related 911 traffic incident data. DS-FN-6.5 DS-911-02

DS-FN-6.6 The DSILS shall acquire Railroad Delay incident data. P-2.1.2.3p8
DS-FN-6

DS-AWARD-02

DS-FN-6.6.1 The DSILC shall acquire current incident data for Railroad Delay
incidents.

DS-FN-6.6 DS-AWARD-02

DS-FN-6.8 The DCIS shall provide TG ATMS traffic incident data. DS-FN-6 DS-RT-02
DS-WWW-02

DS-FN-6.8.4 The RTBC shall provide current incident data for the incident data
elements defined in the existing TG ATMS data broadcast system
to the TG ATMS Map system, the MDI IVN/KIOSK System, and
other ATMS data broadcast listeners.

DS-FN-6.8 DS-RT-02
DS-WWW-02

DS-FN-6.9 The DCIS shall provide 911 traffic incident data. P-2.1.2.3p5 DS-WWW-02
DS-911-02

DS-FN-6.9.4 The RTBC shall provide accident related 911 traffic incident data
to the TG ATMS Map system, the MDI IVN/KIOSK System, and
other ATMS data broadcast listeners.

DS-FN-6.9 DS-WWW-02
DS-911-02

DS-FN-6.10 The DCIS shall provide railroad delay incident data. P-2.1.2.3p5
DS-FN-6

DS-WWW-02
DS-AWARD-02

DS-FN-7 The system shall maintain traveler information. P-2.1.2.1p1 DS-WV-02

DS-FN-7.1 The DSS shall store VIA data. P-2.1.2.3p10
DS-FN-7

DS-WV-02

DS-FN-7.1.1 The DSC shall store VIA data as specified in the MDI Traveler
Information Kiosk Preliminary Design Document.

DS-FN-7.1 DS-WV-02

DS-FN-7.2 The DSS shall store weather data. Design DS-WV-02

DS-FN-7.2.1 The DSC shall store weather data as specified in the MDI
Traveler Information Kiosk Preliminary Design Document.

DS-FN-7.2 DS-WV-02

DS-FN-7.4 The DSILS shall acquire VIA data. P-2.1.2.3p10
DS-FN-7

DS-WV-02

DS-FN-7.4.1 The DSILC shall acquire VIA data as specified in the MDI
Traveler Information Kiosk Preliminary Design Document.

DS-FN-7.4 DS-WV-02

DS-FN-7.5 The DSILS shall acquire Weather data. DS-FN-7 DS-WV-02

DS-FN-7.5.1 The DSILC shall acquire weather data as specified in the MDI
Traveler Information Kiosk Preliminary Design Document.

DS-FN-7.5 DS-WV-02

DS-FN-7.6 The DSILS shall provide VIA data. P-2.1.2.3p10
DS-FN-7

DS-WV-02

DS-FN-7.6.1 The DSILC shall provide VIA data as specified in the MDI
Traveler Information Kiosk Preliminary Design Document to the
MDI IVN/KIOSK System.

DS-FN-7.6 DS-WV-02

DS-FN-7.8 The DSILS shall provide weather data. DS-FN-7 DS-WV-02

DS-FN-7.8.1 The DSILC shall provide weather data as specified in the MDI
Traveler Information Kiosk Preliminary Design Document to the
MDI IVN/KIOSK System.

DS-FN-7.9 DS-WV-02



Data Server 236 System Design Document

REQUIREMENT
NUMBER

REQUIREMENT SOURCE TEST CASE(S)

DS-FN-8 The system shall maintain TG ATMS equipment status data. 2.1.2.3p1 DS-RT-02

DS-FN-8.1 The DSS shall store TG ATMS CMS data. DS-FN-8 DS-RT-02

DS-FN-8.1.1 The DSC shall store the current CMS data for the CMS data
elements defined in the existing TG ATMS data broadcast system.

DS-FN-8.1 DS-RT-02

DS-FN-8.2 The DSS shall store TG ATMS LCS data. DS-FN-8 DS-RT-02

DS-FN-8.2.1 The DSC shall store the current LCS data for the LCS data
elements defined in the existing TG ATMS data broadcast system.

DS-FN-8.2 DS-RT-02

DS-FN-8.3 The DGIS shall acquire TG ATMS CMS data. DS-FN-8 DS-RT-02

DS-FN-8.3.1 The RTCIC shall acquire the current CMS data for the CMS data
elements defined in the existing TG ATMS data broadcast system.

DS-FN-8.3 DS-RT-02

DS-FN-8.4 The DGIS shall acquire TG ATMS LCS data. DS-FN-8 DS-RT-02

DS-FN-8.4.1 The RTCIC shall acquire the current LCS data for the LCS data
elements defined in the existing TG ATMS data broadcast system.

DS-FN-8.4 DS-RT-02

DS-FN-8.5 The DCIS shall provide TG ATMS CMS data. DS-FN-8 DS-RT-02

DS-FN-8.5.1 The RTBC shall provide the current CMS data for the CMS data
elements defined in the existing TG ATMS data broadcast system
to the TG ATMS Map system and other ATMS data broadcast
listeners.

DS-FN-8.5 DS-RT-02

DS-FN-8.6 The DCIS shall provide TG ATMS LCS data. DS-FN-8 DS-RT-02

DS-FN-8.6.1 The RTBC shall provide the current LCS data for the LCS data
elements defined in the existing TG ATMS data broadcast system
to the TG ATMS Map system and other ATMS data broadcast
listeners.

DS-FN-8.6 DS-RT-02

DS-FN-9 The system shall maintain MDI system status data. 2.1.2.2p1 DS-RD-01
DS-GPSTH-01
DS-RT-01
DS-WWW-01
DS-KIOSK/IVN-01
DS-AWARD-01
DS-AVI-01
DS-911-01

DS-FN-9.1 The DGS shall monitor DGS process status information. DS-FN-9 DS-GPSTH-01

DS-FN-9.1.3 The GPSTHC shall provide GPSTHC process status information. DS-FN-9.1 DS-GPSTH-01

DS-FN-9.2 The DSILS shall acquire MDI AVI system status information. DS-FN-9 DS-AVI-01

DS-FN-9.3 The DSILS shall acquire MDI Railroad Delay system status
information.

DS-FN-9 DS-AWARD-01

DS-FN-9.4 The SGUIS shall display MDI AVI system status information. DS-FN-9 DS-AVI-01

DS-FN-9.4.1 The SGUIC shall display MDI AVI system current status. DS-FN-9.4 DS-AVI-01

DS-FN-9.4.2 The SGUIC shall display MDI AVI system detailed status
information.

DS-FN-9.4 DS-AVI-01

DS-FN-9.5 The SGUIS shall display MDI IVN system status information. DS-FN-9 DS-KIOSK/IVN-01

DS-FN-9.5.1 The SGUIC shall display MDI IVN system current status. DS-FN-9.5 DS-KIOSK/IVN-01



Data Server 237 System Design Document

REQUIREMENT
NUMBER

REQUIREMENT SOURCE TEST CASE(S)

DS-FN-9.5.2 The SGUIC shall display MDI IVN system detailed status
information.

DS-FN-9.5 DS-KIOSK/IVN-01

DS-FN-9.6 The SGUIS shall display MDI Kiosk system status information. DS-FN-9 DS-KIOSK/IVN-01

DS-FN-9.6.1 The SGUIC shall display MDI Kiosk system current status. DS-FN-9.6 DS-KIOSK/IVN-01

DS-FN-9.6.2 The SGUIC shall display MDI Kiosk system detailed status
information.

DS-FN-9.6 DS-KIOSK/IVN-01

DS-FN-9.7 The SGUIS shall display MDI Railroad Delay system status
information.

DS-FN-9 DS-AWARD-01

DS-FN-9.7.1 The SGUIC shall display MDI Railroad Delay system current
status.

DS-FN-9.7 DS-AWARD-01

DS-FN-9.7.2 The SGUIC shall display MDI Railroad Delay system detailed
status information.

DS-FN-9.7 DS-AWARD-01

DS-FN-9.8 The SGUIS shall display DS DGS process status information. DS-FN-9 DS-GPSTH-01

DS-FN-9.8.3 The SGUIC shall display DS GPSTHC process status information. DS-FN-9.8 DS-GPSTH-01

DS-FN-9.9 The SGUIS shall display DS DGIS process information. DS-FN-9 DS-RD-01
DS-RT-01
DS-AWARD-01
DS-AVI-01
DS-911-01
DS-WV-01

DS-FN-9.9.1 The SGUIC shall display DS RTCIC process status information. DS-FN-9.9 DS-RT-01

DS-FN-9.9.2 The SGUIC shall display DS RDIC process status information. DS-FN-9.9 DS-AWARD-01

DS-FN-9.9.4 The SGUIC shall display DS 911IC process status information. DS-FN-9.9 DS-911-01

DS-FN-9.9.5 The SGUIC shall display DS RCIC process status information. DS-FN-9.9 DS-RD-01

DS-FN-9.9.6 The SGUIC shall display DS VIC process status information. DS-FN-9.9 DS-WV-01

DS-FN-9.9.7 The SGUIC shall display DS WIC process status information. DS-FN-9.9 DS-WV-01

DS-FN-9.11 The SGUIS shall display DS DCIS process information. DS-FN-9 DS-RT-01
DS-WWW-01

DS-FN-9.11.1 The SGUIC shall display DS WWWIC process information. DS-FN-9.11 DS-WWW-01

DS-FN-9.11.5 The SGUIC shall display DS RTBC process information. DS-FN-9.11 DS-RT-01

DS-FN-10 The system shall adjust travel data for TG road segments based on
current conditions.

P-2.1.2.1p2 DS-GPSTH-03

DS-FN-10.1 The DGS shall adjust theoretical travel data for theoretical TG
road segments based on time of day.

P-2.1.2.3p4
DS-FN-10

DS-GPSTH-03

DS-FN-10.1.1 The GPSTHC shall adjust theoretical travel data for theoretical
TG road segments based on current conditions using adjustment
factors based on type of day and/or weather.

DS-FN-10.1 DS-GPSTH-03

DS-FN-10.2 The DGS shall adjust GPS travel data for GPS TG road segments
based on time of day.

DS-FN-10 DS-GPSTH-03

DS-FN-10.2.1 The GPSTHC shall adjust GPS travel data for GPS TG road
segments based on current conditions using adjustment factors
based on type of day and/or weather.

DS-FN-10.2 DS-GPSTH-03



Data Server 238 System Design Document

REQUIREMENT
NUMBER

REQUIREMENT SOURCE TEST CASE(S)

DS-FN-11 The system shall have the ability to access the data based on
geographic attributes.

P-2.1.1p5 DS-RT-02

DS-FN-11.1 The DSS shall store geographic attributes of data. P-2.1.1p4
DS-FN-11

DS-RT-02

DS-FN-11.1.1 The DSC shall store the altitude, latitude, and longitude of the
endpoints of the TG road segments.

DS-FN-11.1 DS-RT-02

DS-PY-1 The system will reside on a computer separate from the TG
operational computers.

P-2.1.2.7 DS-PHYS-01

DS-PY-1.1 The MCS shall be a Sun Microsystems Ultra SPARCStation or
better.

P-2.1.2.7
DS-PY-1

DS-PHYS-01

DS-PY-1.2 The MCS shall have, at a minimum, the following items:

• 167MHz SPARC CPU
• 4.2 GB Hard Disk
• 128 MB RAM
• Floppy Disk drive
• Sun CD-ROM drive
• Turbo GX+ Graphics card
• 20” Sun color monitor
• 2 Ethernet cards
• 2 SCSI channels

P-2.1.2.7
DS-PY-1

DS-PHYS-01


