Data Server
Model Deployment Initiative

Software Design Document
Version 1.0

December 19, 1997

SwRI Project No. 10-8684
P.O. No. 7-70030
Reg. No. 60115-7-70030

Prepared For:

Texas Department of Transportation
TransGuide
3500 NW Loop 410
San Antonio, Texas 78229

Prepared By:

Southwest Research Institute
P.O. Drawer 28510
San Antonio, Texas 78228

Approval Page

Data Server Project Manager Date
SwRI MDI Project Manager Date
Software Engineering Director Date

Data Server [System Design Document

ATIS
ATMS
ATP
AVI
CCTV
cal
CMS
DCIS
DGIS
DGS
DSC
DS
DSS
FTP
GIS
GPS
GPSTHC
GUI
HTML
HTTP
HTTPd
ID

iff

ITS
IVN
LCGUIC
LCS
LPTV
MCS
MDI
RCIC
RRC
RRS
RTBC
RTCC
RDIC
RFO
SA
SGUIC
SGUIS
SwRI
TG
TTI
TxDOT
udp
VIC

Data Server

Acronym List

Advanced Traveler Information System
Advanced Traffic Management System
Acceptance Test Plan

Automatic Vehicle Identification
Closed Circuit Television

Common Gateway Interface
Changeable Message Sign

Data Consumer Interface Subsystem
Data Generator Interface Subsystem
Data Generator Subsystem

Data Server Component

Data Server

Data Server Subsystem

File Transfer Protocol

Geographical Information System
Globa Positioning System

Global Positioning System/Theoretical Data Component
Graphical User Interface

Hypertext Markup Language
Hypertext Transfer Protocol

Hypertext Transfer Protocol daemon
Identifier

Interface

Intelligent Transportation Systems
In-Vehicle Navigation

Lane Closure GUI Component

Lane Control Signal

Low Power Television

Master Computer Subsystem

Mode Deployment Initiative

Road Closed Interface Component
Railroad Crossing

Railroad Sensor

Resaltime Broadcast Component
Redtime Collect Component

Railroad Delay Interface Component
Request For Offer

San Antonio

Status Graphical User Interface Component
Status Graphical User Interface Subsystem
Southwest Research Institute
TransGuide

Texas Transportation Institute

Texas Department of Transportation
User Datagram Protocol

VIA Interface Component

ii System Design Document

wIC Weather Interface Component

WWw World Wide Web
WWWIC World Wide Web Interface Component
911IC 911 Interface Component

Data Server iii System Design Document

Table of Contents

I 14 o [T § oo SRR URRURRTII 1
O g o0t o oY = o o USRS 1
U@ o7 = 10 7= I G0 g or o OSSR 1
1.3 GOAlS AN ODJECLIVES......c.eeeieiiie ettt 2
1.4 ReferenCet DOCUMENEScoiueiiiiiiieeie ettt sne e e e 2

2. EXternal INterfaces.......ccoiiieii i s 3
2. L ATV bbb b e R e bt h e bR e e bt eae bt e b e neeneas 3
2.2 AV L bbb h ettt b et bt e bt e nne e 4
P2 B 1 PRSP PP PP 4
24 ROBO ClOSEU......eeuteeiie ettt b et b e s e e e e be e saeenneenneennneea 4
2SI 1 RSP RP PR PPRTRP 4
2.8 WEBLNEN ...ttt h bttt h e bt b e nne e 4
2.7 AWARD ...ttt b bt bbbt b e h e bR e bt b e b e nre e 4
2B WWWWWV etttk b e bt b et h e b e e bt et e e h e e bt eh e e bt e ae e b e e ne e b e e e e nneennas 4
2.91N-VENICIE NAV ..ttt b ettt ettt e e b sbe e nneeneas 4
P2 (O L0 PSPPSRSO 4
2.11 EMEIQENCY RESPDONSE....co i ieiiie ettt ettt ettt ettt e ettt e e sab e e e e s eabe e e e e enbe e e e anbee e e e anneaeeaans 4
2. L2 USEN ettt h e h et bR E R e R e bR e e bt Re e Rt e ae e bt e e he e e nneeneas 5

3. System ReqUITEMENTS.......ccoiiiieeeiee et 6
3.1 GENEral REQUITEIMENES.cieieieeeiieeetieeeiee et eeestee e st e e et e e s teeesaeeesaeeesmteeeaneeeeneeesnseeeaneeeennes 7
3.2 System Level REQUITEIMENLSeiiiiiieiiee et e eiee e rete et e e seee e st e e see e e sneeeeeeeesneeeeeneeeenees 8

3.2.1 Interface REQUIFEIMENTS. ..o e eee ettt e e et e e e e e see e e smeeeene e e emeeeenneeeenees 8
3.2.2 FUNCLiONal REQUITEIMENES........eiiiieeitieeeiee e e eee e et e e e et e e st e e smteeeaeeeeneeeesneeeennes 9
3.2.3 Data Server System Physical REQUITEMENTS.........c.eeiiiiiiiieeieesee e 9
3.3 Data Server Subsystem Level REQUITEMENTS...........coiieiiirieeieesee e 10
3.3.1 Data Server SUbSyStemM REQUITEMENTS...........ooiieiiiiieeiee et 10
3.3.1.1 Data Server Subsystem Functional REQUIrEMENES...........ccoververieenierieeeesee s 10
3.3.2 Data Server Interface Library Subsystem Requirements..........cccevvereeeneeneesineesieennn 11
3.3.2.1 Data Server Interface Library Subsystem Interface Requirements............cccceeeeee 11
3.3.2.2 Data Server Interface Library Subsystem Functional Requirements...................... 11
3.3.3 Data Generator Subsystem REQUITEMENEScooviriieiieiie e 12
3.3.3.1 Data Generator Subsystem Interface REqUIrEMENES..........cccovverieerierieeieesee s 12
3.3.3.2 Data Generator Subsystem Functional Requirements............ccocveveeiienieenecnnens 12
3.3.4 Data Generator Interface Subsystem ReqUITEMENTS.cccvvvvieieerierieesee e 13

Data Server iv System Design Document

3341 Interface REQUITEMENTSooiiiie e e e 13

3.3.4.2 FUNCtional REQUITEMENTS.ocouieiieiieeiie st 13
3.3.5 Status Graphical User Interface Subsystem Requirements...........cocveveeeneeneenineenieenne 14
3.3.5. 1 Interface REQUITEMENTSooiiie et 14
3.3.5.2 FUNCtional REQUITEMENTS.ccouieiiiiieeiiiesiee et 14
3.3.6 Data Consumer Interface Subsystem ReqUIrEMENES.cccvevivieiierienieeiee e 14
3.3.6.1 Data Consumer Interface Subsystem Interface Requirements.............cceevereennenne 15
3.3.6.2 Data Consumer Interface Subsystem Functional Requirements............cccceceeeneenne 15
3.3.7 Master Computer SUDSySteM REQUITEMENTS..........eeriieiieiienre e 16
3.3.7.1 Master Computer Subsystem Physical Requirements............cccoceereerieenieenicneens 16
3.4 Data Server Component Level REQUITEMENES..........cocviieeiiieieesee e 16
3.4.1 Data Server Component REQUITEIMENTS..........ooieeiiiriieie et 17
3.4.1.1 Functional REQUITEMENTS.coiiiiie e eeiee e eee et e e s e e sne e eeeens 17
3.4.2 Data Server Interface Library Component Requirements...........cccoeceeveeeiceeeniee e, 18
3.4.2.1 Data Server Interface Library Component Interface Requirements...........c..cccoeee 18
3.4.2.2 Data Server Interface Library Component Functional Requirements..................... 18
3.4.3 911 Interface Component REQUITEMENTS.ccueirerreeie et 19
3.4.3.1 911 Interface Component Interface ReQUITEMENES...........cccvervirieeric i 19
3.4.3.2 911 Interface Component Functional ReqUIrEMENtS...........ccocvevveeneerieenieeseeneens 20
3.4.4 Lane Closure Graphical User Interface Component Requirements..........ccoccceeeeeeenneen. 20
3.4.4.1 Lane Closure Graphical User Interface Component Interface Requirements.......... 20
3.4.4.2 Lane Closure Graphical User Interface Component Functional Requirements........ 20
3.4.5 Road Closed Interface Component ReqUIrEMENES.........ccceeevcevereeeriee e 21
3.4.5.1 Road Closed Interface Component Interface Requirementsccocceeveeeenieeenneen. 21
3.4.5.2 Road Closed Interface Component Functional Requirements...........ccccocceeeveeeennen. 21
3.4.6 Globa Positioning System / Theoretical Data Component Requirements..................... 21
3.4.6.1 Global Positioning System / Theoretical Data Component Functional Requirements21
3.4.7 World Wide Web Interface Component RequIrements...........coooceeeieeeceeveeeniee e 22
3.4.7.1 World Wide Web Interface Component Interface Requirements............cccccceeeneeen. 22
3.4.7.2 World Wide Web Interface Component Functional Requirements..............ccc........ 22
3.4.8 Status Graphical User Interface Component REqUIrEMENES..........cooveriveeieeneerineesieeee 22
3.4.8.1 Status Graphical User Interface Component Interface Requirements..................... 22
3.4.8.2 Status Graphical User Interface Component Functional Requirements.................. 23
3.4.9 Redltime Collect Component REQUITEMENTS...........cerrieiiereerie e 24
3.4.9.1 Redtime Collect Component Interface Requirements..........ccccoocceeviieriinenceeeneen, 24
3.4.9.2 Redltime Collect Component Functional ReqUIreMents.............cccevveverieeneennens 24
3.4.10 Redltime Broadcast Component ReqUIrEMENTSccooeeeiierereeeree e see e 25
3.4.10.1 Redtime Broadcast Component Interface Requirementscccocceevcieieeeneen. 25
3.4.10.2 Redltime Broadcast Component Functional Requirements............cccoeveeeerveeenneen. 26
4, SYSEEM DESIGN....eeiiiiiiie ettt 28
4.1 SYSEEM ATCHITECTUIE ..ottt e et e e s te e e sate e e ae e e sneeeeaneeeenneeas 28
VSV (= W= Y= I T Lo o TS 30
4.2.1 DAt SEIVEN SYSEEIM.....cuiiiiieiie ittt ettt sse e sr e b e s e s n e e ane e s e e s neenneennneans 31
422 WWW SYSIEIM ...ttt n e nne e s n e e neennne e 33
4.2.3 LaNE ClOSUIE SYSLEIM....cneiieeieee ettt ettt st e e e e et e e e snte e eneeesmeeeesneeeeneeas 34
4.2 4 Realtime RECEIVE SYSLEM........eiiiiiie ettt e et e e ne e e s e e sneeeeneeas 35
4.2.5 Realtime Map DiSplay........oeiieeeiieeeee et 35

Data Server Y System Design Document

4.2.6 Data Server Interface Common Interface Library........coccooveiiiiiiiiieeecee 35

4.3 SUDSYSIEM LEVE DESIGN ...ttt 36
4.3.1 Data SEIVEr SUDSYSEIMeeiiieiiiieie ettt ne e nne e 36
I T I I o 010 S DT ' o PSR 36
20 1 28 \V oo = I T o o PSP 46
4.3.1.3 CommMUNICation ProtOCOL..........coiiiiiiiiie et e 102
G TS = U1 €1 U 108
4.3.2.1 PrOCESS DESION ..c.eeiieeiee ettt ettt e et e e st e e sae e e e te e e snte e e snteeeneeeenreeeanneeanneeeans 110
VG 1208 \V Lo o (= B I T T o PSSP 111
4.3.3ReAltIME COIECL....... e e 120
4.3.3.1 PrOCESS DESIGN ...ttt 120
VARG TG 1228 \V oo (= I T T o USSP 120
4.3.4 GPSITheoretiCal SUDSYSIEMcoiiiiiieiee e 131
4.3.4.1 PrOCESS DESIGN ...ttt 131
VG I 8 \V oo = I T o o TSRS 135
4.35 LaNE CIOSUNE GUI ...ttt e e e e smee e e eneeeenees 172
4.3.5.1 PrOCESS DESIGN ...ttt s 174
VG RV [eTe (= B I T o o PSSP 175
4.3.6 Road CloSed INEEITACE i 177
4.3.7 911 INterface SUBSYSIEMcueiii e 178
4.3.7.1 PrOCESS DESIGN ...ttt 178
VG I 28 \V Lo o = I T o o USSP 180
4.3.8 ReAltiME BrOAdCASEcoeiueeeieiee ettt et e e neeeenees 185
4.3.8.1 PrOCESS DESIGN ...ttt 185
VGRS I2A8\Y Lo o (= B I T T o PSSP 185
439 REAIIME RECEIVE. ...ttt ettt et e st e s ae e e smee e e eneeeennes 191
4.3.9.1 PrOCESS DESIGN ...ttt 191
VARG e I8V [oTo (= B I T o o USSP 192
4.3.10 World Wide WeD INterface.oo e 197
4.3.10.1 ProCESS DESIQNcuvieiieiiee sttt ettt 197
4.3.10.2 MOUE DESIGN ...ttt ettt et esmte e e st e e sne e e snre e e sneeeenneeeans 198
4.3.11 Data Server Common INterface Libraryccoveeoeeieeneeneeeesee e 206
350 0 o S T o S 206
I T B 2 o L= o [0 207
4.3.11.3ds SeNd_Neartheat........cooeie i e 208
4.3.11.4 ds WIIte 1aNE data..........ceeeiiieee e 209
4.3.11.5dS WIIE INC daAL...ceciiiuiiie e e e e e saree e s 211
4.3.11.6dS WIIE IT_SENS a8 .eie et 212
4.3.11.7 dS WIITE _IT_CrOSS 0ala.....ceiiveeeiieeiiiie e e e 213
4.3.11.8 dS WItE EQUIP SEAIUS.eeeiiieeiieeeiiee e e et et e e e seee e s e e eee e e sneeeenneeeens 214
LA I I o S (=0 =0 L= o = 216
4.3.11.10 ds read INC_data......cceieeeiiieeiiee et e e e et e e sneeeenneeeens 217
4.3.11.11ds read 11 _SENS dalal.....ccooeeeiiereiiee et 218
4.3.11.12 ds read It _CroSS alal.......ceeeiieeeiiie e eee e snee e e naeeeens 220
4.3.11.13 ds read eqUIP _SEEUS.......cccuereiieeeiiee e e see et ettt e e e see e e sneeeenneeeens 221
G T I 7 0 Y =] = 222
4.3.11.15dS delete file.....oooieeeeee e e 223
T I It G o S == o I = 224

Data Server Vi System Design Document

4.3.11.17 dS gt file tIME. .o i 226
4.3.11.18 ds get_file tYPE LIME.....oo it 227

5. Traceability MatlriX......ccoee i 229

Data Server Vil System Design Document

List of Figures

Figure 2.1 Data Server EXternal INterfates.c.oeeiier i 3
Figure 4.1 Data Server Context DIagraMccoeieeriiiiieeiie et 29
Figure 4.2 Data Server System Data Flow Diagramc.coooeeiieiienieeniesee e 31
Figure 4.3 WM System Context DIiagraimccoceeeieirerieeeeeeseeeseeesieeeseeeeseeeeseeeesneeeeneens 34
Figure 4.4 Lane Closure System Context Diagramccooceeeeieeeiieeeniee e see et seee e seee e 34
Figure 4.5 Realtime Receive Context Diagramcoociiiiiieeiiee et 35
Figure 4.6 Data Server Subsystem Data FIow Diagram............cocceeiienieenienie e 38
Figure 4.7. Data Server Process Data FIOW Diagramccooveeieeiienieeneenee e 39
Figure 4.8. Client Request Data FIOW Diagramc.oooeeiiiiiiiiieieesie e 40
Figure 4.9. Lane Data Data FlOW Diagramcooceeeioiiiniie e 41
Figure 4.10. Incident Data Data FlOW Diagram...........ccceeiiireiiie e 42
Figure 4.11 Equipment Data Data FIOW Diagraimc.ccooeeeiieeiiee e 43
Figure 4.12. Client Data Data FlowW Diagram...........coociiiiiieeiiee e 44
Figure 4.13. File Data Data FIOW Diagraim..........cccuoiviiieeiii e 45
Figure 4.14 Railroad Data Data FIOW Diagraimcccceeiiieeiiie e 46
Figure 4.15. Data Server Structure Chart..........c.oooeoieiiieeieceeeese e 48
Figure 4.16 dataserver_exit_handler Structure Chartccooooii i 51
Figure 4.17 dataserver_kill_children Structure Chart............cooooer i 52
Figure 4.18 dataserver_init_process_status Structure Chart............c.ccovcveiienieiieeseesee e 52
Figure 4.19 ds_signal_setup Structur@ Chartcocuoiieeieiiieereesee e 53
Figure 4.20 dataserver_initialize Structure Chart............cooooir i 54
Figure 4.21 ds_cfg_load cfg data Structure Chartccoeoeriiii e 54
Figure 4.22 dataserver_init_shared_memory Structure Chart...........ccoccceeviiriien e 55
Figure 4.23 dataserver_create_segment Structure Chart............ccoocveieieiiin e 56
Figure 4.24 dataserver_init_status segment Structure Chart...........cccooceeeeieeiiee e 57
Figure 4.25 dataserver_init_timeout_segment Structure Chartcccoveiiiii e, 57
Figure 4.26 dataserver_send_heartbeat Structure Chartcccoovoeiiiiiiiii e, 58
Figure 4.27 dataserver_check_timeout_values Structure Chartcccoveoeriienencieece e, 59
Figure 4.28 dataserver_clear_incident_data Structure Chartccooceeeiieeiien e 60
Figure 4.29 ds_delete file Structure Chart...........coooeee i e 61
Figure 4.30 dataserver_init_socket Structure Chartccooeoeeeiiee e 61
Figure 4.31 dataserver_update _data time Structure Chartocovereieciniee e 62

Data Server viil System Design Document

Figure 4.32 dataserver_clear_equipment_data Structure Chart.............ccevveiieiieeneeneneeeseee 63

Figure 4.33 dataserver_clear_link_data Structure Chart...........cccoooiieieiiiiieee e 63
Figure 4.34 dataserver_clear_rrs_data Structure Chartcccoo i 64
Figure 4.35 dataserver_clear_rrc_data Structure Chartccoeveieiee e 65
Figure 4.36 Child SrUCtUrE Char...........ooiiiiieie e e 66
Figure 4.37 dataserver_process_client_requests Structure Chartccocveieeiieeneenie e 68
Figure 4.38 dataserver_read request Structure Chart............ccocoveviiiiiie e 71
Figure 4.39 dataserver_write_status Structure Chartccoocee i 71
Figure 4.40 dataserver_read data Structure Chart............ooeeeiieeiiin i 72
Figure 4.41 dataserver_process init Structure Chart..............coceeieeiiiiiiiiese e 73
Figure 4.42 dataserver_process_close Structure Chart............oceeveieeiieenieneeeeeee e 74
Figure 4.43 dataserver_process _hb Structure Chart........ ..o eoer i 74
Figure 4.44 dataserver_process _link_write Structure Chart ..o, 75
Figure 4.45 dataserver_read link_data Structure Chartcccovciiiiiniiieeee e 76
Figure 4.46 dataserver_update link_time Structure Chart...........cooceveieeiiee e 77
Figure 4.47 dataserver_update _data time Structure Chartccovereeeeiin e 77
Figure 4.48 dataserver_process_link_read Structure Chartccccovvieiienienieesecsee e 78
Figure 4.49 dataserver_write_size Structure Chartcccoviiiiii e 79
Figure 4.50 dataserver_read link_segment Structure Chart............cccoeeeieieeiiee e 80
Figure 4.51 dataserver_write_data Structure Chart............oceeeieeieee e 81
Figure 4.52 dataserver_process_incident_write Structure Chartcccooveieeiieeiieneeniecee 82
Figure 4.53 ds_fopen_file Structure Chart............coeoiiiieiee e 83
Figure 4.54 dataserver_write_data file Structure Chartcco i, 83
Figure 4.55 dataserver_update_incident_time Structure Chart............ooceevioiiiiniicie e, 84
Figure 4.56 dataserver_process_incident_read Structure Chartcceveeieenieenienienieeseee 85
Figure 4.57 dataserver_read data file Structure Chartocooe i 86
Figure 4.58 dataserver_process rrs_write Structure Chart.............cocoeveeiienie e 86
Figure 4.59 dataserver_update rrs_time Structure Chartcoocoveieiiiii e, 87
Figure 4.60 dataserver_process rrs_read Structure Chart............cceoeeveeiienee e 88
Figure 4.61 dataserver_process rrc_write Structure Chart.............coocevieiienienie e 89
Figure 4.62 dataserver_update rrc_time Structure Chartccoovceveiee e 90
Figure 4.63 dataserver_process rrc_read Structure Chart.............ccooeeiieeiienie s 90
Figure 4.64 dataserver_process file write Structure Chartcocoeieeeiiiiiiee e, 91
Figure 4.65 dataserver_process file_delete Structure Chartcccoveeiieiiiiecnecceeeeeee 92

Data Server iX System Design Document

Figure 4.66 dataserver_process file read Structure Chartccooceeieeiieni i 93
Figure 4.67 dataserver_process _file_time Structure Chartccoceveeiieneiie e 94
Figure 4.68 dataserver_write file_time Structure Chart...........cccoo i, 94
Figure 4.69 dataserver_process file list Structure Chartcocoeiieiiiiienieceeeee e 95
Figure 4.70 dataserver_get_directory_list Structure Chartccoooeriiiiienieiieceeee e 96
Figure 4.71 dataserver_directory_exists Structure Chart.............ccoceeeeriieiienie i 97
Figure 4.72 ds_get_file timestamp Structure Chartccoeoeriii i 98
Figure 4.73 dataserver_write file list Structure Chart...........coccoevieieien e 98
Figure 4.74 dataserver_process_status read Structure Chart ..o 99
Figure 4.75 dataserver_process_equipment_write Structure Chartcccocoeeveeieiieesicneens 100
Figure 4.76 dataserver_update_equip_time Structure Chartcccooveiiiiieiie s 101
Figure 4.77 dataserver_process_equipment_read Structure Chart.............ccoeveeiiiiiieeieeiicinens 101
Figure 4.78. Client Data ProtOCOIcc.eii it 103
Figure 4.79. Link Data ProtOCOIcoiiiieiieeeee et 104
Figure 4.80. Incident Data ProtOCOcceiiiiieiiie et 104
Figure 4.81. EQuipment Data ProtOCOL.............couiiiiieiii e 105
Figure 4.82. Railroad Data ProtOCOLccuiiiiiiiieiie et 106
Figure 4.83. File Daa ProtOCOIcocuiiiieiiiiiieeeesec et 107
Figure 4.84 MDI SEAIUS GUIoiuiiiiiiieieeiee ettt e 109
Figure 4.85 Data Server Process Status GUI SCIreeN..........cceeiviiiiiiieiie e 110
Figure 4.86. Status GUI Data FlOW DIiagram...........cooeerieiieeieenieeieesee e 111
Figure 4.87 mdisg teleuse_main Structure Chart..............cooveieiiiiiiesceeeee e 111
Figure 4.88 mdisg_main Structure Chart............coceeieeiieiiiesee e 112
Figure 4.89 INITIALLY Structure Chartcocoeeiiiiiiiiieee e 113
Figure 4.90 GET_UPDATE _RATE ..ottt 114
Figure 4.91 initialize_application Structure Chart............cocoeeiiiiiieieeree e 114
Figure 4.92 periodic_update Structure Chartccooiiiiieiee e 115
Figure 4.93 PERIODIC_UPDATE Structure Chart..........ccccoeereeneriineeieseeeeseeee e 116
Figure 4.94 UPDATE_STATUS Structure Chart............cooeeieeiieeieeiec e 117
Figure 4.95 display_detailed_status Structure Chartcccooiiriieiicieeieesec e 118
Figure 4.96 DISPLAY_DETAILED_STATUS Structure Chartcccooverienenienecieneene. 118
Figure 4.97 Realtime Collect Data Flow Diagram..........ccoocueeiiiieiereniee e 120
Figure 4.98 Realtime Collect Main Structure Chartccooveiiieieeiic e 121
Figure 4.99 initialize_dsif_connection Structure Chart............c.coooieiiiniiiieiee e 123
Data Server X System Design Document

Figure 4.100 dsif _send heartbeat Structure Chartcccoeeoiiiiii e 124

Figure 4.101 log_error_heartbeat Structure Chart.............ocoeeiieiiieieeie e 125
Figure 4.102 fail_atms_data Structure Chart...........ccooceieieeeiiiee e 126
Figure 4.103 update_linkid_data Structure Chart..............occeeiieiiiiieesc e 127
Figure 4.104 send _to_broadcast Structure Chartc.ooceeeiiieiiie e 128
Figure 4.105 receive _broadcast_data Structure Chart.............cocvevereiiie e 128
Figure 4.106 update_atms linkid_data Structure Chartccoocoieieeiiiniee e 129
Figure 4.107 update_incident_data Structure Chartcccoee i 130
Figure 4.108. GPSTH Data Data FIOW Diagramcccoceeieeiiieieesie e 132
Figure 4.109. Read GPS TH Data Data FIow Diagramcccoceeieeiieiieeieesec e 134
Figure 4.110. GPS TH Subsystem Structure Chart............coceeieeiienieesie e 136
Figure 4.111 ds_signal_setup Structur@ Chartcoceiiieieeiie e 138
Figure 4.112 load_cfg_data Structure Chart...........coceeiiiiiieiieie e 139
Figure 4.113 load_num_params Structure Chalrtcooeeieeiieeieesee e 140
Figure 4.114 ds fopen file Structure Chart............ccoveiiiiiieiee e 140
Figure 4.115 load_params Structure Chart.............cooeeiiiiiieiie e 141
Figure 4.116 init_status table Structure Chartcccooieeiiee e 142
Figure 4.117 init_shared_memory Structure Chart.............ccooeeriirieenic e 142
Figure 4.118 gpsth_send_heartbeat Structure Chart.............cccoveiiiiieiicieeee e 143
Figure 4.119 init_link_data Structure Chart...........occoe i 144
Figure 4.120 init_data file Structure Chartccoe i 145
Figure 4.121 init_key table Structure Chartcccoiiiiiiiiic e 146
Figure 4.122 build_key_table Structure Chartcooiiiiiiiiiiee e 147
Figure 4.123 read _next_key Structure Chartcoeeiiiriieiee e 148
Figure 4.124 append_to_key_table Structure Chartccooiiiiiieiicieceeee e 149
Figure 4.125 gpsth_connect_to_dsif Structure Chartcccceeoiiriienic i 149
Figure 4.126 ds_dsif_connect Structure Chartoooceieiieiieeee e 150
Figure 4.127 gpsth_time SruCture Chart.............oooieiiiiieee e 151
Figure 4.128 cal_to_gpsth_date Structure Chart............coooieieiiieeiieseeeeeee e 151
Figure 4.129 init_cal_file Structure Chartcoooeie i e 152
Figure 4.130 read_cal_file Structure Chart.............ccoe i 153
Figure 4.131 init_params_struct Structure Chart..............coceeieeiieeiiesc e 154
Figure 4.132 extract_date Structure Chart.............cccoiieiiiiiieiee e 155
Figure 4.133 check_daymo Structure Chart...........ccooeeiiiiiieiee e 156

Data Server Xi System Design Document

Figure 4.134 match_daymo SIruCture Chartcooveiieiiieieceee e 156

Figure 4.135 set_params SrucCture Chartoooieiieiieieeee e 157
Figure 4.136 free_params_struct Structure Chartoooeeieeiieeieenec e 158
Figure 4.137 process_link_data Structure Chartccooeeieiiieeieenc e 158
Figure 4.138 get_params SruCture Chart............cooeeieeiieiiieee e 159
Figure 4.139 read_link_record Structure Chart.............ccoeieeriiiie e 160
Figure 4.140 compare_key_entries Structure Chartccooveiieeieenec e 161
Figure 4.141 compare_Keys SIruCture Chart............cooeeiieiiieiee e 161
Figure 4.142 get_key_index Structure Chart............ccoeeiieiieeieenie e 162
Figure 4.143 find_active_record Structure Chartcoooeeeioiieiie e 163
Figure 4.144 read _record StruCture Chartcocoeiieiiiiiieee e 163
Figure 4.145 compare_headers Structure Chartcocovieeieiiieeieeseceeeeee e 164
Figure 4.146 copy_data record StruCture Chartcooieeieeiieeiieesec e 165
Figure 4.147 send_link_data_ with_retry Structure Chartcoocoveiii i 165
Figure 4.148 write_link_data Structure Chart............ooocei o 166
Figure 4.149 ds_dsif_send_link_write_request Structure Chart............ccooeeoiiiieneien e 167
Figure 4.150 ds _dsif_read_status Structure Chartooceeviiiiiii e 168
Figure 4.151 gpsth_connect_to_dsif Structure Chartcccoeeiiirieenic i 169
Figure 4.152 ds_dsif_connect Structure Chartoocei e 170
Figure 4.153 gpsth_send_heartbeat Structure Chart..............cocoeiiiiiieicieeeeee s 171
Figure 4.154 Lane Closure Control GUIL..........c.oi i 173
Figure 4.155 Lane Closure GUI Data FlIOW Diagramccccevoeeieenecnieeeieeseesee e 174
Figure 4.156 ds_Ic_init Structure Chart...........ooooeiiie e 175
Figure 4.157 send_Ic_to_ds Structure Chart...........ccoooceieiieeiiie e 176
Figure 4.158. 911 IF Data FlOW DIagram..........c.coceereeriiinieeiee et 179
Figure 4.159. Convert Coordinates Data FIow Diagramc.cceceeieeiiieieeiic e 179
Figure 4.160. 911 Main Structure Chart............c.oooieiiiiiieeeee e 181
Figure 4.161 open_status 10g Structure Chart.............cocvveieeieiiieeeesee e 183
Figure 4.162 process 911 data Structure Chart............ccoooeeieiiiieieesie e 184
Figure 4.163 Realtime Broadcast Data FlOw Diagramc.ccoooerieeiicneeeieesecsee e 185
Figure 4.164 Realtime Broadcast Main Structure Chart..............ccoevveiiiiiinieeiee e 186
Figure 4.165 initialize_dsif_connection Structure Chart............ccoocoveiiriiiieniee e 188
Figure 4.166 dsif_send heartbeat Structure Chartcccoeviiiiiii e 189
Figure 4.167 send_broadcast Structure Chartc.ooeeiiiiieciieeeesec e 190

Data Server Xii System Design Document

Figure 4.168. Realtime Recelve Data FIOW Diagram............cccoveiiieieeiecneeeieesee e 191

Figure 4.169. Realtime Receive Structure Chartcoooiiieiiienieesecceeeeee e 192
Figure 4.170. udp_open SIrUCtUre Chart............ccooiieiiiiieee e 194
Figure 4.171. send_configuration Structure Chart.............coceeiiiiieeieesic e 195
Figure 4.172. send_data refresh Structure Chart............cooooeeiiieiin e 196
Figure 4.173 WWW Interface Data FIowW Diagram...........ccceioiieiereiiee e 198
Figure 4.174 www_main SErUCLUrE CaItoooiiiiiiieiieeee e 199
Figure 4.175 Update_Data CB Structure Chartcoooeeeeiieeiieeee e 201
Figure 4.176 gifDispCreate Structure Chartccoeeiiiiiieiie e 203
Figure 4.177 Update_Data Structure Chartcoooiiiiie e 204
Figure 4.178 send_www_heartbeat Structure Chart.............ccooiiiiieiie e 205
Figure 4.179 ds_init StruCtUre Car...........ooeiiiiiieiec e 207
Figure 4.180 ds_clOSe SIrUCIUIE CRATcoiiiiiiieiie et 208
Figure 4.181 ds _send heartbeat Structure Chartcccoeiiiiiii e 209
Figure 4.182 ds write lane _data Structure Chartccooeeiiiii e 210
Figure 4.183 ds write inc_data Structure Chart...........coooeeeeoiieiie e 211
Figure 4.184 ds write rr_sens data Structure Chartccccoeiiieiiineiii e 212
Figure 4.185 ds write rr_cross_data Structure Chart............cccoooiieiiineiiieiee e 214
Figure 4.186 ds_write_equip_status StruCture Chartcocovevirieenic i 215
Figure 4.187 ds read lane data Structure Chart.............cccoeiiiiiiiii e 216
Figure 4.188 ds read inc_data Structure Chart............ccoooeeeiiiieiee e 218
Figure 4.189 ds read rr_sens data Structure Chart............cocoeeiiieiin i 219
Figure 4.190 ds read rr_cross data Structure Chartcccoeviieiin e 220
Figure 4.191 ds_read_equip_status Structure Chart.............coooeeviirieenec e 222
Figure 4.192 ds write file Structure Chartcccoe i 223
Figure 4.193 ds_delete file Structure Chartcooociieiie e 224
Figure 4.194 ds read file Structur@ Chartoccee i e 225
Figure 4.195 ds get file time Structure Chartccoovieeiiie e 226
Figure 4.196 ds_get_file type time Structure Chart...........cccoooiieiiii e 228

Data Server Xiil System Design Document

Table3.1

Table3.2

Table 3.3

Table 3.4

Table3.5

Table 3.6

Table 3.7

Table 3.8

Table3.9

Table 3.10
Table3.11
Table3.12
Table3.13
Table3.14
Table 3.15
Table 3.16
Table 3.17
Table 3.18
Table3.19
Table 3.20
Table3.21
Table 3.22
Table 3.23
Table 3.24
Table 3.25
Table 3.26
Table 3.27
Table 3.28
Table 3.29
Table 3.30
Table3.31

List of Tables

Data Server System General REQUITEMENTScoviieiieiiieieesie e 7
Data Server System Interface ReqQUIrEMENES.........oooiii i 8
Data Server System Functional REQUIFEMENES..........cooviriieiieiienieesieesee e 9
Data Server System Physical REQUITEMENESccociiiiieieiiie e 9
Data Server Subsystem Functional REqUITEMENTS..........cccevverieeiienie e 10
Data Server Interface Library Subsystem Interface Requirements...........c.ccocveveeeneen. 11
Data Server Interface Library Subsystem Functional Requirements...........cccoceecveenee. 11
Data Generator Subsystem Interface ReqUIrEMENES..........ccoovevieeiieiec e 12
Data Generator Subsystem Functional REQUIrEMENS.............cooveeieereeriieeieenee e 12
Data Generator Interface Subsystem Interface Requirements...........ccccoocoeevieniieene 13
Data Generator Interface Subsystem Functional Requirements...........cccocccveieeennen. 13
Status Graphical User Interface Subsystem Interface Requirements...........c.cccecveennee. 14
Status Graphical User Interface Subsystem Functional Requirements....................... 14
Data Consumer Interface Subsystem Interface Requirements..........cocceeveeeerieeeneen. 15
Data Consumer Interface Subsystem Functional Requirements...........ccccccceeeieeenneen. 15
Master Computer Subsystem Physical Requirements..........coocccevvieeeien e, 16
Data Server Component Functional REQUIFEMENTS...........oooverieerienienieeieesee e 17
Data Server Interface Library Component Interface Requirements...........cccccceeeeueeeee 18
Data Server Interface Library Component Functional Requirements............ccccceeu.e.. 18
911 Interface Component Interface ReqUIrEMENES.........cccoeviieeiiee e 19
911 Interface Component Functional Requirements..........ccccovvev e iicee e 20
Lane Closure Graphical User Interface Component Interface Requirements.............. 20
Lane Closure Graphical User Interface Functional Requirements.............cccoeeveeeneen. 20
Road Closed Interface Component Interface Requirements...........cccoevveevceeeieeeeeen. 21
Road Closed Interface Component Functional Requirements..........c.cccceeveveieeeneen. 21
Global Positioning System / Theoretical Data Component Functional Requirements.21
World Wide Web Interface Component Interface Requirements.............cccovceeeneenne 22
World Wide Web Interface Component Functional Requirements............ccccocceeeneeen. 22
Status Graphical User Interface Component Interface Requirements..............cccee..e... 23
Status Graphical User Interface Component Functional Requirements...................... 23
. Redltime Collect Component Interface Requirements............cccovveeeiei e e e 24

Data Server Xiv System Design Document

Table 3.32. Realtime Collect Component Functional ReqUIrEMENS............cccvereereeeneeneereeenes 24

Table 3.33 Realtime Broadcast Component Interface ReqUIrements..........cccvevverveeneeneescneenes 26
Table 3.34 Redtime Broadcast Component Functional Requirements............ccceveeeeveeeenieeeneen. 26
Table 4.1. Data Server ProCeSS PrOCESSES.........cciiieiieieeeiieesieesee s e sseesee s e e ssneesneesneeneas 39
Table 4.2. Client REQUESE PrOCESSES.ueeiiiieiieeeiee et eeee st e e siee e st e e steeesseeesneeesnteeesneeeeneens 40
Table 4.3. Lane Data PrOCESSES........ccviiiieiieiieeit ettt ettt ne e nnneenees 41
Table 4.4. INCIAENt Data PrOCESSES.........cueiiuieiieiii ettt 42
Table 4.5 EQUIPMENT Data PrOCESSES.coiiuiieiieeeiieeeeiiee et e see e siee e st e e seeeesseeesneeesneeeesneeesneens 43
Table 4.6. Client Data PrOCESSEScoivieiieieeeie ettt 44
Table 4.7. File Data PrOCESSES.........coiiiiiieiieiee ettt 44
Table 4.8. Railroad Data PrOCESSES..........ociiiiiiiiieiiee et 46
Table 4.9. Data SErver FUNCHIONS.........coiiieiieiieeie ettt nees 49
Table 4.10 dataserver_exit_handler FUNCLIONS...........c.cceeiiiieee it 51
Table 4.11 dataserver Kill_children FUNCHIONS.........cuuiiiiiiiiee e 52
Table 4.12 dataserver_init_process StatuS FUNCLIONc.eieiieriiiie e 53
Table 4.13 ds_signal_Setup FUNCLION.cciiiiie et 53
Table 4.14 dataserver_initialize FUNCHIONoveriieee e e 54
Table4.15ds _cfg load cfg data FUNCLIONS.........ccuiiiiiiiii e 54
Table 4.16 dataserver_init_shared memory FUNCLIONS...........occciiiiiriiieeiee e 55
Table 4.17 dataserver_create Segment FUNCLIONS.........c.ciiiiiieiiee e 56
Table 4.18 dataserver_init_status segment FUNCLIONcoooiiiiii e 57
Table 4.19 dataserver_init_timeout_segment FUNCLION............cceiiiiiriiiee e 58
Table 4.20 dataserver_send_heartbeat FUNCLIONS............cooiiiiiii e 58
Table 4.21 dataserver _check timeout_ values FUNCLIONSccueeeeviiieec e 59
Table 4.22 dataserver_clear_incident_data FUNCLION............coeiiiiieee i 60
Table 4.23 ds _delete file FUNCLIONoo i e 61
Table 4.24 dataserver_init_socket FUNCLIONSc.eoiiiiiiii e 62
Table 4.25 dataserver_update_data time FUNCHIONcoociiiiiieee e 62
Table 4.26 dataserver_clear_equipment_data FUNCHIONcccoiiiiriiieeee e 63
Table 4.27 dataserver_clear [ink_data FUNCLIONS...........ccccueeeiiiiiie e ee e e 64
Table 4.28 dataserver_clear rrs data FUNCHION............oooiiiiie e 64
Table 4.29 dataserver _clear rrc_data FUNCLIONcoeeiiiiiie e 65
Table 4.30 Child FUNCLIONS..........ciiiiiiieie e 66
Table 4.31 dataserver_process _client_requests FUNCLIONS..........coooieriiieeiiee e 69

Data Server XV System Design Document

Table 4.32 dataserver_read_request FUNCLIONS.oooiiiriiieee e 71

Table 4.33 dataserver_ write _Status FUNCLIONSoiiiiieiii e 72
Table 4.34 dataserver_read data FUNCLIONS...........coociiie i e e e e 72
Table 4.35 dataserver_process_iNit FUNCHIONS..........ooviiieiieieeiieeesee e 73
Table 4.36 dataserver_process ClOSe FUNCLIONS.........cociiriiiieiee e 74
Table 4.37 dataserver_process b FUNCHIONS..........cooiiiiiiiieiec e 75
Table 4.38 dataserver_process link_wWrite FUNCHIONSc.ciiiiiiiiie e 75
Table 4.39 dataserver_read_link_data FUNCLIONScooiiiiiiei e 76
Table 4.40 dataserver_update link_time FUNCLIONS...........ociiiir e 77
Table 4.41 dataserver_update_data time FUNCHIONcoooiiiiiieee e 78
Table 4.42 dataserver_process link_read FUNCLIONScccooiiiiiii e 79
Table 4.43 dataserver Write SIZE FUNCLIONScooiiiiiee et 80
Table 4.44 dataserver_read link_segment FUNCLIONS..........c.cooiiriiin e 80
Table 4.45 dataserver write data FUNCLIONS...........cccieee i 81
Table 4.46 dataserver_process_incident_ write FUNCLIONS...........cooiiriiiieiiie e 82
Table 4.47 ds _fopen_file FUNCHIONS..........oooiiiee e 83
Table 4.48 dataserver_write_data file FUNCHIONS..........ccoociiii e 83
Table 4.49 dataserver_update_incident_time FUNCLIONS............ccooviiiriiiee e 84
Table 4.50 dataserver_process _incident_read FUNCHIONScooviiiriiiieiie e 85
Table 4.51 dataserver_read data file FUNCHIONS..........coooiiiii i 86
Table 4.52 dataserver_process rrs Write FUNCLIONS...........cciiiiiiiiiie e 87
Table 4.53 dataserver_update 1rs time FUNCLIONScoo i 87
Table 4.54 dataserver_process I1S read FUNCHIONS.........ooiiiiiiir e e 88
Table 4.55 dataserver_process rrc_Write FUNCHIONS..........oceiiiiiriiee e 89
Table 4.56 dataserver_update rrc_time FUNCHIONS.........cooiiieiiee e 90
Table 4.57 dataserver_process Irc_read FUNCLIONS..........cociiiiiiiiiee e 91
Table 4.58 dataserver_process file write FUNCLIONS..........cccooiiiiiii e 91
Table 4.59 dataserver_process file delete FUNCLIONS...........cooiiiiiiiiiiieee e 92
Table 4.60 dataserver_process file read FUNCLIONS...........cciiiiiiiee e 93
Table 4.61 dataserver_process file time FUNCHIONS...........cciiiiiiiee e 94
Table 4.62 dataserver_write file time FUNCLIONS...........ccociee i 95
Table 4.63 dataserver_process file list FUNCLIONS.........cooviiiiii e 96
Table 4.64 dataserver_get_directory list FUNCHONScoocuiiiiiiiiiee e 96
Table 4.65 dataserver_directory_existS FUNCLIONS..........cooiiiiiiiei e 97

Data Server XVi System Design Document

Table 4.66 ds_get_file timestamp FUNCHION...........oiiiiieiie e 98

Table 4.67 dataserver_write file list FUNCHONS..........ccvi i 99
Table 4.68 dataserver_process status read FUNCHIONScoooeiiiiiriiieenee e 99
Table 4.69 dataserver_process_equipment_Write FUNCHIONScceeiiireiieeerie e 100
Table 4.70 dataserver_update_equip _time FUNCLIONS.........c.ccooiiiiiee e 101
Table 4.71 dataserver_process_equipment_read FUNCLIONS............ccoevciieiin i 102
Table 4.72 mdisg teleuse mMain FUNCLIONS.cooiiiiiie e 111
Table 4.73 mdisg_Main FUNCLIONS.ooiiiiiiiei e e e e 112
Table 4.74 INITIALLY FUNCHIONS ...cocuiiiiiiieiee ettt see et e et e e smeeeeneeeenes 113
Table 4.75 GET_UPDATE_RATE FUNCHONS.....cc.ciiiiie et 114
Table 4.76 initialize_application FUNCHIONcooiiiiiie e 115
Table 4.77 periodic_update FUNCHIONS.........coiiiiiiee e 115
Table 4.78 PERIODIC_UPDATE FUNCHONS.......ccutiiiie e 116
Table 4.79 UPDATE_STATUS FUNCLIONS.........oiiiiiiiiie e 117
Table 4.80 display_detailed_status FUNCHIONS..........ooiiiiiiiieiee e 119
Table 4.81 Realtime Collect Main FUNCHIONS...........cooiiiiiiiieee e 122
Table 4.82 initialize dSif_CONNECHION.c.coiiiieee e 123
Table 4.83 dsif_send_heartbeat FUNCLIONSccoooiiiiiiiiie e 124
Table 4.84 log_error_heartbeat FUNCHIONScooiiiiiiiie e 125
Table 4.85 fail_atms data FUNCHIONS.........c.coiiiiiiee e 126
Table 4.86 update linkid_data FUNCLIONSooiiiiriiie e 127
Table 4.87 send_to_broadcast FUNCLIONS...........oooiiiriie e 128
Table 4.88 receive_broadcast_data FUNCHIONooviiiriiii e 129
Table 4.89 update_atms linkid_data FUNCLIONSccciiiiiiiie e 129
Table 4.90 update incident_data FUNCLIONS.........cccoiiiiiiiii e 130
Table 4.91. GPSTH MaIN PrOCESSES.......ceiiiieiieeeeieeeiieeseeeseeessaeeesteeesneeeasseeesseeesneeeenneeeennes 133
Table 4.92. Read GPS TH Data PrOCESSES........cciviiiieiiieiieeie et 134
Table 4.93. GPS TH SUDSYStEM FUNCLIONS..........civiiiieiieieeeie e 137
Table 4.94 ds_signal_Setup FUNCLION.cueiiiii e e 138
Table 4.95 10ad_cfg data FUNCLIONS.........cociiiiee e 139
Table 4.96 load_NUM_Params FUNCLIONSueiiiiieiiee e 140
Table 4.97 ds_fopen_file FUNCLIONS..........oooiiiiee e 141
Table 4.98 10ad_params FUNCHIONS.c.uiiiieiie e 141
Table 4.99 init_status table FUNCHION..........cooiiiie e e 142

Data Server XVii System Design Document

Table 4.100 init_shared_memory FUNCLIONS..........cccoiiiiiriie e 142

Table 4.101 gpsth_send_heartbeat FUNCLIONS............oooiiiiiiieee e 143
Table 4.102 init_link_data FUNCLIONS..........cooiiiiiee e 144
Table 4.103 init_data file FUNCLIONScooiiiiie e 145
Table 4.104 init_key table FUNCLIONS.........cooi e 146
Table 4.105 build_key table FUNCIONS..........oociiiee e 147
Table 4.106 read_next_Key FUNCLIONScooiiiiee e e 148
Table 4.107 append_to_key table FUNCHIONScccoiiiiiiie e 149
Table 4.108 gpsth_connect_to_dsif FUNCLIONScoooiiiiiiiie e 150
Table 4.109 ds_dsif _connECt FUNCLIONS...........ccuiieiiiiee et 150
Table 4.110 gpsth_time FUNCLIONcooeiie e e 151
Table4.111 cal_to_gpsth_date FUNCLIONS...........ooiiiiiiiee e 152
Table 4.112 init_cal_fil@ FUNCLIONSccviiee et 152
Table4.113 read_cal_fil@ FUNCLIONS.ccooiiiiii e e 154
Table 4.114 init_params_StruCt FUNCLIONooiiiiiiiie e 154
Table 4.115 extract_ date FUNCLIONS..........c..eiiiiiieee e e s s e e e e s sree e s e e e e e nre e e s e nnes 155
Table 4.116 check_daymo FUNCLIONcociiiiei e 156
Table 4.117 match_daymo FUNCLIONSciiiiieee e 157
Table 4.118 set_ paramS FUNCHION.oiiiiieie e 157
Table 4.119 free_params_StrUCE FUNCLION.oiiiiiiiiie e 158
Table 4.120 process link_data FUNCLIONS...........cooiiiriiie e 158
Table 4.121 get_params FUNCLIONS.ooiiiieiii et 159
Table 4.122 read _[ink_record FUNCLIONS...........coiiiiiiiiee e 160
Table 4.123 compare_Key _entrieS FUNCHION..........c.oiiieiieiiiceesee e 161
Table 4.124 compare_KeYS FUNCHIONcceiiiiieee et e e e 161
Table 4.125 get_key indeX FUNCLIONS.........c.oiiiiiiee et 162
Table 4.126 find_active record FUNCLIONS..........cooiiiriiie e 163
Table 4.127 read_record FUNCHION...........oi i 164
Table 4.128 compare_Neaders FUNCLION.ccviiiiriieiie e 164
Table 4.129 copy_data record FUNCLION.c.eiiiieeiee e 165
Table 4.130 send_link_data with_retry FUNCHIONS..........ooooiiiiie e 166
Table 4.131 write _link_data FUNCHIONS..........ooiiieee e 166
Table 4.132 ds_dsif_send_link_write_request FUNCLIONS..........cccooiieriiieiie e 167
Table 4.133 ds dsif_read StaluUS FUNCHIONScoooeiiiiiieiiie e 168

Data Server XViii System Design Document

Table 4.134 gpsth_connect_to_dsif FUNCLIONScoooiiiiiieie e 169

Table 4.135 ds _dsif_conneCt FUNCLIONS...........ccuiiiiiiiiee e 170
Table 4.136 gpsth_send_heartbeat FUNCLIONS............cooiiiiiiii e 171
Table 4.137 Lane CloSUre GUI PrOCESSES.........c.cuuiiuieiieriieieesiee e 174
Table 4.138 ds_IC_iNit FUNCLIONS........cciiiiiie et 175
Table 4.139 send _IC 10 dS FUNCLIONS.oiiiiiieee e e 176
Table 4.140 transferfiles configuration items for the Road Closed Interface.cccoeeeeen.e 177
Table 4.141. 911 IF SUDSYSIEM. ... it e e 179
Table 4.142. Convert CoordinateS PrOCESSEScccuiiireeieieieesee st 180
Table 4.143. 911 MaiN FUNCHIONS.........oiiiiiieeiee et 182
Table 4.144 open_status 10g FUNCLIONooiiiiiiee e 183
Table 4.145 process 911 dataFUNCLIONS.oiiiieiiiie e 184
Table 4.146 Realtime Broadcast Main FUNCLIONS............cooviiiieiieiie e 186
Table 4.147 initidize dsif _connection FUNCLIONS............cccuiee e 188
Table 4.148 dsif_send _heartbheat FUNCLIONScceoiiiiiiiie e 189
Table 4.149 send broadcast FUNCLIONS..........ociiii i e 190
Table 4.150. Realtime RECEIVE FUNCLIONS.......c.ciiiiiiieiie e 192
Table 4.151. udp_0PeNn FUNCLIONS.........ouii et e e e snee e e neeeenees 194
Table 4.152. send_configuration FUNCLIONS.........c.ooiiiiiii e 195
Table 4.153. send_data refresh FUNCLIONooeiiiiii e 196
Table 4.154 WWW_MaiN FUNCLIONS.........cuuiiiiiiie e et e e st e e et e e s e sanre e e e e nre e e s e nnes 199
Table 4.155 Update_ Data CB FUNCLIONSueiiiiieeiee e 202
Table 4.156 gifDiSPCreate FUNCHIONScocviiiieiiieieesee e 203
Table 4.157 Update Data FUNCLIONSccuiiiiieieiee e 204
Table 4.158 send_www_heartheat FUNCHIONS...........ooviiiiiiieee e 205
Table 4.159 dS NIt FUNCHIONS.......cccuiiie et e eree e e s sre e e e s e e e e s enra e e s e snnae e e s snreee e ennes 207
Table 4.160 dS_ClOSE FUNCLIONS........ociiiiiiiie et e e e et e s e snre e e s e nre e e e e nnes 208
Table 4.161 ds send heartbeat FUNCLIONScocoiciiiee i e 209
Table 4.162 ds write lane data FUNCLIONS...........cccciieiiiiieee e 210
Table 4.163 ds write inC_data FUNCLIONS..........ccccocieie i 211
Table 4.164 ds write rr_sens data FUNCLIONS...........coooiiiieee i e 213
Table 4.165 ds write rr_cross data FUNCLIONS...........ccccocuieee e 214
Table 4.166 ds_write_equip_StatuS FUNCLIONS.cooiiiriie e 215
Table 4.167 ds read lane data FUNCLIONS..........cccoiciiiei i e e 217

Data Server Xix System Design Document

Table 4.168 ds read inC_data FUNCLIONS............cieiiiiiii e 218

Table 4.169 ds read rr_sens data FUNCLIONS.............ceeeiiiiieeiiieee e e 219
Table4.170 ds read rr_cross data FUNCLIONSceeiiiiiiee i 220
Table4.171 ds read_equip_Status FUNCLIONS...........ooiiiiiii e 222
Table 4.172 ds Write file@ FUNCLIONScoviiiiiec e 223
Table 4.173 ds delete file FUNCHIONS........coooiiiiie e 224
Table 4.174 ds read file FUNCHIONS..........uiii it 225
Table4.175 ds _get file time FUNCHIONS.........cceiiiiee e 226
Table4.176 ds_get_file_type time FUNCLIONS...........cooiiiiiiieee e 228
Table 5.1. Data Server System Traceability MatriXccoceviieiieiiiiiieseeee e 230

Data Server XX System Design Document

Data Server
Softwar e Design Document

1. Introduction

The Data Server is the central archive within the TransGuide environment where data, necessary to
support both the TransGuide Advanced Traffic Management System (ATMS) operations and the
Model Deployment Initiative (MDI) projects, is stored. The MDI Data Server is an extension of a
“first-generation” Data Server, termed “redtime data services’, previoudy developed for
TransGuide.

The Data Server is the central access point for data in the MDI project, and it treats all traffic
management data in a homogeneous fashion so that any application can seamlessly access the data.
The Data Server is designed based on a concept of Data Generators which supply data to the
system, and Data Consumers which utilize this data The data is not stored in a traditional
“ database”, instead it resides in shared memory on the Data Server Master Computer, so that it can
be accessed as rapidly as possible. Since traffic congestion data is dynamic, and traffic incidents
that occurred several hours ago are typically not pertinent to current traffic information, the Data
Server maintains only the most recent data.

The data in the Data Server is maintained in a geographical perspective, so that application
programs can “window” into the data that the application requires. This is implemented by a
concept developed by SwRI, referred to as “ intelligent map objects’. The data structures of these
objects resemble those developed for the existing TransGuide graphical map. For road segments
that have changing speed and occupancy values, an intelligent map object exists for each
“instrumented” section of highway. These intelligent map objects have a variety of attributes,
including geographical data, traffic data source, and types of ATM S equipment associated with the
object. Each instrumented section of highway has a unique identifier, called a TransGuide LinkID.
Background data, such as minor arteries or public buildings, will be stored in the Data Server as
static map objects. The combination of intelligent map objects and static map objects provide a
realistic looking map.

The Data Server is arobust software environment which can be modified to include new alternative
data sources as I TS technologies are developed and deployed into the TransGuide environment.

This document is the Software Design Document for the Data Server system. The externa
interfaces to the Data Server are described in Section 2. Section 3 contains the Data Server system
requirements. Section 4 details the Data Server system design. The requirements traceability
matrix for the Data Server isin Section 5.

1.1 Purpose of System

The Data Server system will collect, store, and distribute data for the TransGuide ATMS and the
other MDI systems.

1.2 Operational Concept

The Data Server interfaces with data generators and data consumers. The Data Server awaits data
read and data write requests and processes those requests when they are made. The Data Server
stores the most current version of data, updating the data when new data is received and
distributing the data when data requests are received.

Data Server 1 System Design Document

Data generator systems initiate a connection with the Data Server and send data to the Data Server.
The Data Server receives the data from the data generator and stores the data. Data consumers
connect with the Data Server and request data from the Data Server. The Data Server sends the
data to the data consumer and the data consumers receive the data.

1.3 Goalsand Objectives
The Data Server design gave consideration to the following design goals and objectives:

The MDI Data Server should provide a central access point for the storage and
distribution of data for both the TransGuide ATMS and the MDI subsystems.

The Data Server should treat traffic management data in a homogeneous fashion to allow
applications to seamlessly access data.

The Data Server should store the data so that it can be geographicaly filtered when
accessed.

The Data Server should provide rapid response to data requests.

The Data Server should easily incorporate new data sources in the future.

The Data Server design should be object-oriented to improve system maintainability and
flexibility.

The Data Server should be implemented with data structures that closely resemble the
TransGuide graphical map data structures.

The Data Server should be integrated into the existing TransGuide environment with
minimal impact on the existing TransGuide ATMS.

The Data Server should use intelligent map objects (smilar to those stored in the
TransGuide ATM S map) to store data.

1.4 Referenced Documents

Southwest Research Institute, Proposal for the Model Deployment Initiative System Integration,
SwRI Proposal No. 10-20342, November 1996.

Texas Department of Transportation, Request for Offer (RFO) for the Model Deployment
Initiative System Integration, 60115-7-70030, Specification No. TxDOT 795-SAT-01, October
1996.

Data Server 2 System Design Document

2. External Interfaces

There are several externa interfaces to the Data Server system. Figure 2.1 shows the Data Server

and the externa systems with which it interfaces. The following sections describe the systems in
more detail.

Data Generators Data Consumers
AVI ATMS User
911 \ / Emergency
\ / response
Road Data In-Vehicle
Closed Server NAV
VIA 73 w Kiosk
Weather www
AWARD
Figure 2.1 Data Server External Interfaces
21 ATMS

The TransGuide ATMS system is an existing traffic management system that monitors traffic in
portions of the San Antonio area. The TransGuide ATMS provides realtime traffic data to the
Data Server. The ATMS aso receives redtime traffic information from other sources through the
Data Server for display on the TransGuide Realtime Map.

Data Server 3 System Design Document

22 AVI

The AVI system was developed as part of the MDI program. The system collects realtime travel
time and speed information for portions of the San Antonio area. This data is provided to the Data
Server.

23 911

The San Antonio Police 911 Dispatch System provides regltime incident information to the Data
Server. The Data Server distributes this data to other systems in the TransGuide/MDI
environment.

2.4 Road Closed

The Texas State Roadway Closed Database provides road closure information for the state of
Texas. This datais stored in the Data Server.

25 VIA

The Data Server interfaces with the VIA Metropolitan Transit system to obtain information about
the VIA bus system. This datais provided to other systems.

2.6 Weather

A Wesather system is accessed to obtain current and expected weather conditions for the San
Antonio area. The Data Server collects this data and makes it available to other systems.

2.7 AWARD

The Advance Warning to Avoid Railroad Delays (AWARD) system was developed as part of the
MDI program. The system helps motorists avoid delays due to railroad operations that cross
freeway access frontage roads.

2.8 WWW

TransGuide currently operates a World Wide Web (WWW) server that displays some traffic data
from the TransGuide ATMS. The Data Server provides a Reatime map display to the Web-page
that alows a user to see the current speeds of roadways, as well as any active traffic incidents or
lane closures.

2.9 In-Vehicle NAV

The In-Vehicle Navigation system was developed as part of the MDI program. The system uses
realtime data supplied by the Data Server to provide drivers with route guidance information.

2.10 Kiosk

The Kiosk system was developed as part of the MDI program. The kiosk field units use data
supplied by the Data Server to provide information which includes realtime traffic conditions, route
guidance, weather information and transportation information.

2.11 Emergency Response

The Data Server interfaces with the San Antonio Emergency Response organizations to provide
incident and traffic data. This data improves the responsiveness of emergency agencies.

Data Server 4 System Design Document

212 User

The Data Server has several interfaces with the TransGuide Operations user. The user can
determine the status of the Data Server and other MDI systems.

Data Server 5 System Design Document

3. System Requirements

The following sections contain the system requirements for the Data Server system. The
requirements are organized by level and category. The levels that are defined in this document are
general, system, subsystem, and component. Genera requirements are non-technical requirements
that apply to the program in general. System requirements apply to the system level of the Data
Server system. Subsystem requirements apply to the subsystem design elements that are
documented in the Subsystem Level Design section of this document. Component requirements
apply to the component design elements that are documented in the Component Level Design
section of this document.

The categories of requirements that are defined are general, interface, functional, and physical. If
there are no requirements of a particular category at a particular level, there is no reference to that
category at that level.

There are three types of requirements presented in these sections: MDI RFO requirements, SwRI
MDI proposa requirements, and derived requirements. Where a conflict exists, the SwRI MDI
Proposal requirements supersede the MDI RFO requirements. In these cases, only the SwRI MDI
Proposal requirements are documented. Derived requirements are generated by analysis of the
existing requirements.

Severa notations are used in the following tables. The requirement number is a three-part number
that is used to uniquely identify each requirement. The number consists of the following fields:

<System Mnemonic>-<Requirement Category Mnemonic>-<Requirement Number>
System Mnemonic

The system mnemonic uniquely identifies the Data Server System to distinguish its
requirements from the requirements of the other MDI systems. The system mnemonic for
the Data Server System isDS

Requirement Category Mnemonic

A mnemonic has been created for each of the requirement categories. They are GN -
general, IF - interface, FN - functional, and PY - physical.

Requirement Number

The requirements are numbered sequentially within a given category. The requirements at
the system level each have a single requirement number. As requirements are derived at the
subsystem and component levels, additional numbers are added to show the relationship
between requirements. For example, requirement DSIF-1 at the system level may have
two children at the subsystem level, DSIF-1.1 and DSIF-1.2. With this numbering
schemeit is easy to determine arequirement’s parent and the level of the requirement.

The terms maintain, store, acquire, and provide are used throughout the requirements when
referring to data. Maintain is used at high level requirements to mean the data will be handled in
some way. Requirements that state the data shall be maintained are further refined at subsequent
levels using the other terms. Store is used to indicate that the data is kept. Acquire is used to
indicate that the data is obtained from another source, but not necessarily kept. Provide is used to
indicate that the data is sent to another destination.

The requirements below contain rationale for each requirement. The rationale is used to further
explain the origin and meaning of the requirement and to improve clarity.

Data Server 6 System Design Document

Each of these requirements are further documented in Section 5 in the traceability matrix. For each
requirement, the matrix contains traceability information to show the relationship between the
requirement and other requirements, design e ements, and the Acceptance Test Plan (ATP).

3.1 General Requirements

The generad requirements for the Data Server system are listed in Table 3.1. The genera
requirements include project ddliverables and milestones.

Table 3.1 Data Server System General Requirements

REQUIREMENT REQUIREMENT RATIONALE
NUMBER

DS-GN-1 An 80% System Design Document Required by TXDOT RFO and SwRI Proposal .
shall be delivered.

DS-GN-2 A 100% design document shall be Required by TXDOT RFO and SwRI Proposal .
delivered.

DS-GN-3 An Acceptance Test Plan shall be Required by TXDOT RFO and SwRI Proposal .
delivered.

DS-GN-4 A Version Description Document shall | Required by SwRI Proposal.
be delivered.

DS-GN-5 Monthly status reports shall be Required by TXDOT RFO and SwRI Proposal .
delivered.

DS-GN-6 A training program on the Data Server | Required by TXDOT RFO and SwRI Proposal.
shall be presented after final software
integration has completed.

DS-GN-7 A videotape of the training program Required by TXDOT RFO and SwRI Proposal .
shall be delivered.

DS-GN-8 A fina report shall be delivered. Required by SwRI Proposal.

Data Server 7 System Design Document

3.2 System Level Requirements

The system level requirements for the Data Server system are listed in the following sections.

3.2.1 Interface Requirements

The interface requirements for the Data Server system are listed in Table 3.2.

Table 3.2 Data Server System Interface Requirements

REQUIREMENT REQUIREMENT RATIONALE
NUMBER

DSIF-1 The system shall interface withthe TG | The TG ATMS will be the source of ATM S equipment

ATMS. data, incident data, and traffic data. It will also receive
incident data from the DS.

DSIF-2 The system shall interface with the The MDI AVI system will be a source of travel data for
Automatic Vehicle Identification (AVI) | portions of the TG road segments.
system.

DSIF-3 The system shall interface with the TG | The user will provide status requests and tuning
Operations user. parameters to the DS. The user will receive status

information from the DS.

DSIF-4 The system shall interface with the The road closed database will provide road closure
Texas State Roadway Closed database. | information.

DS-IF-6 The system shall interface with the The IVN/Kiosk system will receive traffic, weather,
IVN/Kiosk system. VIA, and airport data from the DS.

DSIF-7 The system shall interface with the San | The 911 system will provide incident data to the DS.
Antonio Police 911 Dispatch system.

DSIF-8 The system shall interface withthe TG | The WWW system will receive travel and other data
WWW system. from the DS.

DSIF-10 The system shall interface with the The Emergency Response system will receive incident
Emergency Response system. data from the DS.

DSIF-12 The system shall interface withthe TG | The TG ATMS Map system will receive travel,
ATMS Map system. incident, and ATMSS equipment data from the DS.

DSIF-13 The system shall interface with the The MDI Railroad Delay system will provide train
MDI Railroad Delay system. delay information to the DS.

Data Server 8 System Design Document

3.2.2 Functiona Requirements

The functiona requirements for the Data Server system are listed in Table 3.3.

Table 3.3 Data Server System Functional Requirements

REQUIREMENT REQUIREMENT RATIONALE
NUMBER

DS-FN-1 The system shall maintain road Datawill be stored for a portion of SA road segments

segment data for the TG road segments. | termed TG road segments. These include all segments
for which travel datawill be available.

DS-FN-2 The system shall maintain map datafor | Data outside the TG road segments will be used to
areas outside of the segments of draw the “background” map.
interest.

DS-FN-2.1 The system shall store San Antonio Map datawill be used to generate the “background”
map data for areas outsidethe TG road | map inthe TG ATMS Map system.
segments.

DS-FN-3 The system shall maintain travel data Travel datawill be kept for the TG road segments. This
for the TG road segments. may include realtime, GPS, or theoretical data.

DS-FN-4 The system shall maintain lane closure | Lane closure datawill be acquired and stored for use by
data. other systems.

DS-FN-6 The system shall maintain traffic Traffic incident data will be acquired from several
incident data. sources and will be provided to other systems.

DS-FN-7 The system shall maintain traveler Various traveler information will be maintained
information. including VIA/Airport/Weather.

DS-FN-8 The system shall maintain TG ATMS TG ATMS equipment data will be acquired and
equipment status data. provided to other systems.

DS-FN-9 The system shall maintain MDI System | The DS will provide the overall status of systemsin the
status data. MDI System.

DS-FN-10 The system shall adjust travel datafor | Adjustment factors will be used to adjust certain types
TG road segments based on current of travel data based on current conditions.
conditions.

DS-FN-11 The system shall have the ability to Geographic data access will be more efficient than

access the data based on geographic
attributes.

having to access the entire database.

3.2.3 Data Server System Physical Requirements
The physical requirements of the Data Server system are listed in Table 3.4.

Table 3.4 Data Server System Physical Requirements

REQUIREMENT REQUIREMENT RATIONALE
NUMBER
DSPY-1 The system will reside on a computer The system should operate on its own computer.
separate from the TG operationa
computers.
Data Server 9 System Design Document

3.3 Data Server Subsystem L evel Requirements

The subsystem level requirements for the Data Server subsystems are listed in the following
sections. The subsystems are documented in the Subsystem Level Design section of this document.
The DS subsystems are:

Data Server Subsystem (DSS),
Data Server Interface Library Subsystem (DSILS),
Data Generator Subsystem (DGS),
Data Generator Interface Subsystem (DGIS),

Status Graphical User Interface Subsystem (SGUIS),
Data Consumer Interface Subsystem (DCIS), and
Master Computer Subsystem (MCS).

3.3.1 Data Server Subsystem Requirements

The requirements for the DSS are listed in the following sections.

3.3.1.1 Data Server Subsystem Functional Requirements
The functiona requirements for the DSS are listed in Table 3.5.

Table 3.5 Data Server Subsystem Functional Requirements

REQUIREMENT REQUIREMENT RATIONALE
NUMBER

DS-FN-1.1 The DSS shall store TG Link Identifier | Road segment datawill be stored as TG Links, similar
datafor the TG road segments. tothe TG ATMS.

DS-FN-3.1 The DSS shall store TG ATMS travel The DSS will be arepository for TG ATMS travel data
datafor TG ATMS road segments. for the TG road segments covered by the TG ATMS.

DS-FN-3.2 The DSS shall store MDI AV travel The DSS will be arepository for MDI AVI travel data
datafor MDI AVI TG road segments. for the TG road segments covered by the MDI AVI

system.

DS-FN-3.3 The DSS shall store theoretical travel The DSS will be arepository for theoretical travel data
datafor the theoretical TG road for the TG road segments covered by the theoretical
segments. data generated by TTI.

DS-FN-3.4 The DSS shall store GPS travel datafor | The DSS will be arepository for GPS travel data for
the GPS TG road segments. the TG road segments covered by the GPS data

generated by TTI.

DS-FN-4.1 The DSS shall store State of Texaslane | The DSS will be arepository for State of Texas lane
closure data. closure data.

DS-FN-4.2 The DSS shall store San Antonio lane The DSS will be arepository for San Antonio lane
closure data. closure data.

DS-FN-6.1 The DSS shall store TG ATMStraffic | The DSSwill be arepository for TG ATM S traffic
incident data. incident data.

DS-FN-6.2 The DSS shall store 911 traffic incident | The DSS will be arepository for 911 traffic incident
data. data.

DS-FN-6.3 The DSS shall store Railroad Delay The DSS will be arepository for Railroad Delay
incident data. incident data.

Data Server 10 System Design Document

REQUIREMENT REQUIREMENT RATIONALE
NUMBER

DS-FN-7.1 The DSS shall store VIA data. The DSS will be arepository for VIA data.

DS-FN-7.2 The DSS shall store weather data. The DSS will be arepository for weather data.

DS-FN-8.1 The DSS shall store TG ATMS CMS The DSS will be arepository for TG ATMS CMS data.
data.

DS-FN-8.2 The DSS shall store TG ATMSLCS The DSS will be arepository for TG ATMS LCS data.
data.

DS-FN-10.1 The DSS shall adjust theoretical travel | The DSSwill use adjustment factors provided by TTI to
datafor theoretica TG road segments adjust the theoretical travel data based on time of day.
based on time of day.

DS-FN-10.2 The DSS shall adjust GPS travel data The DSS will use adjustment factors provided by TTI to
for GPS TG road segments based on adjust the GPS travel data based on time of day.
time of day.

DS-FN-11.1 The DSS shall store geographic Storing geographic attributes will alow the DS to

attributes of data.

retrieve data by region.

3.3.2 Data Server Interface Library Subsystem Requirements

The requirements for the DSILS are listed in the following sections.

3.3.2.1 Data Server Interface Library Subsystem Interface Requirements
The interface requirements for the DSILS are listed in Table 3.6.

Table 3.6 Data Server Interface Library Subsystem | nterface Requirements

REQUIREMENT REQUIREMENT RATIONALE
NUMBER
DSIF-2.1 The DSILS shall interface with the The MDI AVI system will provide travel data for
MDI AVI system. portions of the TG road segments to the DSILS.
DSIF-6.1 The DSILS shall interface with the The IVN/Kiosk system will receive traffic, weather,
IVN/Kiosk system. VIA, and airport data from the DSILS.
DSIF-13.1 The DSILS shall interface with the The MDI Railroad Delay system will providetrain

MDI Railroad Delay system.

delay information to the DSILS.

3.3.2.2 Data Server Interface Library Subsystem Functional Requirements
The functional requirements for the DSILS are listed in Table 3.7.

Table 3.7 Data Server Interface Library Subsystem Functional Requirements

REQUIREMENT REQUIREMENT RATIONALE
NUMBER
DS-FN-3.7 The DSILS shall acquire TG ATMS The DSILS will acquire TG ATMS travel datafor the
travel datafor TG road segments. TG road segments covered by the TG ATMS for storage
in the DSS.
Data Server 11 System Design Document

REQUIREMENT REQUIREMENT RATIONALE
NUMBER
DS-FN-3.8 The DSILS shall acquire MDI AVI The DSILS will acquire MDI AVI travel datafor the
travel datafor MDI AVI TG road TG road segments covered by the MDI AV system for
segments. storage in the DSS.
DS-FN-4.5 The DSILS shall provide State of Texas | The DSILS will acquire State of Texas roadway closed
roadway closed data. data from the DSS for distribution to data consumers.
DS-FN-7.4 The DSILS shall acquire VIA data. The DSILS will acquire VIA data for storagein the
DSS.
DS-FN-7.5 The DSILS shall acquire Weather data. | The DSILS will acquire Weather data for storage in the
DSS.
DS-FN-7.6 The DSILS shall provide VIA data. The DSILS will acquire VIA datafrom the DSS for
distribution to data consumers.
DS-FN-7.8 The DSILS shall provide weather data. | The DSILS will acquire weather data from the DSS for
distribution to data consumers.
DS-FN-9.2 The DSILS shall acquire MDI AVI The DSILS will acquire MDI AVI System status data
System status information. for storagein the DSS.
DS-FN-9.3 The DSILS shall acquire MDI Railroad | The DSILS will acquire MDI Railroad Delay System

Delay System status information.

status data for storage in the DSS.

3.3.3 Data Generator Subsystem Requirements

The requirements for the DGS are listed in the following sections.

3.3.3.1 Data Generator Subsystem Interface Requirements

The interface requirements for the DGS are listed in Table 3.8.

Table 3.8 Data Generator Subsystem I nterface Requirements

REQUIREMENT REQUIREMENT RATIONALE
NUMBER
DSIF-3.1 The DGS shall interface with the TG The DGS will obtain data from the user.

Operations user using a graphical user
interface.

3.3.3.2 Data Generator Subsystem Functional Requirements
The functiona requirements for the DGS are listed in Table 3.9.

Table 3.9 Data Generator Subsystem Functional Requirements

REQUIREMENT REQUIREMENT RATIONALE
NUMBER
DS-FN-3.5 The DGS shall store theoretical travel Theoretical travel datawill be produced by TTI and
datafor the theoretical TG road will cover TG road segments that are not covered by
segments at 15-minute time intervals. other travel data sources.
Data Server 12 System Design Document

REQUIREMENT REQUIREMENT RATIONALE
NUMBER

DS-FN-3.6 The DGS shall store GPS travel data GPS travel datawill be produced by TTI and will cover
for the GPS TG road segments at 15- the GPS TG road segments.
minute intervals.

DS-FN-4.3 The DGS shall acquire lane closure The DGS will acquire lane closure data for storage in
data. the DSS.

DS-FN-9.1 The DGS shall monitor DGS process The DGS will report its status.

status information.

3.3.4 Data Generator Interface Subsystem Requirements

The requirements for the DGIS are listed in the following sections.

3.34.1 Interface Requirements
The interface requirements for the DGIS are listed in Table 3.10.

Table 3.10 Data Generator Interface Subsystem Interface Requirements

REQUIREMENT REQUIREMENT RATIONALE
NUMBER

DSIF-1.1 The DGIS shall interface with the TG The TG ATMS will provide ATMSS equipment data,
ATMS using protocol defined by the incident data, and traffic data to the DGIS.
existing TG ATMS data broadcast.

DSIF-4.1 The DGIS shall interface with the The road closed database will provide road closure
Texas State Roadway Closed Database. | information to the DGIS.

DSIF-7.1 The DGIS shall interface with the San | The 911 system will provide incident data to the DGIS.

Antonio Police 911 Dispatch system.

3.3.4.2 Functiona Requirements
The functiona requirements for the DGIS are listed in Table 3.11.

Table3.11 Data Generator Interface Subsystem Functional Requirements

REQUIREMENT REQUIREMENT RATIONALE
NUMBER

DS-FN-4.4 The DGIS shall acquire State of Texas | The DGIS will acquire State of Texas roadway closed
roadway closed data. datafor storagein the DSS.

DS-FN-6.4 The DGIS shall acquire TG ATMS The DGIS will acquire TG ATMS traffic incident data
traffic incident data. for storagein the DSS.

DS-FN-6.5 The DGIS shall acquire 911 traffic The DGIS will acquire 911 traffic incident data for
incident data. storage in the DSS.

DS-FN-6.6 The DGIS shall acquire Railroad Delay | The DGIS will acquire Railroad Delay incident data for
incident data. storage in the DSS.

DS-FN-8.3 The DGIS shall acquire TG ATMS The DGIS will acquire TG ATMS CM S data for
CMS data. storage in the DSS.

Data Server 13 System Design Document

REQUIREMENT REQUIREMENT RATIONALE
NUMBER
DS-FN-8.4 The DGIS shall acquire TG ATMS The DGIS will acquire TG ATMS LCS data for storage

LCS data.

inthe DSS.

3.3.5 Status Graphical User Interface Subsystem Requirements

The requirements for the SGUIS are listed in the following sections.

3.35.1 Interface Requirements
The interface requirements for the SGUIS are listed in Table 3.12.

Table 3.12 Status Graphical User Interface Subsystem Interface Requirements

REQUIREMENT REQUIREMENT RATIONALE
NUMBER
DSIF-3.2 The SGUIS shall interface with the TG | The user will provide status requests and tuning

Operations user using a graphical user
interface.

parameters to the SGUIS. The user will receive status
information from the SGUIS.

3.3.5.2 Functiona Requirements
The functiona requirements for the SGUIS are listed in Table 3.13.

Table 3.13 Status Graphical User Interface Subsystem Functional Requirements

REQUIREMENT REQUIREMENT RATIONALE
NUMBER

DS-FN-9.4 The SGUIS shall display MDI AVI The SGUIS will provide MDI AVI System status data
System status information. to the user.

DS-FN-9.5 The SGUIS shall display MDI IVN The SGUIS will provide MDI IVN System status data
System status information. to the user.

DS-FN-9.6 The SGUIS shall display MDI Kiosk The SGUIS will provide MDI Kiosk System status data
System status information. to the user.

DS-FN-9.7 The SGUIS shall display MDI Railroad | The SGUIS will provide MDI Railroad Delay System
Delay System status information. status data to the user.

DS-FN-9.8 The SGUIS shall display DS DGS The SGUIS will provide internal DS DGS process
process status information. information to the user.

DS-FN-9.9 The SGUIS shall display DS DGIS The SGUIS provide internal DS DGIS process
process information. information to the user.

DS-FN-9.11 The SGUIS shall display DS DCIS The SGUIS provide interna DS DCIS process

process information.

information to the user.

3.3.6 Data Consumer Interface Subsystem Requirements

The requirements for the DCIS are listed in the following sections.

Data Server

14

System Design Document

3.3.6.1 Data Consumer Interface Subsystem Interface Requirements

The interface requirements for the DCIS are listed in Table 3.14.

Table 3.14 Data Consumer Interface Subsystem Interface Requirements

REQUIREMENT REQUIREMENT RATIONALE
NUMBER
DSIF-8.1 The DCIS shall interface with the TG The WWW system will receive traffic and other data
WWW system. from the DCIS.
DSIF-10.1 The DCIS shall interface with the The Emergency Response system will receive incident
Emergency Response system. data from the DCIS.
DSIF-12.1 The DCIS shall interface with the TG The TG ATMS Map system will receive travel,

ATMS Map system.

incident, and ATM S equipment data from the DCIS.

3.3.6.2 Data Consumer Interface Subsystem Functional Requirements
The functiona requirements for the DCIS are listed in Table 3.15.

Table 3.15 Data Consumer Interface Subsystem Functional Requirements

REQUIREMENT REQUIREMENT RATIONALE
NUMBER

DS-FN-3.9 The DCIS shall provide TG ATMS The DCIS will acquire TG ATMS travel data from the
travel datafor TG ATMS road DSS for the TG road segments covered by the TG
segments. ATMS for distribution to data consumers.

DS-FN-3.10 The DCIS shall provide MDI AVI The DCIS will acquire MDI AVI travel data from the
travel datafor MDI AVI TG road DSS for the TG road segments covered by the MDI AVI
segments. system for distribution to data consumers.

DS-FN-3.11 The DCIS shall provide theoretical The DCIS will acquire theoretical travel datafrom the
travel data for the theoretical TG road DSS for the TG road segments covered by the
segments. theoretical data generated by TTI for distribution to

data consumers.

DS-FN-3.12 The DCIS shdll provide GPS travel The DCIS will acquire GPS travel datafrom the DSS
datafor the GPS TG road segments. for the TG road segments covered by the GPS data

generated by TTI for distribution to data consumers.

DS-FN-4.6 The DCIS shdll provide TG lane The DCIS will acquire TG lane closure data from the
closure data. DSS for distribution to data consumers.

DS-FN-6.8 The DCIS shall provide TG ATMS The DCIS will acquire TG ATMS traffic incident data
traffic incident data. from the DSS for distribution to data consumers.

DS-FN-6.9 The DCIS shall provide 911 traffic The DCIS will acquire 911 traffic incident data from
incident data. the DSS for distribution to data consumers.

DS-FN-6.10 The DCIS shall providerailroad delay | The DCIS will acquire Railroad Delay incident data
incident data. from the DSS for distribution to data consumers.

DS-FN-8.5 The DCIS shall provide TG ATMS The DCIS will acquire TG ATMS CMS data from the
CMS data. DSS for distribution to data consumers.

DS-FN-8.6 The DCIS shall provide TG ATMS The DCIS will acquire TG ATMS LCS data from the
LCS data. DSS for distribution to data consumers.

Data Server 15 System Design Document

3.3.7 Master Computer Subsystem Requirements
The requirements for the MCS are listed in the following sections.

3.3.7.1 Master Computer Subsystem Physical Requirements
The physical requirements for the MCS are listed in Table 3.16.

Table3.16 Master Computer Subsystem Physical Requirements

REQUIREMENT REQUIREMENT RATIONALE
NUMBER

DSPY-1.1 The MCS shall be a Sun Microsystems | The expected processing requirements of the MCS can
Ultra SPARCStation or better. be met by a computer of this capability.

DSPY-1.2 The MCS shall have, at a minimum, Required by SwRI Proposal.
the following items:

167MHz SPARC CPU
4.2 GB Hard Disk
128 MB RAM

Floppy Disk drive
CD-ROM drive
Turbo GX+ Graphics
20" Sun color monitor
2 Ethernet interfaces
2 SCSI channels

3.4 Data Server Component Level Requirements

The component level requirements for the Data Server components are listed in the following
sections. The components are documented in the Component Level Design of this document. The
DS components are:

Data Server Component (DSC),

Data Server Interface Library Component (DSILC),
911 Interface Component (9111C),

Lane Closure GUI Component (LCGUIC),

Road Closed Interface Component (RCIC),
GPS/Theoretical Data Component (GPSTHC),
WWW Interface Component (WWWIC),

Status Graphical User Interface Component (SGUIC),
Realtime Collect Component (RTCC), and

Realtime Broadcast Component (RTBC).

The component level requirements for the Data Server components are listed in the following
sections. The components are documented in the Component Level Design of this document.

Data Server 16 System Design Document

3.4.1 Data Server Component Requirements

The Data Server component (DSC) requirements are listed in the following sections.

3.4.1.1 Functiona Requirements

The functiona requirements for the Data Server component are listed in Table 3.17.

Table 3.17 Data Server Component Functional Requirements

REQUIREMENT REQUIREMENT RATIONALE
NUMBER

DSFN-1.1.1 The DSC shall storea TG Link TG Link Identifiers uniquely identify a segment of
Identifier for the TG road segments. interest in the current TG ATMS.

DSFN-1.1.2 The DSC shall store TG Equipment TG equipment is associated with TG road segmentsin
Identifier for TG equipment associated | the current TG ATMS.
with a segment of interest.

DS-FN-3.1.1 The DSC shall store the current travel The TG ATMS currently broadcasts travel data. The
datafor the travel data elements data elements that are broadcast will be stored by the
defined by the existing TG ATMS data | DSC.
broadcast system.

DS-FN-3.2.1 The DSC shall store the current MDI Vehicle travel timeisan element of MDI AV travel
AVI-measured vehicle travel time data.
associated with MDI AVI TG road
segments.

DS-FN-3.2.2 The DSC shall store the current MDI Vehicle speed is an element of MDI AVI travel data.
AVI-measured vehicle speed associated
with MDI AVI TG road segments.

DS-FN-3.3.1 The DSC shall store the current Vehicle speed is an element of theoretical travel data.
theoretical vehicle speed associated
with theoretical TG road segments.

DS-FN-3.4.1 The DSC shall store the current GPS- Vehicle speed is an element of GPS travel data.
measured vehicle speed associated with
GPS TG road segments.

DSFN-4.1.1 The DSC shall store non-construction The DSS will be arepository State of Texas roadway
related lane closure information for closed data.

State of Texas roadway closed data.

DS-FN-4.2.1 The DSC shall store the lane closure TG currently operates alane closure system. The DSC
data elements defined in the current will use the same data definition as this system.
TG Lane Closure system for TG lane
closure data.

DS-FN-6.1.1 The DSC shall store current incident The TG ATMS currently broadcasts incident data. The
datafor the incident data elements data elements that are broadcast will be stored by the
defined in the existing TG ATMSdata | DSC.
broadcast system.

DS-FN-6.2.1 The DSC shall store accident related The DSS will be arepository for 911 traffic incident
incident data for 911 traffic incidents. data.

DS-FN-6.3.1 The DSC shall store current incident The DSS will be arepository for Railroad Delay traffic
datafor Railroad Delay incident data. incident data.

Data Server 17 System Design Document

REQUIREMENT REQUIREMENT RATIONALE
NUMBER

DSFN-7.1.1 The DSC shall store VIA data as The VIA datawill be defined and used by the Kiosk
specified in the MDI Traveler system.
Information Kiosk Design Document.

DSFN-7.2.1 The DSC shall store weather data as The weather data will be defined and used by the Kiosk
specified in the MDI Traveler system.
Information Kiosk Design Document.

DS-FN-8.1.1 The DSC shall store the current CMS The TG ATMS currently broadcasts CMS data. The
datafor the CM S data elements defined | data elements that are broadcast will be stored by the
in the existing TG ATMS data DSC.
broadcast system.

DS-FN-8.2.1 The DSC shall store the current LCS The TG ATMS currently broadcasts LCS data. The data
datafor the LCS data elements defined | elements that are broadcast will be stored by the DSC.
in the existing TG ATMS data
broadcast system.

DSFN-11.1.1 The DSC shall store the atitude, Geographic datawill allow geographic retrieval of data.

latitude, and longitude of the endpoints
of the TG road segments.

3.4.2 Data Server Interface Library Component Requirements

The requirements for the DSILC are listed in the following sections.

3.4.2.1 Data Server Interface Library Component Interface Requirements

The interface requirements for the DSILC are listed in Table 3.18.

Table 3.18 Data Server Interface Library Component I nterface Requirements

REQUIREMENT REQUIREMENT RATIONALE
NUMBER
DSIF-2.1.1 The DSILC shall interface with the The DSILC will acquire travel datafrom the MDI AVI
MDI AVI system. System.
DSIF-6.1.1 The DSILC shall interface with the The DSILC will provide data to the MDI IVN/Kiosk
MDI IVN/Kiosk system. system.
DSIF-13.1.1 The DSILC shall interface with the The MDI Railroad Delay system will providetrain

Railroad Delay system.

delay information to the DSILC.

3.4.2.2 Data Server Interface Library Component Functional Requirements
The functional requirements for the DSILC are listed in Table 3.19.

Table 3.19 Data Server Interface Library Component Functional Requirements

REQUIREMENT REQUIREMENT RATIONALE
NUMBER
Data Server 18 System Design Document

REQUIREMENT REQUIREMENT RATIONALE
NUMBER

DS-FN-3.8.1 The DSILC shall acquire the current Vehicletravel timeisan element of MDI AV travel
MDI AVI-measured vehicle travel time | data
associated with MDI AVI TG road
segments.

DS-FN-3.8.2 The DSILC shall acquire the current Vehicle speed is an element of MDI AVI travel data.
MDI AVI-measured vehicle speed
associated with MDI AVI TG road
segments.

DS-FN-6.6.1 The DSILC shall acquire current The DSILC will acquire Railroad Delay incident data.
incident data for Railroad Delay
incidents.

DS-FN-7.4.1 The DSILS shall acquire VIA dataas The VIA datawill be defined and used by the Kiosk
specified in the MDI Traveler system.
Information Kiosk Design Document.

DS-FN-7.5.1 The DSILC shall acquire weather data | The weather data will be defined and used by the Kiosk
as specified in the MDI Traveler system.
Information Kiosk Design Document.

DS-FN-7.6.1 The DSILC shdll provide VIA dataas The VIA datawill be defined and used by the Kiosk
specified in the MDI Traveler system.
Information Kiosk Design Document to
the MDI IVN/KIOSK System.

DS-FN-7.8.1 The DSILC shall provide weather data | The weather data will be defined and used by the Kiosk

as specified in the MDI Traveler
Information Kiosk Preliminary Design
Document to the MDI IVN/KIOSK
System.

system.

3.4.3 911 Interface Component Requirements

The requirements for the 9111C are listed in the following sections.

3.4.3.1 911 Interface Component Interface Requirements

The interface requirements for the 9111C are listed in Table 3.20.

Table 3.20 911 Interface Component I nterface Requirements

REQUIREMENT REQUIREMENT RATIONALE
NUMBER
DSIF-7.1.1 The 9111C shall interface with the San | The 911IC will acquire incident information from the
Antonio Police 911 Dispatch System. San Antonio Police 911 Dispatch System.
Data Server 19 System Design Document

3.4.3.2 911 Interface Component Functional Requirements
The functiona requirements for the 9111C are listed in Table 3.21.

Table 3.21 911 Interface Component Functional Requirements

REQUIREMENT REQUIREMENT RATIONALE
NUMBER
DS-FN-6.5.1 The 9111C shall acquire accident The 9111C will acquire 911 traffic incident data.
related 911 traffic incident data.

3.4.4 Lane Closure Graphical User Interface Component Requirements

The requirements for the LCGUIC are listed in the following sections.

3.4.4.1 Lane Closure Graphical User Interface Component Interface Requirements
The interface requirements for the LCGUIC arelisted in Table 3.22.

Table 3.22 Lane Closure Graphical User Interface Component I nterface Requirements

REQUIREMENT REQUIREMENT RATIONALE
NUMBER
DSIF-3.1.1 The LCGUIC shall interface with the The LCGUIC will acquire lane closure data from the
TG Operations user using a graphical user.
user interface.

3.4.4.2 Lane Closure Graphical User Interface Component Functional Requirements
The functional requirements for the LCGUIC arelisted in Table 3.23.

Table 3.23 Lane Closure Graphical User Interface Functional Requirements

REQUIREMENT REQUIREMENT RATIONALE
NUMBER
DS-FN-4.3.1 The LCGUIC shall acquire the lane TG currently operates alane closure system. The
closure data el ements defined in the LCGUIC will acquire the same data elements as the

current TG Lane Closure system for TG | existing system.
lane closure data

Data Server 20 System Design Document

3.4.5 Road Closed Interface Component Requirements

The requirements for the RCIC are listed in the following sections.

3.4.5.1 Road Closed Interface Component Interface Requirements
The interface requirements for the RCIC are listed in Table 3.24.

Table 3.24 Road Closed Interface Component | nterface Requir ements

REQUIREMENT REQUIREMENT RATIONALE
NUMBER
DSIF-4.1.1 The RCIC shall interface with the The RCIC will acquire lane closure data from the Texas

Texas State Roadway Closed database.

State Roadway Closed database.

3.4.5.2 Road Closed Interface Component Functional Requirements
The functiona requirements for the RCIC are listed in Table 3.25.

Table 3.25 Road Closed Interface Component Functional Requirements

REQUIREMENT REQUIREMENT RATIONALE
NUMBER
DS-FN-4.4.1 The RCIC shall acquire non- The RCIC will acquire State of Texas road closed data.

construction related lane closure
information for State of Texas road
closed data.

3.4.6 Global Positioning System / Theoretical Data Component Requirements

The requirements for the GPSTHC are listed in the following sections.

3.4.6.1 Global Positioning System / Theoretical Data Component Functional Requirements
The functiona requirements for the GPSTHC are listed in Table 3.26.

Table 3.26 Global Positioning System / Theor etical Data Component Functional
Requirements

REQUIREMENT REQUIREMENT RATIONALE
NUMBER
DS-FN-3.6.1 The GPSTHC shall store the vehicle Vehicle speed is an element of GPS and theoretical
speed at 15-minute time intervals for travel data.
GPS TG road segments and theoretical
TG road segments.
DS-FN-9.1.3 The GPSTHC shdll provide GPSTHC The GPSTDC will report its process status.
process status information.
Data Server 21 System Design Document

REQUIREMENT REQUIREMENT RATIONALE
NUMBER

DS-FN-10.1.1 The GPSTHC shall adjust theoretical The GPSTHC will use adjustment factors provided by
travel data for theoretical TG road TTI to adjust the theoretical travel data based on
segments based on current conditions current conditions.
using adjustment factors based on type
of day and/or weather.

DS-FN-10.2.1 The GPSTHC shall adjust GPS travel The GPSTHC will use adjustment factors provided by

datafor GPS TG road segments based
on current conditions using adjustment
factors based on type of day and/or
wesather.

TTI to adjust the GPS travel data based on current
conditions.

3.4.7 World Wide Web Interface Component Requirements

The requirements for the WWWIC are listed in the following sections.

3.4.7.1 World Wide Web Interface Component Interface Requirements
The interface requirements for the WWWIC are listed in Table 3.27.

Table 3.27 World Wide Web I nterface Component Inter face Requirements

REQUIREMENT REQUIREMENT RATIONALE
NUMBER
DSIF-8.1.1 The WWWIC shall interface with the The WWWC will provide datato the TG WWW

TG WWW system.

system.

3.4.7.2 World Wide Web Interface Component Functional Reguirements
The functiona regquirements for the WWWIC are listed in Table 3.28.

Table 3.28 World Wide Web Interface Component Functional Requirements

REQUIREMENT REQUIREMENT RATIONALE
NUMBER
DS-FN-3.9.1 The WWWIC shall providethe current | The TG ATMS currently broadcasts travel data. The

travel datafor the travel data elements
defined by the existing TG ATMS data
broadcast system to the TG WWW
system.

data elements that are broadcast will be provided by the
WWWIC.

3.4.8 Status Graphical User Interface Component Requirements

The requirements for the SGUIC are listed in the following sections.

3.4.8.1 Status Graphical User Interface Component Interface Reguirements
The interface requirements for the SGUIC are listed in Table 3.29.

Data Server

22

System Design Document

Table3.29 Status Graphical User Interface Component I nterface Requirements

REQUIREMENT REQUIREMENT RATIONALE
NUMBER
DSIF-3.2.1 The SGUIC shall interface with the The DSGSS will exchange tuning and status

user using a graphical user interface.

information with the user.

3.4.8.2 Status Graphical User Interface Component Functional Requirements
The functiona requirements for the SGUIC are listed in Table 3.30.

Table 3.30 Status Graphical User Interface Component Functional Requirements

REQUIREMENT REQUIREMENT RATIONALE
NUMBER

DS-FN-9.4.1 The SGUIC shall display MDI AVI The current status is an element of the status
System current status. information.

DS-FN-9.4.2 The SGUIC shall display MDI AVI The status information consists of several status
System detailed status information. elements.

DS-FN-9.5.1 The SGUIC shall display MDI IVN The current status is an element of the status
System current status. information.

DS-FN-9.5.2 The SGUIC shall display MDI IVN The status information consists of several status
System detailed status information. elements.

DS-FN-9.6.1 The SGUIC shall display MDI Kiosk The current status is an element of the status
System current status. information.

DS-FN-9.6.2 The SGUIC shall display MDI Kiosk The status information consists of several status
System detailed status information. elements.

DS-FN-9.7.1 The SGUIC shall display MDI Railroad | The current status is an element of the status
Delay System current status. information.

DS-FN-9.7.2 The SGUIC shall display MDI Railroad | The status information consists of several status
Delay System detailed status elements.
information.

DS-FN-9.8.3 The SGUIC shall display DS GPSTHC | The GPSTHC will be a process of the DS system.
process status information.

DS-FN-9.9.1 The SGUIC shall display DSRTCIC The RTCIC will be a process of the DS system.
process status information.

DS-FN-9.9.2 The SGUIC shall display DSRDIC The RDIC will be a process of the DS system.
process status information.

DS-FN-9.9.4 The SGUIC shall display DS 911IC The 911I1C will be a process of the DS system.
process status information.

DS-FN-9.9.5 The SGUIC shall display DS RCIC The RCIC will be a process of the DS system.
process status information.

DS-FN-9.9.6 The SGUIC shall display DSVIC The VIC will be a process of the Kiosk system.
process status information.

DS-FN-9.9.7 The SGUIC shall display DSWIC The WIC will be a process of the Kiosk system.
process status information.

Data Server 23 System Design Document

REQUIREMENT REQUIREMENT RATIONALE
NUMBER
DSFN-9.11.1 The SGUIC shdl display DSWWWIC | The WWWIC will be a process of the DS system.
process information.
DS-FN-9.11.5 The SGUIC shall display DSRTBC The RTBC will be a process of the DS system.

process information.

3.4.9 Redtime Collect Component Requirements

The requirements for the RTCC are listed in the following sections.

3.4.9.1 Redltime Collect Component Interface Requirements

The interface requirements for the RTCC arelisted in Table 3.31.

Table 3.31. Realtime Collect Component | nterface Requir ements

REQUIREMENT REQUIREMENT RATIONALE
NUMBER
DSIF-1.1.1 The RTCC shall interface withthe TG | The RTCC will acquire data from the TG ATMS using

ATMS using protocol defined by the
existing TG ATMS data broadcast.

the protocol currently running on the TG ATMS.

3.4.9.2 Redltime Collect Component Functional Requirements
The functional requirements for the RTCC arelisted in Table 3.32.

Table 3.32. Realtime Collect Component Functional Requirements

REQUIREMENT REQUIREMENT RATIONALE
NUMBER

DS-FN-3.7.1 The RTCC shall acquire the current The TG ATMS currently broadcasts travel data. The
travel datafor the travel dataelements | data elements that are broadcast will be acquired by the
defined by the existing TG ATMS data | RTCC.
broadcast system.

DS-FN-6.4.1 The RTCC shall acquire current The TG ATMS currently broadcasts incident data. The
incident data for the incident data data elements that are broadcast will be acquired by the
elements defined in the existing TG RTCC.

ATMS data broadcast system.

DS-FN-8.3.1 The RTCC shall acquire the current The TG ATMS currently broadcasts CMS data. The
CMS data for the CMS data elements data elements that are broadcast will be acquired by the
defined in the existing TG ATMSdata | RTCC.
broadcast system.

DS-FN-8.4.1 The RTCC shall acquire the current The TG ATMS currently broadcasts LCS data. The data
LCS data for the LCS data elements elements that are broadcast will be acquired by the
defined in the existing TG ATMSdata | RTCC.
broadcast system.

Data Server 24 System Design Document

3.4.10 Redltime Broadcast Component Requirements
The requirements for the RTBC are listed in the following sections.

3.4.10.1 Redltime Broadcast Component Interface Requirements
The interface requirements for the RTBC are listed in Table 3.33.

Data Server 25 System Design Document

Table 3.33 Realtime Broadcast Component I nterface Requirements

REQUIREMENT REQUIREMENT RATIONALE
NUMBER
DSIF-10.1.1 The RTBC shall interface with the The RTBC shall provide data to the Emergency
Emergency Response system. Response system.
DSIF-12.1.1 The RTBC shall interface with TG The RTBC will broadcast datato the TG ATMS map

ATMS Map system using the protocol
defined by the current TG ATMS
operations broadcast system.

using the protocol of the existing sun_broadcast()
system.

3.4.10.2 Redltime Broadcast Component Functional Requirements
The functiona requirements for the RTBC are listed in Table 3.34.

Table 3.34 Realtime Broadcast Component Functional Requirements

REQUIREMENT
NUMBER

REQUIREMENT

RATIONALE

DS-FN-3.9.4

The RTBC shall provide the current
travel datafor the travel data elements
defined by the existing TG ATMS data
broadcast system to the TG ATMS
Map system, the MDI IVN/KIOSK
System, and other ATMSS data
broadcast listeners.

The TG ATMS currently broadcasts travel data. The
data elements that are broadcast will be provided by the
RTBC.

DS-FN-3.10.5

The RTBC shall provide the current
MDI AVI-measured vehicle travel time
associated with MDI AVI TG road
segments to the TG ATMS Map
system.

Vehicle travel timeis an element of MDI AV travel
data.

DS-FN-3.10.6

The RTBC shall provide the current
MDI AVI-measured vehicle speed
associated with MDI AVI TG road
segments to the TG ATMS Map
system, the MDI IVN/KIOSK System,
and other ATMS data broadcast
listeners.

Vehicle speed is an element of MDI AVI travel data.

DS-FN-3.11.3

The RTBC shall provide the current
theoretical vehicle speed associated
with theoretical TG road segments to
the TG ATMS Map system, the MDI
IVN/KIOSK System, and other ATMS
data broadcast listeners.

Vehicle speed is an element of theoretical travel data.

DS-FN-3.12.3

The RTBC shall provide the current
GPS-measured vehicle speed
associated with GPS TG road segments
to the TG ATMS Map system, the MDI
IVN/KIOSK System, and other ATMS
data broadcast listeners.

Vehicle speed is an element of GPS travel data.

Data Server

26

System Design Document

REQUIREMENT
NUMBER

REQUIREMENT

RATIONALE

DS-FN-4.6.2

The RTBC shall provide the lane
closure data elements defined in the
current TG Lane Closure system for
San Antonio lane closure data to the
TG ATMS Map system, the MDI
IVN/KIOSK System, and other ATMS
data broadcast listeners.

TG currently operates alane closure system. The RTBC
will use the same data definition as this system.

DS-FN-6.8.4

The RTBC shall provide current
incident data for the incident data
elements defined in the existing TG
ATMS data broadcast system to the TG
ATMS Map system, the MDI
IVN/KIOSK System, and other ATMS
data broadcast listeners.

The TG ATMS currently broadcasts incident data. The
data elements that are broadcast will be provided by the
RTBC.

DS-FN-6.9.4

The RTBC shall provide 911 traffic
incident datato the TG ATMS Map
system, the MDI IVN/KIOSK System,
and other ATMS data broadcast
listeners.

The RTBC will be arepository for 911 traffic incident
data.

DS-FN-8.5.1

The RTBC shall provide the current
CMS data for the CM'S data el ements
defined in the existing TG ATMS data
broadcast system to the TG ATMS
Map system and other broadcast
listeners.

The TG ATMS currently broadcasts CMS data. The
data elements that are broadcast will be provided by the
RTBC.

DS-FN-8.6.1

The RTBC shall provide the current
LCS data for the LCS data elements
defined in the existing TG ATMS data
broadcast system to the TG ATMS
Map system and other broadcast
listeners.

The TG ATMS currently broadcasts LCS data. The data
elements that are broadcast will be provided by the
RTBC.

Data Server

27

System Design Document

4. System Design

The Data Server system software resides on a separate computer from the current TransGuide
operational computers and separate from other MDI project computers. The Data Server
interfaces with the other systems via network connections. A Status GUI provides the user
interface to the overal MDI system status.

The systems that interface with the Data Server can be divided into Data Generators and Data
Consumers. Data Generators are processes that supply data to the Data Server. The Data Server
receives the data and stores it in a central archive for other applications to use. Data Consumers
are processes that use data stored in the Data Server. They request the traffic data they need from
the Data Server, and the Data Server sends it back to them. The Data Generators and Data
Consumers send status information to the Data Server. This status information is contained in a
regularly sent “ Heartbeat” message to the Data Server, which allows the Data Server to maintain
an overall status of the MDI processes.

The Data Server uses the information supplied by the Data Generators to provide a feed for the
TransGuide realtime graphical map. In addition to speed data from instrumented highways, this
map also displays speed data from AV readers as well as GPS/GIS and theoretical data. The map
data is broadcast over a network, and other applications in addition to the TransGuide Realtime
Map can receive and utilize this data

4.1 System Architecture
The external systems that generate data for the Data Server are:

MDI Railroad System
MDI AVI System

Lane Closure System
Road Closed System

911 Data Dispatch System
VIA System

Weather System, and
TransGuide ATMS

The external systems that use the data from the Data Server are:

MDI Kiosk System
MDI IVN System, and
WWW System

Figure 4.1 is a context diagram of the MDI Data Server system, and shows the external systems
that interface to it, and the data that is transmitted over these interfaces.

Data Server 28 System Design Document

RR Data Req
MDI MDI
QW:\RD Client Data Client Data gth
ystem Req Req ystem
Client Data
WWW File Data Req MDI
’ - Kiosk
System Client Data File Data Req
System
Req
Client Data
r Req N
Client Data
MDI Req
AVI >—
System
L Lane Data Req Client Pata
Req
VIA Files] ovia
System
Client Data
Req
Client Data
N
Lane Req Highway Road
Closure Incident Data Condetions File Closed
System System
Req
Client Data
Client Data Req
911 MDI ~
Dispatch Dat Weather
Ispatc 911 Incidents ata Weather Files System
System Server
ATMS Data Broadcast Data TG
VAX
Network

Figure4.1 Data Server Context Diagram

The Data Server communicates with the Data Generators and Data Consumers over TCP/IP
sockets.

The external systems that were developed or augmented during the MDI project, connect to the
Data Server, and send it regular status messages. The externa systems that were not devel oped
during MDI, have an interface process within the Data Server system that retrieves the data that
they provide, and generates a status message. The Data Server system uses the status messages to
update a Status GUI, which allows the user to determine at a glance the overall status of all the
MDI processes. In addition to sending a status message, Data Generators transmit data
asynchronously to the Data Server. Data Consumers send data requests to the Data Server, and
the Data Server responds by sending them the data they requested. The majority of the data needed

Data Server 29 System Design Document

by the Data Consumers is received from the redtime TransGuide graphical map feed and
broadcast on the TransGuide network by the Realtime Broadcast process.

The Data Server Master Computer includes the following components:

Sun Microsystems Ultra SPARCStation
167 MHz SPARC (RISC) CPU

4.2 Gigabytes Hard Disk

128 Megabytes RAM

Floppy Disk

CD_ROM

Turbo GX+ Graphics

20 inch Color Monitor

Dua Ethernet Interfaces

Dua SCSI Channels

4.2 System Level Design

This section describes the Data Server system, including those external systems that were
developed or augmented during MDI, but which are not part of another MDI project. The other
external MDI systems are described in the SDD’ s for those systems.

The following systems are described bel ow:

Data Server System

WWW System

Lane Closure System
Realtime Receive System, and
Realtime Map Display

The common library functions developed for communications with the Data Server, are aso
described in this section.

The Emergency Response System interfaces with the Data Server system as one of the recipients of
the Realtime Map data.

The design of the interfaces to the Weather System and VIA System are described in the MDI
Kiosk Systems Design Document.

Data Server 30 System Design Document

4.2.1 Data Server System

Figure 4.1 shows a data flow diagram of the Data Server System processes.

Data

Status Info
Heartbeat
Incident Data

] —

Realtime
Collect

File Data Req Rel
Server Broadcast Data

Heartbeat
(MDI Status
Data
Status/Info
Status Info
{>©<} Heartbeat
Client Data
Req Lane Data Req
Heartbeat
’jj;cident Data Lane Data Rﬁ
eq (VIA Files
Incident Data P
Req Lane Datd Req
Incident Data
Status Info Req Status Info
Transfer
Heartbeat
File Write

Lane Data Req

Status Info
Heartbeat

1.8
Realtime
Broadcast

Req

Incident Data
ATMS Data Req

Incident Data

Link Data

RR Data Req

File Data
B

File Data Req

Figure4.2 Data Server System Data Flow Diagram

The Data Server system consists of the following subsystems:

Data Server subsystem

Status GUI subsystem

GPS and Theoretical Data subsystem
Road Closed Interface subsystem
911 Interface subsystem

Realtime Collect subsystem
Realtime Broadcast subsystem

VIA Interface subsystem, and
Weather Interface subsystem

Data Server 31

System Design Document

A high-level description of these subsystemsisin the following paragraphs.

The Data Server subsystem is the central subsystem of the Data Server. It creates shared memory
to store the process status information and traffic data that it receives. Some traffic datais stored
in files. The Data Server subsystem consists of several processes as shown in Figure 4.6. Data
Generators, local as well as external, supply the information that is stored by the Data Server.
Data Consumers send requests to the Data Server for the data they need, and the Data Server sends
the requested data back. The communication between the Data Generators, or Data Consumers,
and the Data Server uses a set of common Data Server Interface library routines. These routines
are described in detail in section 4.3.11. A detailed description of the Data Server subsystem isin
section 4.3.1.

The Data Server subsystem creates a shared memory segment to store the current status of al
processes, including its own status. The Status GUI subsystem attaches to this segment and
displays the information on the MDI Status GUI. This gives the user the ability to determine the
overall status of the Data Server as well asits external processes, at aglance. The Data Server, as
well as each externa Data Generator and Data Consumer, has a sub-window in the Status GUI
which shows the overal status of the respective process. The user can request detailed status
information for each of the processes by clicking on the corresponding sub-window in the GUI. A
detailed description of the Status GUI subsystem isin section 4.3.2.

The GPS and Theoretical Data System is a Data Generator that supplies data to the Data Server.
It retrieves traffic data from a database for road segments for which GPS and Theoretical data,
respectively, has been collected. The database contains expected travel speeds for every 15-minute
interval of the day and night for the selected road segments. The speed data is used to update the
estimated travel speeds for the segments in the Data Server. Weather, school and holiday
information about the current day is used to adjust the speeds before they are transmitted to the
Data Server. The GPS and Theoretical System connects to the Data Server process, and sends it
status information at regular intervals. A detailed description of the GPS and Theoretical Data
subsystem isin section 4.3.4.

The Road Closed Interface subsystem interfaces with the Texas Roadway Closed Database. A
report that contains the highway conditions of state roadways is generated at regular intervals by
the database. This report includes information about closures due to construction, weather and
other reasons. The database sends a text file containing this report to the TransGuide web server.
The Road Closed Interface retrieves this file and removes any construction related closures and
stores the remaining closures, if any, in afile. Thisfileisthen sent to the Data Server process, to
be stored on the Data Server disk. Since the database does not send MDI status information (i.e.
heartbests), the interface process sends a status message at regular intervals to the Data Server
process. The Road Closed Interface is implemented by the process transferfiles using a Road
Closed configuration file. The transferfiles process is described in the Kiosk System Design
Document. A detailed description of the Road Closed configuration fileisin section 4.3.6.

The 911 Interface subsystem interfaces with the Police 911 Data Dispatch system. It receives a
data feed containing the active traffic report over a TCP/IP socket connection. The 911 Dispatch
Interface extracts the accident related traffic data from the received data. This data is converted
into realtime incident data format, and sent to the Data Server process, which stores it. Since the
911 Data Dispatch system does not generate MDI status information, the 911 interface sends a
status message at regular intervals to the Data Server process. A detailed description of the 911
Interface subsystem isin section 4.3.7.

Data Server 32 System Design Document

The Realtime Collect subsystem is a Data Generator which receives the raw traffic data from the
ATMS. The raw traffic data contains speed data from ATMS segments, ATMS equipment
information and ATMS incident information. It converts this data into ATMS data format and
sends it to the Data Server where it is stored in shared memory. The data is aso transmitted
directly to the Redtime Broadcast process. Redtime Collect aso sends status information to the
Data Server at regular intervals. A detailed description of the Realtime Collect subsystem is in
section 4.3.3.

The Realtime Broadcast subsystem is a Data Consumer which requests traffic data from the Data
Server. Redltime Broadcast connects to the Data Server, and sends it status information at regular
intervals. It requests the MDI data from the Data Server and it receives the ATMS data from the
Realtime Collect process. Redtime Broadcast then broadcasts this traffic data feed over the
TransGuide network. Any listeners who wish to use this information can execute the Realtime
Receive process on their workstation. Realtime Receive stores the received data in shared memory,
to which applications like the TransGuide Realtime Map can attach to retrieve the current traffic
data. The Redtime Broadcast subsystem broadcasts the redtime data every five seconds. The
subsystem utilizes the broadcast approach because of the desire to minimize network loading; a
number of Data Consumers need access to the realtime data and rather than have each one
requesting the same data from the Data Server, a design decision was made to place the data on the
network one time for all receivers to acquire. A detailed description of the Realtime Broadcast
subsystem isin section 4.3.8.

The Realtime Receive subsystem works in conjunction with the Data Consumers. The subsystem
retrieves the realtime information from the network (which is broadcast by Realtime Broadcast)
and makes the data available to the Data Consumers. The Data Consumer can request a “ refresh”
of the redltime data and the current data is transmitted to the consumer. A detailed description of
the Redltime Receive subsystem isin section 4.3.9.

The VIA Interface process and the Wesather Interface process are described in the SDD for the
MDI Kiosk System.

4.2.2 WWW System
The context diagram for the WWW System is shown in Figure 4.3.

Data Server 33 System Design Document

Map GIF File

Image Map
) Lane Data Real-time Data

Realtime Record File WWW
Data Shared Incident Record Lookup File Server
Memory -

Info Text File

Cross Reference

File

MDI
Data
Server

Figure4.3 WWW System Context Diagram

The WWW System is an externa Data Consumer that receives the data feed for the reatime
TransGuide graphical map. It uses the data it receives to create a modified TransGuide map, the
display of which is then captured and displayed on a page of the TransGuide web-site. The WWW
System connects to the Data Server process, and sends it status information at regular intervals. A
detailed description of the WWW System isin section 4.3.10.

4.2.3 Lane Closure System

The context diagram for the Lane Closure System is shown in Figure 4.4.

1 Client Data -
. Map Coordinate ; Req -

'\R/lealtlme P I(_:Tne Con Reg | '\D/'Dl
ap Launch LC GUI osure B ata
Display System . Server
Incident Data -
Req L~

Figure4.4 Lane Closure System Context Diagram

The Lane Closure System is launched by a user of the TransGuide Realtime Map. The location of
the lane closure is determined by the location of the cursor when the Lane Closure GUI was
launched. The Lane Closure system displays a GUI that alows the user to enter information about
a TransGuide lane closure, and/or remove information about lane closures that have expired. The
remaining lane closures are then converted to incident data format, and are sent to the Data Server
process, where they are stored. A detailed description of the Land Closure System is in section
4.3.5.

Data Server 34 System Design Document

4.2.4 Redtime Receive System
The context diagram for the Realtime Receive System is shown in Figure 4.5.

1

ATMS Data
Realtime MDI Lane Data
Broadcast MDI Incident
Data

ATMS Data
Realtime \ MDI Lane Data
Receive / MDI Incident
Data

Realtime
Data Shared
Memory

Figure 4.5 Realtime Receive Context Diagram

The Redtime Recelve system replaces functionality that was previoudy implemented by the
receive_broadcast program. The Realtime Recelve system runs on a workstation that wishes to
receive the TransGuide Redltime Map. Realtime Receive receives the broadcast of redtime traffic
data that was sent by Realtime Broadcast. It stores this data locally in the Realtime Data shared
memory, which it creates a startup. Realtime Recelve continuously updates the data in shared
memory by over-writing existing data with new data as it arrives. The TransGuide Realtime Map
attaches to this shared memory at startup, and uses the data to update the map with current traffic
conditions.

The Realtime Receive process is a passive Data Consumer, which does not request any data from
the Data Server, and does not connect to it, nor send it any status information.

4.2.5 Reatime Map Display

The Redltime Map replaces the existing TransGuide graphical map. The map requires that the
Realtime Receive process is adso running on the workstation, and has created a shared memory
segment where it stores traffic data in a pre-defined format. The Redtime Map attaches to the
shared memory segment, and periodically retrieves data for the intelligent map objects that it
displays. The map aso displays static data as background information.

The Redtime Map is based on the map application code developed for TxDOT during the
maintenance contract. In addition to displaying the speed data from ATM S-instrumented segments,
it also displays AVI speed data, GPS travel speed data and Theoretical travel speed data. It
displays icons indicating locations of various equipment (LCS, VMS and CCTV), and locations of
currently active incidents, as well as icons indicating locations of active lane closures and active
traffic related events received from the 911 Data Dispatch.

Instrumented lanes use a color code to distinguish the source of the speed data displayed in them.
The color of the outline indicates if a segment is instrumented by sensors (ATMS), AVI , GPS or
Theoretical data

Users of the map can click on a lane or an icon (equipment, incident, 911 or lane closure) to
display a popup window that contains more detailed information about the icon selected.
4.2.6 Data Server Interface Common Interface Library

In order to simplify the interface between other processes and the Data Server, a set of common
Data Server library functions were developed. The library includes functions to initialize and
terminate communication with the Data Server. Functions are also included to send status
information, traffic data, incident data, equipment data and files to the Data Server process. Data

Data Server 35 System Design Document

Consumers can use library functions to request traffic data, incident data, equipment data, files or
file time-stamp information, or to delete data files that were previously sent to the Data Server. A
detailed description of the functionsincluded in the library isin section 4.3.11.

4.3 Subsystem Level Design

This section describes the design of the Data Server subsystems, and the external subsystems that
were developed on the MDI Data Server project. The subsystems described are:

Data Server subsystem

Status GUI subsystem

Realtime Collect subsystem

GPS and Theoretical Data subsystem
Lane Closure subsystem

Road Closed Interface Subsystem
911 Interface subsystem

Realtime Broadcast subsystem,
Redltime Receive System, and
WWW subsystem

The common library functions developed for communications with the Data Server, are aso
described in detail in this section.

Each subsystem consists of one or more components, each of which is a separate Unix process.
The subsystem components were designed as individual processes to increase the reiability of the
system. If a system has to be modified or added, or if one process fails, it will not negatively
impact the whole system. Each of the subsystems communicate with the Data Server over a socket
interface.

4.3.1 Data Server Subsystem

The Data Server subsystem is a repository for various types of ATMS and ATIS data. The data
that is stored by the Data Server subsystem is generated by data generator clients and is used by
data consumer clients. The Data Server subsystem acts as the server half of a client/server system.
In this scenario, clients send one of several predefined requests to the Data Server subsystem which
accepts these requests and performs the service on behaf of the client. The interaction between the
client and server takes place according to an established communication protocol. The following
sections provide the process, model, and protocol design of the Data Server subsystem.

4.3.1.1 Process Design

The externa environment of the Data Server subsystem is depicted in the Data Server data flow
diagram shown in Figure 4.2. The diagram shows the Data Server subsystem interacting with the
other subsystems of the Data Server. The data flows entering the Data Server subsystem are
requests from clients which include connection requests, client data requests (e.g., heartbest,
initialization), lane data requests, incident data requests, and file data requests. The data flows
exiting the Data Server subsystem are responses to requests.

The Data Server subsystem data flow diagram is shown in Figure 4.6. The Data Server
subsystem is composed of five processes. the Master process, the Heartbeat process, the Data
Server Interface process, the Status Logger process and the Data Server process. The Master

Data Server 36 System Design Document

process starts up the other processes of the Data Server subsystem, and monitors their process
status. The Heartbeat process receives the individua heartbeats from each process, and sends the
overall system status to the Data Server Interface process. The Data Server Interface process is
the common gateway for al requests that are directed to the Data Server, and the responses that
arereturned. The Status Logger process stores the status messages that it gets from the subsystem
processesin alog file.

The Data Server process data flow diagram is shown in Figure 4.7. The Data Server process is
composed of two processes: the Data Server Main process, and the Client Request processes. The
Data Server Main process accepts client requests then passes the client data to the Client Request
processes which handle the requests themselves. Separating the connections from the requests
allows each process to focus on a specific task. The processes shown on the Data Server data flow
diagram are described in more detail in Table 4.1.

There are multiple Client Request processes. A Client Request process is generated for each client
that connects, making each Client Request process dedicated to a single client. Dedicating a
process to each client has the advantage that the Client Request process can be designed and
implemented for the smple case of a single client. Designing a Client Request process that is
capable of handling multiple clients would introduce an unnecessary degree of complexity.
Another advantage of using multiple client request processes is that each process is isolated from
the others. If errors occur in one process, they will not adversely affect other processes.

Data Server 37 System Design Document

142
Startup Status

Master

Status Info

Status Info

4‘> Process

Status

4‘> Shared Memory

Process Status

Heartbeat Status Info

Heartbeat

Client Data A
Req

Client Data Heartbeat

Req

[

Link Data
\ Incident Data
/ File Data

Lane Data Req
File Data Req
RR Data Req
Incident Data
Req

LI L]

Status Info 145

Status

MDI Data Req Logger
Heartbeat

Data Status Info

Server

Process

MDI Status MDI Status MDI Status MDI Status

Shared Data
Memory

Figure4.6 Data Server Subsystem Data Flow Diagram

Data Server 38 System Design Document

@ MDI Data

File Data Incident Data
Equipment AWARD Data
Status
File Data Req
/ Equipment Data
/" Req
Client Data
MDI Data Reg|. /.~ Req
E'% ! Q - RR Data Req

Lane Data Req
Incident Data

Req
Create Child
Client Connection
1411 Status Info £
Con Req ._(Data Server -
Heartbeat

Figure4.7. Data Server Process Data Flow Diagram

Table4.1. Data Server Process Processes

ITEM DESCRIPTION

Data Server|The main process of the Data Server subsystem. The process initidizes the Data Server
Main subsystem, accepts client connections, and spawns children to manage the client connections.

Client Request [A child process of the Data Server Main process that is created to manage a specific client. The
process is created by the Data Server Main process when a client connection is received and
terminates when the client disconnects. There are multiple instances of this process, one for each
client that is connected to the Data Server subsystem.

The process accepts requests from the client and determines the nature of the request. The request
is then passed to a specialized process that handles the request.

The Client Request process data flow diagram is shown in Figure 4.8. The Client Request process
is broken into specialized processes, each dedicated to handling a separate type of data request.
The processes of the Client Request data flow diagram are described in more detail in Table 4.2.

Data Server 39 System Design Document

Lane Data Req Equipment Data Incident Data

Req Req
=

14126 14124

Incident
Data

Equipment
Data Equipment Data

Lane Data Incident Data

Client Data 3 File Data Req RR Data Req

14121

Client

Data AWARD Data

Figure 4.8. Client Request Data Flow Diagram

Table 4.2. Client Request Processes

ITEM DESCRIPTION

Client Data A process to handle client data requests from clients. The process is passed the client data
request and performs actions based on the request.

Equipment Data A process to handle equipment data requests from clients. The process is passed the
equipment data request and performs actions based on the request.

File Data A process to handle file data requests from clients. The process is passed the file data request
and performs actions based on the request.

Incident Data A process to handle incident data requests from clients. The process is passed the incident
data request and performs actions based on the request.

Link Data A process to handle client data requests from clients. The process is passed the client data
request and performs actions based on the request.

RR Data A process to handle RR data requests from clients. The process is passed the RR data request
and performs actions based on the request.

Data Server 40 System Design Document

Lane Data Req

4

Lane Write Lane Read Req

Req

Link Data Link Data
Record Record

Data Server Shared Memory

Figure 4.9. Lane Data Data Flow Diagram

The Lane Data process data flow diagram is presented in Figure 4.9. The lane data is written to
the Data Server Shared Memory by the Lane Write process and is retrieved by the Lane Read
process. These processes are described in more detail in Table 4.3.

Table 4.3. Lane Data Processes

ITEM DESCRIPTION

Read Link A process to read the link data from the Data Server Shared Memory and send it to the requesting
client. Thelink datais read and sent in the form of Lane Data Records.

Write Link A process to write link data to the Data Server Shared Memory. The link datais passed in the form
of DS Lane Data Records which are converted to Lane Data Records before being written to shared
memory.

The DS Lane Data Records are the MDI-representation of the link data. The Lane Data Records are
a compact representation of the DS Lane Data Record.

Data Server 41 System Design Document

The Incident Data process data flow diagram is presented in Figure 4.10. The incident data is
written to one of severa data server files depending on the value of the source field in the Incident
Write Request record. Read requests will return one or al of the types of incidents depending on
the type specified in the read request. The Incident Data processes are described in more detail in
Table4.4.

Incident Data
Req

Incident Write Incident Read

Req \/ Req

Incident Incident

Incident Recard Incident Record

DS Incident Files

Figure 4.10. Incident Data Data Flow Diagram

Table 4.4. Incident Data Pr ocesses

ITEM DESCRIPTION

Read Incident A process to read incident data from the Data Server incident data files and send the incident
data to the requesting client. The incident datais read in the form of DS Incident Data Records
and written in the form of DS Incident Data.

Write Incident A process to write incident datato a DS Incident file. The incident data is passed in the form of
DS Incident Data Records which are written to shared memory.

The Equipment Data process data flow diagram is presented in Figure 4.11. The equipment datais
written to one of several data server files depending on the value of the source field in the
Equipment Write Request record. Read requests will return one or all of the types of equipment
data depending on the type specified in the read request. The Equipment Data processes are
described in more detail in Table 4.5.

Data Server 42 System Design Document

Equipment Data
Req

Equipment Equipment Read

\Write Req U Req

1
Write
Equipment

Read
Equipment

Equipment
Record

Equipment
Record

DS Equipment Files

Figure 4.11 Equipment Data Data Flow Diagram

Table 4.5 Equipment Data Pr ocesses

ITEM DESCRIPTION

Read Equipment A process to read equipment data from the Data Server equipment data files and send the
equipment data to the requesting client. The equipment data is read in the form of DS
Equipment Data Records and written in the form of DS Equipment Data.

Write Equipment A process to write equipment data to a DS Equipment file. The equipment data is passed in
the form of DS Equipment Data Records.

The Client Data process data flow diagram is shown in Figure 4.12. Client data is processed by
three specialized processes. The datais stored and retrieved from the Data Server Shared Memory.
The Client Data processes are described in more detail in Table 4.6.

Data Server 43 System Design Document

MDI Statu:
Data

Client Data
Init Req Close Req
HB Req
Client Heartbeat Client
MDI Status /\ MDI Status
Data Data MDI Status
Data
MDI Status MDI Status
Data Data
Data Server <}
Shared
{> Memory

Figure 4.12. Client Data Data Flow Diagram

Table 4.6. Client Data Processes

ITEM

DESCRIPTION

Init Client

A process to accept client initialization data and write the data to the Data Server Shared Memory
area. The process receives the data in the form of an Init Req, reads the current MDI Status Data|
from the Data Server Shared Memory area, modifies the current MDI Status Data based on the Init
Req data, and then writes the MDI Status Data back to the Data Server Shared Memory.

Record
Heartbeat

A process to accept client heartbeat data and write the data to the Data Server Shared Memory
area. The process receives the data in the form of a HB Req, reads the current MDI Status Data|
from the Data Server Shared Memory area, modifies the current MDI Status Data based on the HB
Req data, and then writes the MDI Status Data back to the Data Server Shared Memory.

Close Client

A process to accept client close data and write the data to the Data Server Shared Memory area.
The process receives the data in the form of a Close Req, reads the current MDI Status Data from
the Data Server Shared Memory area, modifies the current MDI Status Data based on the Closg]
Req data, and then writes the MDI Status Data back to the Data Server Shared Memory.

The File Data process data flow diagram is shown in Figure 4.13. Specialized processes are used
to handle each of the requests. File data is stored in the Data Files area of the Data Server. The
File Data processes are described in more detail in Table 4.7.

Table4.7. File Data Processes

ITEM DESCRIPTION
Delete File A process to handle a File Delete Req. The File Delete Req contains the name of the file to
delete. The process deletes the file from the Data Server Data Files area.
FileList A process to retrieve a directory listing of the Data Server Data Files area. The listing is
obtained and sent back to the client.
Data Server 44 System Design Document

ITEM

DESCRIPTION

Query File Time

A process to determine the time a file was last written. The name of the file is contained in
the File Time Req. The time of the file is determined from the file in the Data Server Data
Files area and the time is returned to the client in the form of File Data

Read File

A process to accept a File Read Req and read the specified file from the Data Server Data
Files area and return the file to the client. The File Read Req specifies the name of thefile to
read. The fileisread and sent to the client in the form of File Data.

Write File

A process to receive a file write request and write the data to the specified file in the Data
Server Data Files area. The File Write Req contains the file name and the file data. The File
Datais extracted and written to the Data Files area.

The Railroad Data process data flow diagram is shown in Figure 4.14. The railroad data is stored
in the Data Server Shared Memory. A description of each of the Railroad Data processes is
provided in Table 4.8.

File Write
Req

File Read Req Req File Time Req File List Req

File Data Req

File Delete

¥4.1.2.38
Delete
File

¥4.1.2.34

Query
File Time

File Data

File Data

Data Files

Data Server

Figure 4.13. File Data Data Flow Diagram

45 System Design Document

RR Data Write
Req
B
RRC Write Req RRS Data Write
AWARD Data _/ AWARD Data
RRC Data RRS Data,
RRC Data RRS Data
Data Server RRC File Data Server RRS File

Figure4.14 Railroad Data Data Flow Diagram

Table 4.8. Railroad Data Processes

ITEM DESCRIPTION
Read RRC The Read RRC process obtains the RRC data from the RRC data file and sendsiit to the client.
Read RRS The Read RRS process obtains the RRS data from the RRS data file and sends it to the client.
Write RRC The Write RRC process receives a RRC Write request, extracts the RRC Data, and writes the data
to the Data Server RRC Data File.
Write RRS The Write RRS process receives a RRS Write request, extracts the RRS Data, and writes the data

to the Data Server Shared Memory area.

4.3.1.2 Mode Design
The primary functions of the Data Server subsystem are:

create and initialize the Data Server shared memory,
accept connections from client processes, and
process client requests.

Data Server 46 System Design Document

Aswas described in the previous section, the Data Server subsystem is actually two processes. The
Data Server Main process, and the Client Request process. The Data Server Main process carries
out the first two functions listed above, then creates the Client Request processes to perform the
third function.

The Data Server Main process structure chart is shown in Figure 4.15. The main function calls
functions which create the Data Server Shared Memory and perform communication initialization
so that clients can connect. It then waits for client connections using the sock accept function.
When a client connects, the Data Server Main process uses the UNIX fork command to create a
child process. This child processis the Client Request process and is dedicated to communicating
with the client (refer to Section 4.3.1.1 for a discussion of the Client Request process). The Data
Server Main process then waits for another connection and the sequence of steps is repeated. The
functions shown in Figure 4.15 are described in more detail in Table 4.9.

Data Server 47 System Design Document

getpid <]7 setpgid main
dataserver e / L
exit < | atexit ey / . waitpid
handler yd
ds status
signal _,sigset / close logger
setup ’ connect
status
gethostname logger fork
isconnect
process
q;rIas.erver status ¢onfig sock child
initialize . accept
with lpgge
dataserver /
init shared strncpy select
memory
h dataserver
P check timeout
connect
values
dataserver process
init statyis set
socket status type v
process dataserver
status send
message heartbeat
process
FD_ZERO status
get status
FD_SET
Figure 4.15. Data Server Structure Chart
48 System Design Document

Data Server

Table 4.9. Data Server Functions

ITEM DESCRIPTION

atexit C Library Function used to register routines to be caled on normal
termination of a program.

child Process that is created by the main Data Server process to handle a single
Data Server client. The child process closes its accept socket and
communicates with the client over the newly-created socket. The child
process must also establish its own connection with the Status Logger
process to record status information.

close C Library Function to close a file descriptor. The descriptor can be for a
variety of things, including afile or socket.

dataserver check timeout values Function to check the current status of the data timeout values. These
values are used to keep track of the time that has elapsed since a
particular type of data has been received by the Data Server. If the elapsed
time exceeds athreshold, the datais cleared to its default value.

dataserver exit handler Called when the Data Server process exits. Thisroutine is responsible for
performing the housekeeping necessary for a graceful shutdown. This
includes killing any child processes and disconnecting from other

processes.

dataserver init shared memory Function to initialize the Data Server shared memory segments.

dataserver init socket Function to setup the Data Server shared memory segments.

dataserver initialize Function to initialize the Data Server process.

dataserver send heartbeat Function to send a heartbeat message to the subsystem heartbeat process.

ds signal setup Data Server Subsystem Common Library function that sets a common
signal handler routine for all catchable signals.

FD_SET C Library Macro to add a socket descriptor to a select set.

FD_ZERO C Library Macro to clear a select set.

fork C Library Function that creates a child process that is an exact duplicate
of the current process.

gethostname C Library Function which returns a string containing the name of the host
machine.

getpid C Library Function to retrieve the process identifier of the calling process.

main The main function for the Data Server Subsystem. The function initializes

the subsystem shared memory and the accept socket that will be used by
clients to connect with the Data Server. When a client connects, the Data
Server process creates a child process to handle the connection with the
client. Before creating the child process, the main process disconnects
with the Status Logger so that the child and parent can have seperate
connections with the Status Logger. The main process a so sends heartbeat
information to the subsystem heartbeat process periodically.

ph connect MDI Process Heartbeat Common Library routine used to connect to the
specified process-level heartbeat service. The host name and service
name are used to make the connection.

Data Server 49 System Design Document

ITEM

DESCRIPTION

process status config with logge

process_status_config_with_logger is an MDI Process Status Common
Library routine used to configure the process status handling for the
process. This routine is used to set up the connection to the status logger
used by the calling program.

process status get status

MDI Process Status Common Library routine used to obtain the most
severe process-level status. This is an aggregation of the status for each of
the status types defined for the process.

process status message

MDI Proces Status Common Library routine used to log a status message
for the specified status type. If the process status library was configured to
use a status logger, then the message is forwarded to the status logger.
Otherwise the message is written to the configured status log file.
process_status_message will also keep track of the current status value of
the status type specified by the caller so that the current status can be
retrieved later.

process status set status type v

process_status set_status type value is used to set the value associated
with the specified status type.

select

C Library Function used to multiplex synchronous I/O. The list of file
descriptors for reading, writing, and receiving exceptions are examined
and any file descriptors that are ready for reading, writing, or have an
exceptiona condition pending are identified.

setpgid

C Library Function to set the process group identifier of the calling
process.

sigset

C Library Function used to modify the disposition of a signal. The signal
can be caught, ignored, or returned to the default disposition.

sock accept

MDI Socket Common Library routine that accepts a connection on the
specified socket.

status logger connect

MDI Status Logger Common Library routine to connect with the status
logger process.

status logger disconnect

MDI Status Logger Common Library routine to close the connection with
the status logger process.

strncpy C Library Function used to copy a specified number of bytes from one
string to another.
waitpid C Library Function that waits for a child process to terminate. The

function returns the process identifier of the child that terminated.

The dataserver__ exit_handler function is called when the Data Server process exits. Thisroutineis
responsible for performing the housekeeping necessary for a graceful shutdown. This includes
killing any child processes and disconnecting from other processes. The dataserver_exit_handler
structure chart is shown in Figure 4.16.

Data Server

50 System Design Document

dataserver
exit
handler

sigset

dataserver
init process
status

dataserver
kill
children

process
status
message

Figure 4.16 dataserver _exit_handler Structure Chart

The functions called by dataserver_exit_handler are described in more detail in Table 4.10.

Table 4.10 dataserver _exit_handler Functions

ITEM

DESCRIPTION

dataserver init process status

Function to initialize the entry in the Data Server process status shared
memory segment which stores the status of each of the subsystems that are
connected with the Data Server process.

dataserver kill children

Function to kill al children of the Data Server process.

process status message

MDI Proces Status Common Library routine used to log a status message for
the specified status type. If the process status library was configured to use a
status logger, then the message is forwarded to the status logger. Otherwise
the message is written to the configured status log file
process_status_message will also keep track of the current status value of the
status type specified by the caller so that the current status can be retrieved
later.

sigset

C Library Function used to modify the disposition of a signal. The signal can
be caught, ignored, or returned to the default disposition.

sock close

MDI Socket Common Library routine used to close the specified socket
connection.

The dataserver_kill_children function kills al children of the Data Server process. The
dataserver_kill_children structure chart is shown in Figure 4.17.

Data Server

51 System Design Document

process
status
message

dataserver
kill
children

v

getpid

kill

Figure 4.17 dataserver_kill_children Structure Chart
The functions called by dataserver_kill_children are described in more detail in Table 4.11.

Table 4.11 dataserver_kill_children Functions

ITEM DESCRIPTION
getpid C Library Function to retrieve the process identifier of the calling process.
Kill C Library Function to send a SIGTERM signal to a process.
process status message MDI Proces Status Common Library routine used to log a status message for the

specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the message is
written to the configured status log file. process_status message will also keep track
of the current status value of the status type specified by the caller so that the current
status can be retrieved later.

The dataserver_init_process_status function initializes the entry in the Data Server process status
shared memory segment which stores the status of each of the subsystems that are connected with
the Data Server process. The dataserver_init_process status structure chart is shown in Figure

4.18.

dataserver
init process
status

v

write
segment
element

Figure 4.18 dataserver_init_process_status Structure Chart

The function called by dataserver_init_process _status is described in more detail in Table 4.12.

Data Server

52

System Design Document

Table 4.12 dataserver_init_process status Function

ITEM DESCRIPTION

write segment element MDI Shared Memory Manager Common Library function to write information
to a specific element in a shared memory segment. In this case the shared
memory segment is viewed as an array of elements.

The ds_signal_setup function is a Data Server Subsystem Common Library function that sets a
common signal handler routine for all catchable signals. The ds signal_setup structure chart is
shown in Figure 4.19.

ds
signal
setup

v

sigset

Figure4.19 ds signal_setup Structure Chart
The function called by ds_signal_setup is described in more detail in Table 4.13.

Table4.13 ds signal_setup Function

ITEM DESCRIPTION

sigset C Library Function used to modify the disposition of a signal. The signal can be caught,
ignored, or returned to the default disposition.

The dataserver_initialize function initidizes the Data Server process. The dataserver_initiaize
structure chart is shown in Figure 4.20.

Data Server 53 System Design Document

dataserver
initialize

v

ds cfg
load
cfg data

Figure 4.20 dataserver _initialize Structure Chart
The function called by dataserver_initialize is described in more detail in Table 4.14.

Table 4.14 dataserver_initialize Function

ITEM DESCRIPTION

ds cfg load cfg data Data Server Configuration Library routine to read the configuration data and store it in a
table passed by the caller.

The ds_cfg_load cfg_data function is a Data Server Configuration Library routine to read the
configuration data and store it in a table passed by the caller. The ds cfg_load cfg_data structure
chart isshown in Figure 4.21.

ds cfg

load

cfg data
cfg load cfg
configuration gethostname get getservbyname
data value

Figure4.21 ds cfg_load_cfg_data Structure Chart
The functions called by ds_cfg_load_cfg_data are described in more detail in Table 4.15.

Table4.15 ds cfg_load cfg data Functions

ITEM DESCRIPTION

cfg get value MDI Configuration File Common Library routine used to return the value of the
specified configuration name.

Data Server 54 System Design Document

ITEM

DESCRIPTION

cfg load configuration data

MDI Configuration File Common Library routine used to read the configuration
name-value pairs from the specified configuration file. These name-vaue pairs
are loaded into memory so they can be accessed on demand by the calling

program.
gethostname C Library Function which returns a string containing the name of the host
machine.
getservbyname C Library Function used to obtain an entry for the specified Internet service.

The dataserver_init_shared_memory function initializes the Data Server shared memory segments.

The dataserver_init_shared_memory structure chart is shown in Figure 4.22.

config
shm
mgr

dataserver

init shared

memory
process dataserver dataserver dataserver
status create init status init timeout
message segment segment segment

Figure 4.22 dataserver_init_shared_memory Structure Chart

The functions called by dataserver_init_shared memory are described in more detail in Table 4.16.

Table 4.16 dataserver_init_shared_memory Functions

ITEM

DESCRIPTION

config shm mgr

MDI Shared Memory Manager Common Library routine used to initiaize
and configure the shared memory manager library routines for the calling
program.

dataserver create segment

Function to create a shared memory segment. If the segment already exists
of the correct size, the function smply attaches to the segment. If the
segment exists and is the wrong size, an error is returned. If the segment
does not exist, the function creates it.

dataserver init status segment

Function to initialize the Data Server status shared memory segment,
which is used to store the status of each of the subsystems that are attached
to the Data Server. The function initializes the segment by initializing the
individual elements within the segment.

dataserver init timeout segment

Function to initialize the Data Server timeout segment which is used to
keep track of the elapsed time since an update of each kind of data has
been received. This function initializes the segment by initializing the
individual elements within the segment.

Data Server

55 System Design Document

ITEM

DESCRIPTION

process status message

MDI Proces Status Common Library routine used to log a status message
for the specified status type. If the process status library was configured to
use a status logger, then the message is forwarded to the status logger.
Otherwise the message is written to the configured status log file.
process_status_message will also keep track of the current status value of
the status type specified by the caler so that the current status can be
retrieved later.

The dataserver_create_segment function creates a shared memory segment. If the segment already
exists of the correct size, the function simply attaches to the segment. If the segment exists and is
the wrong size, an error is returned. If the segment does not exist, the function creates it. The
dataserver_create_segment structure chart is shown in Figure 4.23.

segment
exists

dataserver
create
segment

attach
to
segment

create
segment

sizeof
segment

Figure 4.23 dataserver_create segment Structure Chart

The functions called by dataserver_create_segment are described in more detail in Table 4.17.

Table 4.17 dataserver _create_segment Functions

ITEM DESCRIPTION

attach to segment MDI Shared Memory Manager Common Library routine used to attach the calling
process to the specified shared memory segment.

create segment MDI Shared Memory Manager Common Library routine used to create a shared

memory segment of the specified sizee The shared memory segment is
automatically attached to the calling process.

segment exists

MDI Shared Memory Manager Common Library routine to test for the existence
of the specified shared memory segment.

sizeof segment

MDI Shared Memory Manager Common Library routine used to obtain the sizein
bytes of the specified shared memory segment.

The dataserver_init_status segment function initializes the Data Server status shared memory
segment, which is used to store the status of each of the subsystems that are attached to the Data
Server. The function initializes the segment by initidizing the individual elements within the
segment. The dataserver_init_status segment structure chart is shown in Figure 4.24.

Data Server

56 System Design Document

dataserver
init status
segment

%

dataserver
init process
status

Figure 4.24 dataserver_init_status segment Structure Chart

The function called by dataserver_init_status segment is described in more detail in Table 4.18.

Table 4.18 dataserver_init_status_segment Function

ITEM

DESCRIPTION

dataserver init process status

Function to initiaize the entry in the Data Server process status shared
memory segment which stores the status of each of the subsystems that are
connected with the Data Server process.

The dataserver_init_timeout_segment function initializes the Data Server timeout segment which is
used to keep track of the elapsed time since an update of each kind of data has been received. This
function initializes the segment by initializing the individua elements within the segment. The
dataserver_init_timeout_segment structure chart is shown in Figure 4.25.

dataserver
init timeout
segment

\\Q%

write
segment
element

Figure 4.25 dataserver_init_timeout_segment Structure Chart

The function called by dataserver_init_timeout_segment is described in more detail in Table 4.19.

Data Server

57

System Design Document

Table 4.19 dataserver_init_timeout_segment Function

ITEM

DESCRIPTION

write segment element

MDI Shared Memory Manager Common Library function to write
information to a specific element in a shared memory segment. In this case
the shared memory segment is viewed as an array of elements.

The dataserver_send heartbeat function sends a heartbeat message to the subsystem heartbest
process. The dataserver_send_heartbeat structure chart is shown in Figure 4.26.

ph send
heartbeat

dataserver
send
heartbeat

ph send
heartbeat

ph

gethostname
connect

Figure 4.26 dataserver_send_heartbeat Structure Chart
The functions called by dataserver_send_heartbest are described in more detail in Table 4.20.

Table 4.20 dataserver_send_heartbeat Functions

ITEM DESCRIPTION
gethostname C Library Function which returns a string containing the name of the host
machine.
ph connect MDI Process Heartbeat Common Library routine used to connect to the specified

process-level heartbeat service. The host name and service name are used to
make the connection.

ph send heartbeat

MDI Process Heartbeat Common Library routine used to send the specified status
value to the heartbeat service configured by the ph_connect call.

ph send heartbeat

MDI Process Heartbeat Common Library routine used to send the specified status
value to the heartbeat service configured by the ph_connect call.

The dataserver_check timeout_values function checks the current status of the data timeout
values. These values are used to keep track of the time that has elapsed since a particular type of
data has been recelved by the Data Server. If the elapsed time exceeds a threshold, the data is
cleared to its default value. The dataserver_check timeout vaues structure chart is shown in

Figure 4.27.

Data Server

58 System Design Document

read

segment
element

dataserver
clear incident
data

dataserver
update data
time

dataserver
check timeout
values

dataserver
clear rrc
data

dataserver
clear rrs
data

dataserver
clear link
data

dataserver
clear
equipment data

Figure 4.27 dataserver _check_timeout_values Structure Chart

The functions called by dataserver_check_timeout_values are described in more detail in Table

4.21.

Table 4.21 dataserver _check timeout_values Functions

ITEM

DESCRIPTION

dataserver clear equipment data

Function to clear equipment data. The function is passed the type of
equipment data to clear and then clears the data by deleting the equipment
datafile of that type.

dataserver clear incident data

Function to clear incident data. The function is passed the type of incident
data to clear and then clears the data by deleting the incident data file of
that type.

dataserver clear link data

Function to clear link data. The function is passed the type of link data to
clear and then clears the data by resetting the values of the link shared
memory segment.

dataserver clear rrc data

Function to clear railroad crossing data. The function clears the data by
deleting the railroad crossing datafile.

dataserver clear rrs data

Function to clear railroad sensor data. The function clears the data by
deleting the railroad sensor datafile.

dataserver update data time

Function to update the Data Server timeout shared memory segment.

Data Server

59 System Design Document

ITEM DESCRIPTION

read segment el ement MDI Shared Memory Manager routine to read the contents of a specified
shared memory segment element. The contents are stored in a memory
area allocated by the caller.

The dataserver_clear_incident_data function clears incident data. The function is passed the type
of incident data to clear and then clears the data by deleting the incident data file of that type. The
dataserver_clear_incident_data structure chart is shown in Figure 4.28.

dataserver
clear incident

data

ds
delete
file

Figure 4.28 dataserver _clear_incident_data Structure Chart
The function called by dataserver_clear_incident_data described in more detail in Table 4.22.

Table 4.22 dataserver _clear_incident_data Function

ITEM DESCRIPTION

dsdeletefile Data Server Subsystem Common Library routine to delete a file from the
Data Server.

The ds_delete file function is a Data Server Subsystem Common Library routine to delete a file
from the Data Server. The ds_delete file structure chart is shown in Figure 4.29.

Data Server 60 System Design Document

ds
delete
file

v

remove

Figure 4.29 ds delete file Structure Chart
Thefunction called by ds_delete fileis described in more detail in Table 4.23.

Table 4.23 ds delete file Function

ITEM DESCRIPTION

remove C Library Function to remove afile.

The dataserver_init_socket function sets up the Data Server shared memory segments The
dataserver_init_socket structure chart is shown in Figure 4.30.

dataserver

init

socket
cfg process sock get sock
get status service listen
value message port with reuse

Figure 4.30 dataserver_init_socket Structure Chart
The functions called by dataserver_init_socket are described in more detail in Table 4.24.

Data Server 61 System Design Document

Table 4.24 dataserver_init_socket Functions

ITEM DESCRIPTION
cfg get value MDI Configuration File Common Library routine used to return the value of the
specified configuration name.
process status message MDI Proces Status Common Library routine used to log a status message for the

specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the message is
written to the configured status log file. process_status message will also keep track
of the current status value of the status type specified by the caller so that the current
status can be retrieved later.

sock get service port

MDI Socket Common Library routine that returns the port number associated with
the specified service name.

sock listen with reuse

MDI Socket Common Library routine used to set up a socket to listen for connections
and to make the socket address reusable.

The dataserver_update data time function updates the Data Server timeout shared memory
segment. The dataserver_update_data_time structure chart is shown in Figure 4.31.

dataserver
update data

time

write
segment
element

Figure 4.31 dataserver _update data_time Structure Chart
The function called by dataserver_update data timeis described in more detail in Table 4.25.

Table 4.25 dataserver_update data_time Function

ITEM

DESCRIPTION

write segment element

MDI Shared Memory Manager Common Library function to write information
to a specific element in a shared memory segment. In this case the shared
memory segment is viewed as an array of elements.

The dataserver_clear_equipment_data function clears equipment data. The function is passed the
type of equipment data to clear and then clears the data by deleting the equipment data file of that
type. The dataserver_clear_equipment_data structure chart is shown in Figure 4.32.

Data Server

62 System Design Document

dataserver
clear
equipment data

v

ds
delete
file

Figure 4.32 dataserver _clear_equipment_data Structure Chart
The function called by dataserver_clear_equipment_data is described in more detail in Table 4.26.

Table 4.26 dataserver _clear_equipment_data Function

ITEM DESCRIPTION

dsdeletefile Data Server Subsystem Common Library routine to delete a file from the

Data Server.

The dataserver_clear_link_data function clears link data. The function is passed the type of link
data to clear and then clears the data by resetting the values of the link shared memory segment.
The dataserver_clear_link_data structure chart is shown in Figure 4.33.

dataserver
clear link
data

malloc

process
status
message

memset

dataserver
determine
link segmen

write
segment

Data Server

Figure 4.33 dataserver _clear_link_data Structure Chart

63

The functions called by dataserver_clear_link_data are described in more detail in Table 4.27.

System Design Document

Table 4.27 dataserver _clear_link_data Functions

ITEM

DESCRIPTION

dataserver determine link segmen

Function to determine the shared memory segment identifier based on
the type of link data. The function returns the link segment identifier.

malloc C Library Function to alocate the specified amount of memory.
memset C Library Function used to set an area of memory to a specified value.
process status message MDI Proces Status Common Library routine used to log a status

message for the specified status type. If the process status library was
configured to use a status logger, then the message is forwarded to the
status logger. Otherwise the message is written to the configured status
log file. process _status message will also keep track of the current
status value of the status type specified by the caller so that the current
status can be retrieved later.

write segment

MDI Shared Memory Manager Common Library routine that writes data
to the specified shared memory segment.

The dataserver_clear_rrs_data function clears railroad sensor data. The function clears the data by
deleting the railroad sensor data file. The dataserver_clear_rrs _data structure chart is shown in

Figure 4.34.

dataserver
clear rrs
data

v

ds
delete
file

Figure 4.34 dataserver_clear_rrs data Structure Chart

The function called by dataserver_clear_rrs datais described in more detail in Table 4.28.

Table 4.28 dataserver_clear_rrs data Function

ITEM

DESCRIPTION

ds deletefile

Server.

Data Server Subsystem Common Library routine to delete a file from the Data

Data Server

64 System Design Document

The dataserver_clear_rrc_data function clears railroad crossing data. The function clears the data
by deleting the railroad crossing data file. The dataserver_clear_rrc_data structure chart is shown

in Figure 4.35.

dataserver
clear rrc
data

v

ds
delete
file

Figure 4.35 dataserver_clear_rrc_data Structure Chart

The function called by dataserver_clear_rrc_datais described in more detail in Table 4.29.

Table 4.29 dataserver _clear_rrc_data Function

ITEM

DESCRIPTION

ds deletefile

Server.

Data Server Subsystem Common Library routine to delete a file from the Data

The child function is a process that is created by the main Data Server process to handle a single
Data Server client. The child process closes its accept socket and communicates with the client
over the newly-created socket. The child process must aso establish its own connection with the
Status Logger process to record status information. The child structure chart is shown in Figure

4.36.

Data Server

65

System Design Document

close

child

status dataserver
logger process
connect client reques
process
getppid <]7 setpgid status
message

Figure 4.36 child Structure Chart

The functions called by child are described in more detail in Table 4.30.

Table 4.30 child Functions

ITEM

DESCRIPTION

close

C Library Function to close a file descriptor. The descriptor can be for a
variety of things, including afile or socket.

dataserver process client reques

Function to process a client request by reading the request, the size of the
data sent along with the request, the data sent along with the request, and
caling a specialized function to process the request. The function that is
caled to handle the request is determined by examining the request type.
When the request has been processed by the specialized function, the
status data of the client is updated to indicate the time and number of the
request.

getppid

C Library Function that returns the process identifier of the parent of the
calling process.

process status message

MDI Proces Status Common Library routine used to log a status message
for the specified status type. If the process status library was configured to
use a status logger, then the message is forwarded to the status logger.
Otherwise the message is written to the configured status log file.
process_status_message will also keep track of the current status vaue of
the status type specified by the caller so that the current status can be
retrieved later.

setpgid

C Library Function to set the process group identifier of the calling
process.

status logger connect

MDI Status Logger Common Library routine to connect with the status
logger process.

Data Server

66 System Design Document

ITEM

DESCRIPTION

status logger disconnect

MDI Status Logger Common Library routine to close the connection with

the status logger process.

The dataserver_process client_request function processes a client request by reading the request,
the size of the data sent along with the request, the data sent along with the request, and calling a
specialized function to process the request. The function that is called to handle the request is
determined by examining the request type. When the request has been processed by the specialized
function, the status data of the client is updated to indicate the time and number of the request.
The dataserver_process_client_request structure chart is shown in Figure 4.37.

Data Server

67

System Design Document

<

read
request

dataserver

//

process
status
message

time

write
statu

dataserver

LS

read
data

dataserver

datasérver
protess
it

P

dataserver
process
close

Jataserver
process
hb

dataserver
process
client reques

dataserver
process
link write

dataserver
process
link read

V

dataserver
process
incident writ

V4

dataserver
process
incident read

v

dataserver
process
rrs write

I

i

>

write dataserver
segment init process
element status
read
segment
element
dataseqver dataserver
process process
status rea equipment wri

<]

dataservsr\ dataserver
rocess process
file time file list
dataserver
process
file read
dataserver
process file
delete
dataserver
process
file write

\/

dataserver
process
rrc read

\/

dataserver
process
rrc write

dataserver
process
rrs read

The functions called by dataserver_process client_requests are described in more detail in Table

4.31.

Data Server

Figure 4.37 dataserver_process _client_requests Structure Chart

68

System Design Document

Table 4.31 dataserver_process _client_requests Functions

ITEM

DESCRIPTION

dataserver init process status

Function to initialize the entry in the Data Server process status shared
memory segment which stores the status of each of the subsystems that
are connected with the Data Server process.

dataserver process close

Function to process a close request from the client. The client sends a
client id and the function clears the clients status areain the Data Server
status area shared memory segment. The function returns the status of
the operation to the client.

dataserver process equipment rea

Function that processes an equipment status read request. The function
obtains the status of the specified equipment by reading the appropriate
data file and sends the status to the client. The function can handle a
request for a single type of equipment or for al types of equipment.

dataserver process equipment wri

Function to process an equipment status write request. The client
specifies the type of equipment and the function writes the status to the
appropriate equipment status file in the Data Server datafile area.

dataserver process file delete

Function that processes a client file delete request. The client specifies
the file that is to be deleted and the function deletes the file from the
Data Server DataFile area.

dataserver processfile list

Function to obtain a directory-style listing of the data files that are
available. The function returns a list of file names and times to the
client.

dataserver process file read

Function that processes a client file read request. The client specifies the
file name and the function reads the file from the Data Server Data File
area and sends the file data directly to the client.

dataserver process file time

Function to process a request to obtain the file time. The client sends the
name of the file and the function determines the last time the file was
modified and returns the time directly to the client.

dataserver process file write

Function to process a client file write request. The function reads the
data from the client, creates a file in the Data Server data file area, and
writes thefile.

dataserver process hb

Function to Process a heartbeat request from the client. The client sends
aclient id and their current status which are used to update the clients
status area in the Data Server status area shared memory segment. The
function sends the status of the operation to the client.

dataserver process incident read

Function that processes an incident read request from the client. The
function reads the incident data specified by the client and sends the size
of the data followed by the data itself to the client. The function can read
asingle type of incident data or all incident data.

dataserver process incident writ

Function that processes an incident write request from the client. The
client sends the size of the incident data and the incident dataitself. The
function reads the incident data directly from the client and stores it in
one of the Data Server incident data files.

dataserver process init

Function to handle a client initialization request. The function updates
the clients status in the Data Server status shared memory segment. The
function returns the status of the operation to the client.

Data Server

69 System Design Document

ITEM

DESCRIPTION

dataserver process link read

Function to process alink read request. The function reads the data from
the Data Server link data shared memory segment, sends the status and
size of the data to the client, then sends the data to the client. The
function will handle requests for a single type of link data, or for al
types of link data.

dataserver process link write

Function to process a link write request from the client. The client sends
the type of link data, the size of the link data, and the link data itself.
The function reads the link data, stores the data in the Data Server link
data shared memory segment, and returns the status of the operation to
the client.

dataserver process rrc read

Function to process a railroad crossing read request from the client. The
function reads the data from the Data Server railroad crossing data file
and sends it to the client.

dataserver process rrc write

Function to process arailroad crossing write request from the client. The
client sends the rrc record and the function stores it in the Data Server
railroad crossing datafile.

dataserver process rrs read

Function to process a railroad sensor read request from the client. The
function reads the data from the Data Server railroad sensor data file and
sends it to the client.

dataserver process rrs write

Function to process a railroad sensor write request from the client. The
client sends the rrs record and the function stores it in the Data Server
railroad sensor datafile.

dataserver process status read

Function to handle a client subsystem status request. The function
obtains the status of the specified subsystem and returns it to the client.

dataserver read data

Function to read a specified amount of data from the client process.

dataserver read request

Function to read a request identifier and the number of bytes of data
being sent in the request from the client.

dataserver write status

Function to send areturn status to the client process.

process status message

MDI Proces Status Common Library routine used to log a status message
for the specified status type. If the process status library was configured
to use a status logger, then the message is forwarded to the status logger.
Otherwise the message is written to the configured status log file.
process_status_message will also keep track of the current status value
of the status type specified by the caller so that the current status can be
retrieved later.

read segment el ement

MDI Shared Memory Manager routine to read the contents of a specified
shared memory segment element. The contents are stored in a memory
area allocated by the caller.

time

C Library Function that returns the time in UNIX calendar format (i.e.,
number of seconds since January 1, 1970 UTC).

write segment element

MDI Shared Memory Manager Common Library function to write
information to a specific element in a shared memory segment. In this
case the shared memory segment is viewed as an array of el ements.

The dataserver_read request function reads a request identifier and the number of bytes of data
being sent in the request from the client. The dataserver_read request structure chart is shown in

Figure 4.38.

Data Server

70 System Design Document

dataserver
read
request

rocess
sock P
status
readn
message

Figure 4.38 dataserver_read_request Structure Chart

The functions called by dataserver_read_request are described in more detail in Table 4.32.

Table 4.32 dataserver_read_request Functions

ITEM

DESCRIPTION

process status message

MDI Proces Status Common Library routine used to log a status message for the
specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the message is
written to the configured status log file. process_status message will also keep track
of the current status value of the status type specified by the caller so that the current
status can be retrieved later.

sock readn

MDI Socket Common Library routine that reads a specified number of bytes from the
specified socket.

The dataserver_write status function sends a return status to the client process. The
dataserver_write_status structure chart is shown in Figure 4.39.

dataserver
write
status

process
status
message

sock
writen

Figure 4.39 dataserver_write _status Structure Chart

The functions called by dataserver_write_status are described in more detail in Table 4.33.

Data Server

71 System Design Document

Table 4.33 dataserver_write _status Functions

ITEM

DESCRIPTION

process status message

MDI Proces Status Common Library routine used to log a status message for the
specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the message is
written to the configured status log file. process_status message will also keep track
of the current status value of the status type specified by the caller so that the current
status can be retrieved later.

sock writen

MDI Socket Common Library routine used to write a specified number of bytesto a
specified socket.

The dataserver_read data function reads a specified amount of data from the client process. The
dataserver_read_data structure chart is shown in Figure 4.40.

dataserver
read
data

process
status
message

sock
readn

Figure 4.40 dataserver_read_data Structure Chart

The functions called by dataserver_read data are described in more detail in Table 4.34.

Table 4.34 dataserver_read_data Functions

ITEM

DESCRIPTION

process status message

MDI Proces Status Common Library routine used to log a status message for the
specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the message is
written to the configured status log file. process_status message will also keep track
of the current status value of the status type specified by the caller so that the current
status can be retrieved later.

sock readn

MDI Socket Common Library routine that reads a specified number of bytes from the
specified socket.

The dataserver_process init function handles a client initiaization request. The function updates
the client’s status in the Data Server status shared memory segment. The function returns the
status of the operation to the client. The dataserver_process init structure chart is shown in Figure

4.41.

Data Server

72 System Design Document

read
segment
element

dataserver
process
init

dataserver
write
status

write
segment
element

process
status
message

Figure 4.41 dataserver_process init Structure Chart

The functions called by dataserver_process _init are described in more detail in Table 4.35.

Table 4.35 dataserver_process_init Functions

ITEM

DESCRIPTION

dataserver write status

Function to send areturn status to the client process.

process status message

MDI Proces Status Common Library routine used to log a status message for the
specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the message is
written to the configured status log file. process_status message will also keep track
of the current status value of the status type specified by the caller so that the current
status can be retrieved later.

read segment el ement

MDI Shared Memory Manager routine to read the contents of a specified shared
memory segment element. The contents are stored in a memory area allocated by the
cdler.

write segment element

MDI Shared Memory Manager Common Library function to write information to a
specific element in a shared memory segment. In this case the shared memory
segment is viewed as an array of elements.

The dataserver_process_close function processes a close request from the client. The client sends a
client id and the function clears the client’s status area in the Data Server status area shared
memory segment. The function returns the status of the operation to the client. The
dataserver_process_close structure chart is shown in Figure 4.42.

Data Server

73 System Design Document

dataserver

process
close

dataserver dataserver

init process write

status status

Figure 4.42 dataserver_process_close Structure Chart

The functions called by dataserver_process_close are described in more detail in Table 4.36.

Table 4.36 dataserver_process _close Functions

ITEM

DESCRIPTION

dataserver init process status Function to initialize the entry in the Data Server process status shared

memory segment which stores the status of each of the subsystems that are
connected with the Data Server process.

dataserver write status

Function to send areturn status to the client process.

The dataserver_process_hb function processes a heartbeat request from the client. The client sends
aclient id and its current status which are used to update the client’ s status area in the Data Server
status area shared memory segment. The function sends the status of the operation to the client.
The dataserver_process_hb structure chart is shown in Figure 4.43.

process
status
message

dataserver
process
hb

dataserver
write
status

write
segment
element

read
segment
element

Figure 4.43 dataserver_process_hb Structure Chart

The functions called by dataserver_process_hb are described in more detail in Table 4.37.

Data Server

74 System Design Document

Table 4.37 dataserver_process_hb Functions

ITEM

DESCRIPTION

dataserver write status

Function to send areturn status to the client process.

process status message

MDI Proces Status Common Library routine used to log a status message for the
specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the message is
written to the configured status log file. process_status message will also keep track
of the current status value of the status type specified by the caller so that the current
status can be retrieved later.

read segment el ement

MDI Shared Memory Manager routine to read the contents of a specified shared
memory segment element. The contents are stored in a memory area allocated by the
caler.

write segment element

MDI Shared Memory Manager Common Library function to write information to a
specific element in a shared memory segment. In this case the shared memory
segment is viewed as an array of elements.

The dataserver_process link_write function processes a link write request from the client. The
client sends the type of link data, the size of the link data, and the link data itself. The function
reads the link data, stores the data in the Data Server link data shared memory segment, and
returns the status of the operation to the client. The dataserver_process _link_write structure chart

isshown in Figure 4.44.

process
status
message

malloc

dataserver
process

link write
dataserver dataserver write dataserver dataserver
read link determine write update link
R segment .
data link segmen status time

Figure 4.44 dataserver_process link_write Structure Chart

The functions called by dataserver_process _link_write are described in more detail in Table 4.38.

Table 4.38 dataserver_process_link_write Functions

ITEM

DESCRIPTION

dataserver determine link segmen Function to determine the shared memory segment identifier based on

the type of link data. The function returns the link segment identifier.

dataserver read link data

Function to read the link data from the client. The function reads the
number of bytes specified by the client and stores the data in a local
globa array. Each link data is compressed from a structure to a single

byte.

Data Server

75 System Design Document

ITEM

DESCRIPTION

dataserver update link time

Function to update the link data timeout element in the Data Server
timeout shared memory segment.

dataserver write status

Function to send areturn status to the client process.

malloc

C Library Function to alocate the specified amount of memory.

process status message

MDI Proces Status Common Library routine used to log a status
message for the specified status type. If the process status library was
configured to use a status logger, then the message is forwarded to the
status logger. Otherwise the message is written to the configured status
log file. process status message will also keep track of the current
status value of the status type specified by the caller so that the current
status can be retrieved later.

write segment

MDI Shared Memory Manager Common Library routine that writes data
to the specified shared memory segment.

The dataserver_read link_data function reads the link data from the client. The function reads the
number of bytes specified by the client and stores the datain alocal global array. Each link datais
compressed from a structure to a single byte. The dataserver_read link_data structure chart is

shown in Figure 4.45.

dataserver
read link
data

process
status
message

sock
readn

Figure 4.45 dataserver_read_link_data Structure Chart
The functions called by dataserver_read link_data are described in more detail in Table 4.39.

Table 4.39 dataserver _read_link_data Functions

ITEM

DESCRIPTION

process status message

MDI Proces Status Common Library routine used to log a status message for the
specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the message
is written to the configured status log file. process status message will also keep
track of the current status value of the status type specified by the caller so that the
current status can be retrieved later.

sock readn

MDI Socket Common Library routine that reads a specified number of bytes from
the specified socket.

Data Server

76 System Design Document

The dataserver_update_link_time function updates the link data timeout element in the Data Server
timeout shared memory segment. The dataserver_update link_time structure chart is shown in
Figure 4.46.

dataserver
update link
time

dataserver

time update data
time

Figure 4.46 dataserver_update link_time Structure Chart
The functions called by dataserver_update _link_time are described in more detail in Table 4.40.

Table 4.40 dataserver _update link_time Functions

ITEM DESCRIPTION
dataserver update data time Function to update the Data Server timeout shared memory segment.
time C Library Function that returns the time in UNIX calendar format (i.e., number
of seconds since January 1, 1970 UTC).

The dataserver_update data time function updates the Data Server timeout shared memory
segment. The dataserver_update data time structure chart is shown in Figure 4.47.

dataserver
update data

time

write
segment
element

Figure 4.47 dataserver _update _data_time Structure Chart
The function called by dataserver_update data timeis described in more detail in Table 4.41.

Data Server 77 System Design Document

Table 4.41 dataserver_update data_time Function

ITEM

DESCRIPTION

write segment element

MDI Shared Memory Manager Common Library function to write information
to a specific element in a shared memory segment. In this case the shared
memory segment is viewed as an array of elements.

The dataserver_process link_read function processes a link read request. The function reads the
data from the Data Server link data shared memory segment, sends the status and size of the data
to the client, then sends the data to the client. The function will handle requests for a single type of
link data, or for al types of link data. The dataserver_process link_read structure chart is shown

in Figure 4.48.

malloc

[X

process
status
message

P

dataserver
determine
link segmen

V4

sizeof
segment

dataserver
process
link read
dataserver
write
data
dataserver
read link
segment
dataserver
write
size
dataserver
write
status

Figure 4.48 dataserver_process link_read Structure Chart

The functions called by dataserver_process link_read are described in more detail in Table 4.42.

Data Server

78

System Design Document

Table 4.42 dataserver_process link_read Functions

ITEM DESCRIPTION

dataserver determine link segmen Function to determine the shared memory segment identifier based on
the type of link data. The function returns the link segment identifier.

dataserver read link segment Function to read link data from a Data Server link shared memory
segment and store the datain alocal global array.

dataserver write data Function to write data to a client process.

dataserver write size Function to send a data size to the client process.

dataserver write status Function to send areturn status to the client process.

malloc C Library Function to alocate the specified amount of memory.

process status message MDI Proces Status Common Library routine used to log a status

message for the specified status type. If the process status library was
configured to use a status logger, then the message is forwarded to the
status logger. Otherwise the message is written to the configured status
log file. process _status message will also keep track of the current
status value of the status type specified by the caller so that the current
status can be retrieved later.

sizeof segment MDI Shared Memory Manager Common Library routine used to obtain
the sizein bytes of the specified shared memory segment.

The dataserver_write size function sends a data size to the client process. The
dataserver_write_size structure chart is shown in Figure 4.49.

dataserver
write
size

process
status
message

sock
writen

Figure 4.49 dataserver_write_size Structure Chart

The functions called by dataserver_write_size are described in more detail in Table 4.43.

Data Server 79 System Design Document

Table 4.43 dataserver_write size Functions

ITEM DESCRIPTION

process status message MDI Proces Status Common Library routine used to log a status message for the
specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the message is
written to the configured status log file. process_status message will also keep track
of the current status value of the status type specified by the caller so that the current
status can be retrieved later.

sock writen MDI Socket Common Library routine used to write a specified number of bytesto a
specified socket.

The dataserver_read link_segment function reads link data from a Data Server link shared memory
segment and stores the data in a local global array. The dataserver_read link_segment structure
chart is shown in Figure 4.50.

dataserver
read link
segment

v

. rocess
sizeof P read
status

segment segment
message

Figure 4.50 dataserver_read_link_segment Structure Chart
The functions called by dataserver_read link_segment are described in more detail in Table 4.44.

Table 4.44 dataserver_read_link_segment Functions

ITEM DESCRIPTION

process status message MDI Proces Status Common Library routine used to log a status message for
the specified status type. If the process status library was configured to use a
status logger, then the message is forwarded to the status logger. Otherwise
the message is written to the configured status log file
process_status_message will also keep track of the current status value of the
status type specified by the caller so that the current status can be retrieved
later.

read segment MDI Shared Memory Manager Common Library routine to read the contents
of the specified shared memory segment. The contents are stored in a memory
area allocated by the caller.

sizeof segment MDI Shared Memory Manager Common Library routine used to obtain the
size in bytes of the specified shared memory segment.

Data Server 80 System Design Document

The dataserver_write_data function writes data to a client process. The dataserver_write data
structure chart is shown in Figure 4.51.

dataserver
write
data

process
status
message

sock
writen

Figure 4.51 dataserver_write_data Structure Chart

The functions called by dataserver_write_data are described in more detail in Table 4.45.

Table 4.45 dataserver_write data Functions

ITEM

DESCRIPTION

process status message

MDI Proces Status Common Library routine used to log a status message for the
specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the message is
written to the configured status log file. process_status message will also keep track
of the current status value of the status type specified by the caller so that the current
status can be retrieved later.

sock writen

MDI Socket Common Library routine used to write a specified number of bytesto a
specified socket.

The dataserver_process_incident_write function processes an incident write request from the client.
The client sends the size of the incident data and the incident data itself. The function reads the
incident data directly from the client and stores it one of the Data Server incident data files. The
dataserver_process_incident_write structure chart is shown in Figure 4.52.

Data Server

81 System Design Document

process
status
message

dataserver

process
incident writ
ds dataserver dataserver dataserver
open write write data update
file status file incident time

Figure 4.52 dataserver_process _incident_write Structure Chart

The functions called by dataserver_process _incident_write are described in more detail in Table

4.46.

Table 4.46 dataserver_process_incident_write Functions

ITEM

DESCRIPTION

dataserver update incident time

Function to update the incident data timeout element in the Data Server
timeout shared memory segment.

dataserver write datafile

Function to write an open data file. The function reads the data from the
client process and writesit to the file.

dataserver write status

Function to send areturn status to the client process.

ds open file Data Server Subsystem File Library routine to open a file and return
statistics about the file.
process status message MDI Proces Status Common Library routine used to log a status message

for the specified status type. If the process status library was configured to
use a status logger, then the message is forwarded to the status logger.
Otherwise the message is written to the configured status log file.
process_status_message will also keep track of the current status value of
the status type specified by the caller so that the current status can be
retrieved later.

The ds_fopen_file function is a Data Server Subsystem File Library routine to open a file using
formatted 1/0O and return statistics about the file. The ds fopen_file structure chart is shown in

Figure 4.53.

Data Server

82 System Design Document

ds
fopen
file

fopen stat

Figure 4.53 ds fopen_file Structure Chart
The functions called by ds fopen file are described in more detail in Table 4.47.

Table 4.47 ds fopen_file Functions

ITEM DESCRIPTION

fopen C Library Function to open afile.

stat C Library Function to obtain the status information about afile.

The dataserver_write_data file function writes an open data file. The function reads the data from
the client process and writes it to the file. The dataserver_write_data file structure chart is shown
in Figure 4.54.

dataserver
write data
file

dataserver
read
data

process
status
message

write

Figure 4.54 dataserver_write_data file Structure Chart
The functions called by dataserver_write_data file are described in more detail in Table 4.48.

Table 4.48 dataserver_write data file Functions

ITEM DESCRIPTION

dataserver read data Function to read a specified amount of data from the client process.

Data Server 83 System Design Document

ITEM DESCRIPTION

process status message MDI Proces Status Common Library routine used to log a status message for the
specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the message
is written to the configured status log file. process_status message will also keep
track of the current status value of the status type specified by the caller so that the
current status can be retrieved later.

write C Library Function used to write data to a descriptor (e.g., socket, file).

The dataserver_update incident_time function updates the incident data timeout element in the
Data Server timeout shared memory segment. The dataserver_update incident_time structure
chart is shown in Figure 4.55.

dataserver
update
incident time
dataserver
time update data
time

Figure 4.55 dataserver _update_incident_time Structure Chart

The functions called by dataserver_update incident_time are described in more detail in Table
4.49.

Table 4.49 dataserver _update incident_time Functions

ITEM DESCRIPTION
dataserver update data time Function to update the Data Server timeout shared memory segment.
time C Library Function that returns the time in UNIX calendar format (i.e.,
number of seconds since January 1, 1970 UTC).

The dataserver_process_incident_read function processes an incident read request from the client.
The function reads the incident data specified by the client and sends the size of the data followed
by the data itself to the client. The function can read a single type of incident data or all incident
data. The dataserver_process_incident_read structure chart is shown in Figure 4.56.

Data Server 84 System Design Document

dataserver
process
incident read

ds
open
file

dataserver dataserver dataserver
write write read data
status size file

process
status
message

close

Figure 4.56 dataserver_process _incident_read Structure Chart

The functions called by dataserver_process incident_read are described in more detail in Table
4.50.

Table 4.50 dataserver_process_incident_read Functions

ITEM DESCRIPTION

close C Library Function to close a file descriptor. The descriptor can be for a
variety of things, including afile or socket.

dataserver read datafile Function to read an open data file and send it to the client. The function
reads the data and writes it to the client socket.

dataserver write size Function to send a data size to the client process.

dataserver write status Function to send areturn status to the client process.

ds open file Data Server Subsystem File Library routine to open a file and return

statistics about thefile.

process status message MDI Proces Status Common Library routine used to log a status message
for the specified status type. If the process status library was configured to
use a status logger, then the message is forwarded to the status logger.
Otherwise the message is written to the configured status log file.
process_status_message will also keep track of the current status value of
the status type specified by the caller so that the current status can be
retrieved later.

The dataserver_read_data file function reads an open data file and sends it to the client. The
function reads the data and writes it to the client socket. The dataserver_read data file structure
chart is shown in Figure 4.57.

Data Server 85 System Design Document

read

dataserver
read data
file

v

process
status
message

dataserver
write
data

Figure 4.57 dataserver_read_data file Structure Chart

The functions called by dataserver_read data file are described in more detail in Table 4.51.

Table 4.51 dataserver_read_data_file Functions

ITEM DESCRIPTION

dataserver write data Function to write data to a client process.

process status message MDI Proces Status Common Library routine used to log a status message for the
specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the message is
written to the configured status log file. process_status_message will also keep track
of the current status value of the status type specified by the caller so that the
current status can be retrieved later.

read C Library Function used to read data from a descriptor (e.g., socket, file).

The dataserver_process rrs write function processes a railroad sensor write request from the
client. The client sends the rrs record and the function stores it in the Data Server railroad sensor
datafile. The dataserver_process rrs write structure chart is shown in Figure 4.58.

status

process

message

dataserver
process
rrs write

dataserver
update
rrs time

dataserver
write data
file

dataserver
write
status

Figure 4.58 dataserver_process rrs write Structure Chart

The functions called by dataserver_process rrs write are described in more detail in Table 4.52.

Data Server

86 System Design Document

Table 4.52 dataserver_process rrs write Functions

ITEM DESCRIPTION

dataserver update rrstime Function to update the incident data timeout element in the Data Server timeout
shared memory segment.

dataserver write datafile Function to write an open data file. The function reads the data from the client
process and writes it to the file.

dataserver write status Function to send areturn status to the client process.

ds open file Data Server Subsystem File Library routine to open a file and return statistics
about thefile.

process status message MDI Proces Status Common Library routine used to log a status message for the

specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the
message is written to the configured status log file. process_status_message will
also keep track of the current status value of the status type specified by the
caller so that the current status can be retrieved later.

The dataserver_update rrs_time function updates the incident data timeout element in the Data
Server timeout shared memory segment. The dataserver_update_rrs_time structure chart is shown
in Figure 4.59.

dataserver
update
rrs time
dataserver
time update data
time

Figure 4.59 dataserver_update rrs_time Structure Chart

The functions called by dataserver_update rrs_time are described in more detail in Table 4.53.

Table 4.53 dataserver_update rrs_time Functions

ITEM DESCRIPTION
dataserver update data time Function to update the Data Server timeout shared memory segment.
time C Library Function that returns the time in UNIX calendar format (i.e., number
of seconds since January 1, 1970 UTC).

The dataserver_process rrs_read function processes a railroad sensor read request from the client.
The function reads the data from the Data Server railroad sensor data file and sends it to the client.
The dataserver_process rrs_read structure chart is shown in Figure 4.60.

Data Server 87 System Design Document

ds
open
file

dataserver

process
rrs read

process dataserver dataserver dataserver

status write write read data

message status size file

Figure 4.60 dataserver_process rrs read Structure Chart

The functions called by dataserver_process rrs_read are described in more detail in Table 4.54.

Table 4.54 dataserver_process rrs read Functions

ITEM

DESCRIPTION

dataserver read datafile

Function to read an open data file and send it to the client. The function reads
the data and writes it to the client socket.

dataserver write size

Function to send a data size to the client process.

dataserver write status

Function to send areturn status to the client process.

ds open file Data Server Subsystem File Library routine to open a file and return statistics
about thefile.
process status message MDI Proces Status Common Library routine used to log a status message for the

specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the
message is written to the configured status log file. process_status message will
also keep track of the current status value of the status type specified by the
caller so that the current status can be retrieved later.

The dataserver_process rrc_write function processes a railroad crossing write request from the
client. The client sends the rrc record and the function stores it in the Data Server railroad crossing
datafile. The dataserver_process rrc_write structure chart is shown in Figure 4.61.

Data Server

88 System Design Document

status

dataserver
process
rrc write

process

message

dataserver
update
rrc time

dataserver
write data
file

dataserver
write
status

Figure 4.61 dataserver_process rrc_write Structure Chart

The functions called by dataserver_process rrc_write are described in more detail in Table 4.55.

Table 4.55 dataserver_process rrc_write Functions

ITEM

DESCRIPTION

dataserver update rrc time

Function to update the incident data timeout element in the Data Server timeout
shared memory segment.

dataserver write datafile

Function to write an open data file. The function reads the data from the client
process and writes it to the file.

dataserver write status

Function to send areturn status to the client process.

ds open file Data Server Subsystem File Library routine to open a file and return statistics
about thefile.
process status message MDI Proces Status Common Library routine used to log a status message for

the specified status type. If the process status library was configured to use a
status logger, then the message is forwarded to the status logger. Otherwise the
message is written to the configured status log file. process status message
will also keep track of the current status value of the status type specified by
the caller so that the current status can be retrieved later.

The dataserver_update rrc_time function updates the incident data timeout element in the Data
Server timeout shared memory segment. The dataserver_update _rrc_time structure chart is shown

in Figure 4.62.

Data Server

89 System Design Document

time

dataserver
update
rrc time

dataserver
update data
time

Figure 4.62 dataserver _update rrc_time Structure Chart

The functions called by dataserver_update _rrc_time are described in more detail in Table 4.56.

Table 4.56 dataserver_update rrc_time Functions

ITEM

DESCRIPTION

dataserver update data time

Function to update the Data Server timeout shared memory segment.

time

C Library Function that returns the time in UNIX calendar format (i.e., number
of seconds since January 1, 1970 UTC).

The dataserver_process rrc_read function processes a railroad crossing read request from the
client. The function reads the data from the Data Server railroad crossing data file and sends it to
the client. The dataserver_process rrc_read structure chart is shown in Figure 4.63.

ds
open
file

dataserver

process

rrc read
process dataserver dataserver dataserver
status write write read data
message status size file

Figure 4.63 dataserver_process rrc_read Structure Chart

The functions called by dataserver_process rrc_read are described in more detail in Table 4.57.

Data Server

90

System Design Document

Table 4.57 dataserver_process rrc_read Functions

ITEM

DESCRIPTION

dataserver read datafile

Function to read an open data file and send it to the client. The function reads
the data and writes it to the client socket.

dataserver write size

Function to send a data size to the client process.

dataserver write status

Function to send areturn status to the client process.

ds open file Data Server Subsystem File Library routine to open a file and return statistics
about thefile.
process status message MDI Proces Status Common Library routine used to log a status message for the

specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the
message is written to the configured status log file. process_status_message will
also keep track of the current status vaue of the status type specified by the
caller so that the current status can be retrieved later.

The dataserver_process file write function processes a client file write request. The function reads
the data from the client, creates a file in the Data Server data file area, and writes the file. The
dataserver_process file write structure chart is shown in Figure 4.64.

process
status
message

dataserver

process

file write
ds dataserver dataserver
open write data write
file file status

Figure 4.64 dataserver_process file write Structure Chart

The functions called by dataserver_process file write are described in more detail in Table 4.58.

Table 4.58 dataserver_process file write Functions

ITEM

DESCRIPTION

dataserver write datafile

Function to write an open data file. The function reads the data from the client
process and writes it to the file.

dataserver write status

Function to send areturn status to the client process.

ds open file

Data Server Subsystem File Library routine to open a file and return statistics
about thefile.

Data Server

91 System Design Document

ITEM DESCRIPTION

process status message MDI Proces Status Common Library routine used to log a status message for
the specified status type. If the process status library was configured to use a
status logger, then the message is forwarded to the status logger. Otherwise the
message is written to the configured status log file. process status message
will also keep track of the current status value of the status type specified by
the caller so that the current status can be retrieved later.

The dataserver_process file delete function processes a client file delete request. The client
specifies the file that is to be deleted and the function deletes the file from the Data Server Data
Filearea. The dataserver_process file_delete structure chart is shown in Figure 4.65.

dataserver
process file
delete

v

process ds dataserver
status delete write
message file status

Figure 4.65 dataserver_process file_delete Structure Chart

The functions called by dataserver_process file_delete are described in more detail in Table 4.59.

Table 4.59 dataserver_process file_delete Functions

ITEM DESCRIPTION
dataserver write status Function to send areturn status to the client process.
dsdeletefile Data Server Subsystem Common Library routine to delete a file from the Data
Server.
process status message MDI Proces Status Common Library routine used to log a status message for

the specified status type. If the process status library was configured to use a
status logger, then the message is forwarded to the status logger. Otherwise
the message is written to the configured status log file
process_status_message will also keep track of the current status value of the
status type specified by the caller so that the current status can be retrieved
later.

The dataserver_process file read function processes a client file read request. The client specifies
the file name and the function reads the file from the Data Server Data File area and sends the file
data directly to the client. The dataserver_process file read structure chart is shown in Figure
4.66.

Data Server 92 System Design Document

status

dataserver
process
file read

process

message

dataserver dataserver dataserver
write write read data
status size file

Figure 4.66 dataserver_process file read Structure Chart

The functions called by dataserver_process file read are described in more detail in Table 4.60.

Table 4.60 dataserver_process file read Functions

ITEM

DESCRIPTION

dataserver read datafile

Function to read an open data file and send it to the client. The function reads
the data and writes it to the client socket.

dataserver write size

Function to send a data size to the client process.

dataserver write status

Function to send areturn status to the client process.

ds open file Data Server Subsystem File Library routine to open a file and return statistics
about thefile.
process status message MDI Proces Status Common Library routine used to log a status message for the

specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the
message is written to the configured status log file. process_status_message will
also keep track of the current status value of the status type specified by the
caller so that the current status can be retrieved later.

The dataserver_process file_time function processes a request to obtain the file time. The client
sends the name of the file and the function determines the last time the file was modified and
returns the time directly to the client. The dataserver_process file_time structure chart is shown in

Figure 4.67.

Data Server

93 System Design Document

dataserver

process
file time

process ds dataserver dataserver

status open write write file

message file status time

Figure 4.67 dataserver_process file_time Structure Chart

The functions called by dataserver_process file_time are described in more detail in Table 4.61.

Table 4.61 dataserver_process file_time Functions

ITEM DESCRIPTION
dataserver write file time Function to send afile time to the client process.
dataserver write status Function to send areturn status to the client process.
ds open file Data Server Subsystem File Library routine to open a file and return statistics
about thefile.
process status message MDI Proces Status Common Library routine used to log a status message for the

specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the
message is written to the configured status log file. process_status message will
also keep track of the current status value of the status type specified by the
caller so that the current status can be retrieved later.

The dataserver_write file time function sends a file time to the client process. The
dataserver_write file_time structure chart is shown in Figure 4.68.

dataserver
write file
time
process
sock_writen status
message

Figure 4.68 dataserver_write file_time Structure Chart

Data Server 94 System Design Document

The functions called by dataserver_write file time are described in more detail in Table 4.62.

Table 4.62 dataserver_write file time Functions

ITEM DESCRIPTION

process status message MDI Proces Status Common Library routine used to log a status message for the
specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the message
is written to the configured status log file. process _status message will also keep
track of the current status value of the status type specified by the caller so that the
current status can be retrieved later.

sock_writen MDI Socket routine that write a specified number of bytes to the specified socket.

The dataserver_process file list function obtains a directory-style listing of the data files that are
avallable. The function retuns a list of file names and times to the client. The
dataserver_process file list structure chart is shown in Figure 4.609.

dataserver
process
file list
Bt
dataserver
get directory free
list
dataserver
malloc write file
list
ds get dataserver
file write
timestamp size
dataserver
write
status

Figure 4.69 dataserver_process file list Structure Chart

The functions called by dataserver_process file _list are described in more detail in Table 4.63.

Data Server 95 System Design Document

Table 4.63 dataserver_process file list Functions

ITEM

DESCRIPTION

dataserver get directory list

Function to obtain a list of file names from a directory. The function allocates
the space needed to store the listing, then reads the file names into the allocated
space, returning them to the caller.

dataserver writefile list

Function to send a file list, which consists of the file names and their
corresponding timestamps, to the client.

dataserver write size

Function to send a data size to the client process.

dataserver write status

Function to send areturn status to the client process.

ds get file timestamp

Data Server Subsystem File Library routine to retrieve the timestamp of a
particular file.

free C Library Function used to free previously allocated memory and make it
available for further alocation.
malloc C Library Function to alocate the specified amount of memory.

The dataserver_get_directory_list function obtains a list of file names from a directory. The
function allocates the space needed to store the listing, then reads the file names into the allocated
space, returning them to the caller. The dataserver_get_directory _list structure chart is shown in

Figure 4.70.

dataserver
directory
exists

opendir

dataserver
get directory
list

readdir closedir free

Figure 4.70 dataserver_get_directory_list Structure Chart
The functions called by dataserver_get_directory_list are described in more detail in Table 4.64.

Table 4.64 dataserver_get_directory_list Functions

ITEM

DESCRIPTION

closedir

C Library Function to close a directory structure that has been opened with
opendir().

dataserver directory exists

Function to determine if a directory exists.

free C Library Function used to free previously allocated memory and make it
available for further alocation.

malloc C Library Function to alocate the specified amount of memory.

Data Server 96 System Design Document

ITEM DESCRIPTION

opendir C Library Function to obtain information about a directory and to initiadize a
DIR structure for processing directory entries.

readdir C Library Function to read a directory entry. The directory entry must have first
been opened with opendir().

The dataserver_directory exists function determines if a directory exists. The
dataserver_directory_exists structure chart is shown in Figure 4.71.

dataserver
directory
exists

Istat S_ISDIR

Figure 4.71 dataserver _directory_exists Structure Chart
The functions called by dataserver_directory_exists are described in more detail in Table 4.65.

Table 4.65 dataserver_directory_exists Functions

ITEM DESCRIPTION
Istat C Library Function to obtain information about afile.
S ISDIR C Library Macro to determine if a specified file is a directory.

The ds_get_file_timestamp function is a Data Server Subsystem File Library routine to retrieve the
timestamp of a particular file. Theds_get_file timestamp structure chart is shown in Figure 4.72.

Data Server 97 System Design Document

ds get
file
timestamp

v

stat

Figure4.72 ds_get_file timestamp Structure Chart
The function called by ds_get_file timestamp is described in more detail in Table 4.66.

Table 4.66 ds _get_file timestamp Function

ITEM DESCRIPTION

stat C Library Function to obtain the status information about afile.

The dataserver_write file list function sends a file list, which consists of the file names and their
corresponding timestamps, to the client. The dataserver_write file list structure chart is shown in
Figure 4.73.

dataserver
write file
list

process
status
message

sock
writen

Figure 4.73 dataserver_write file list Structure Chart
The functions called by dataserver_write file_list are described in more detail in Table 4.67.

Data Server 98 System Design Document

Table 4.67 dataserver_write file list Functions

ITEM

DESCRIPTION

process status message

MDI Proces Status Common Library routine used to log a status message for the
specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the message is
written to the configured status log file. process_status message will also keep track
of the current status value of the status type specified by the caller so that the current
status can be retrieved later.

sock writen

MDI Socket Common Library routine used to write a specified number of bytes to a
specified socket.

The dataserver_process status read function handles a client subsystem status request. The
function obtains the status of the specified subsystem and returns it to the client. The
dataserver_process_status read structure chart is shown in Figure 4.74.

process
status
message

read

segment
element

dataserver
process
status read

dataserver dataserver
write write
status data

Figure 4.74 dataserver_process status read Structure Chart
The functions called by dataserver_process status read are described in more detail in Table 4.68.

Table 4.68 dataserver_process_status read Functions

ITEM

DESCRIPTION

dataserver write data

Function to write data to a client process.

dataserver write status

Function to send areturn status to the client process.

process status message

MDI Proces Status Common Library routine used to log a status message for
the specified status type. If the process status library was configured to use a
status logger, then the message is forwarded to the status logger. Otherwise
the message is written to the configured status log file
process_status_message will also keep track of the current status value of the
status type specified by the caller so that the current status can be retrieved
later.

read segment el ement

MDI Shared Memory Manager routine to read the contents of a specified
shared memory segment element. The contents are stored in a memory area
allocated by the caller.

Data Server

99 System Design Document

The dataserver_process_equipment_write function processes an equipment status write request.
The client specifies the type of equipment and the function writes the status to the appropriate
equipment status file in the Data Server data file area. The dataserver_process_equipment_write
structure chart is shown in Figure 4.75.

dataserver
process
equipment wri

process dataserver dataserver dataserver
status write write data update
message status file equip time

Figure 4.75 dataserver_process_equipment_write Structure Chart

The functions called by dataserver_process_equipment_write are described in more detail in Table
4.69.

Table 4.69 dataserver_process_equipment_write Functions

ITEM DESCRIPTION
dataserver update equip time Function to update the equipment status data timeout element in the
Data Server timeout shared memory segment.
dataserver write datafile Function to write an open data file. The function reads the data from the
client process and writesit to the file.
dataserver write status Function to send areturn status to the client process.
ds open file Data Server Subsystem File Library routine to open a file and return

statistics about thefile.

process status message MDI Proces Status Common Library routine used to log a status message
for the specified status type. If the process status library was configured
to use a status logger, then the message is forwarded to the status logger.
Otherwise the message is written to the configured status log file.
process_status_message will also keep track of the current status value
of the status type specified by the caller so that the current status can be
retrieved later.

The dataserver_update_equip_time function updates the equipment status data timeout element in
the Data Server timeout shared memory segment. The dataserver_update_equip_time structure
chart is shown in Figure 4.76.

Data Server 100 System Design Document

time

dataserver
update
equip time

dataserver
update data
time

Figure 4.76 dataserver _update_equip_time Structure Chart

The functions called by dataserver_update_equip_time are described in more detail in Table 4.70.

Table 4.70 dataserver _update_equip_time Functions

ITEM

DESCRIPTION

dataserver update data time

Function to update the Data Server timeout shared memory segment.

time

C Library Function that returns the time in UNIX caendar format (i.e.,
number of seconds since January 1, 1970 UTC).

The dataserver_process_equipment_read function processes an equipment status request. The
function obtains the status of the specified equipment by reading the appropriate data file and sends
the status to the client. The function can handle a request for a single type of equipment or for al
types of equipment. The dataserver_process_equipment_read structure chart is shown in Figure

4.77.
dataserver
process
equipment rea
process ds dataserver dataserver dataserver
status open write write read data close
message status size file

Figure 4.77 dataserver_process_equipment_read Structure Chart

The functions called by dataserver_process_equipment_read are described in more detail in Table

4.71.

Data Server

101

System Design Document

Table4.71 dataserver_process_equipment_read Functions

ITEM DESCRIPTION

close C Library Function to close afile descriptor. The descriptor can be for a
variety of things, including afile or socket.

dataserver read datafile Function to read an open data file and send it to the client. The function
reads the data and writes it to the client socket.

dataserver write size Function to send a data size to the client process.

dataserver write status Function to send areturn status to the client process.

ds open file Data Server Subsystem File Library routine to open a file and return

statistics about thefile.

process status message MDI Proces Status Common Library routine used to log a status message
for the specified status type. If the process status library was configured
to use a status logger, then the message is forwarded to the status logger.
Otherwise the message is written to the configured status log file.
process_status message will also keep track of the current status value
of the status type specified by the caller so that the current status can be
retrieved later.

4.3.1.3 Communication Protocol

The communication protocol between the client and the Data Server subsystem can be best defined
by a set of structure charts which indicate the type and sequence of data that is passed between the
client and server. Figure 4.78 through Figure 4.83 show the protocol for passing client data, lane
data, incident data, equipment data, railroad data, and file data respectively. The data couples on
the diagram indicate the type of data that is passed. The order of the couples (i.e., top to bottom)
indicates the sequence in time in which the data must be passed.

Data Server 102 System Design Document

Client

Init Req

o>

Status

Client

Data

<O

HB Req

o>

Status

Client

Server

Data

<O

Close Req

O

Status

<+O

Server

Data

Server

Data Server

Figure 4.78. Client Data Protocol

103

System Design Document

Link Write

Req

O

status

Data
Client <O Server

Link Read Req

O

status

Data
Client <O Server

Link Data

<+O

Data Server

Figure 4.79. Link Data Protocol

Incident Write

Req
Of>

Status

Client <|—© Server

Incident Read
Req

O->

Status

Client <|—© Server

Incident Data

<+O

Figure 4.80. Incident Data Protocol

104 System Design Document

Data Server

Equipment

Write Req

o>

Status

Client <|—© Server
Equipment Read
Req
Status
Client <|—© Server

Equipment Data

<+O

Figure 4.81. Equipment Data Protocol

105

System Design Document

Data Server

Client

RRS Write Req

o>

Status

Client

<+O

RRC Write Req

Server

o>

Status

Client

<+O

RRS Read Req

Server

o>

Status

<O

RRS Data

Client

<+O

RRC Read Req

Server

o>

Status

<O

RRC Data

<+O

Server

Figure 4.82. Railroad Data Protocol

106

System Design Document

Data Server

Client

File Write
Req

Client

Status

File Read Req

Client

Status

Server

File Data

File Time Req

Client

Status

Server

File Time

File Delete
Req

Status

Server

Server

Figure 4.83. File Data Protocol

107

System Design Document

4.3.2 Status GUI

The Status GUI allows the user to determine at a glance the overall status of the Data Server and
the systems that interface with it. The user can aso obtain detailed process status for each of the
systems. The Status GUI component is a Unix process.

Each of the externa Data Generators, the external Data Consumers and the Data Server has a sub-
window on the Status GUI, which shows the high-level status of that process. The color of the
sub-window header’s background indicates the overal status for the process: green, yellow or red
(OK, Warning and Error, respectively). The sub-window aso shows the last request received from
that process, the time (in seconds) since this request, the time elapsed since the last heartbeat was
received from the process, the time when the process was started, and the node ID where the
processisrunning. Clicking the picture button on the sub-window launches a process that displays
the process Status GUI of the indicated Data Consumer or Data Generator. Figure 4.84 shows the
MDI Status GUI screen, and Figure 4.85 shows the Data Server Process Status GUI screen.

Data Server 108 System Design Document

l Texas

Dapartment
of Transportation

Last Actiwity: Rd Incid ALARD

Sect 1

Last Heartbeat: 6

Start Time: 16:20:02 11/20/97
144.45,88.153

Locations

Last Activity: Mo Activity Last Activity: No Activity

Sec: —-— Sec: --

Lazt Heartbeat; —— Lazt Heartbeat; ——

Start Time: —— Start Time: ——

Location: -- Location: --

Last Activity: Heartbeat Last Heartbeat

33
Heartbeat:

Activity:
1
Heartbeat:

Sec: Sec:

Last 33
Start Times 14:34:30 11/21/97
144,45,88,151

Last 1
Start Times 16320303 11/20/97
Location: 144,45,83,101

Location:

Last

Activity: Mo Actiwvity

Sec: —

Lazt Heartbeat: --

Start Time: ——

Location: --

Figure4.84 MDI Status GUI

Data Server 109 System Design Document

Status GUI

911 Connection

-
-
-
-
-
-
-
-
-
-
-
-

Figure 4.85 Data Server Process Status GUI Screen

4.3.2.1 ProcessDesign

The Status GUI flow diagram is shown in Figure 4.86. The main routine of the Status GUI is
periodic_update, which is called periodicaly to update the status displayed at the configurable
update rate, once the process initialization is complete. The Status GUI process attaches directly
to the MDI Status shared memory that was created by the Data Server process. When
periodic_update is called, it reads the shared memory element and uses the data to update the GUI
sub-windows for each MDI Subsystem. When the picture button on a sub-window is pressed, the
process forks another process to display the process status window of the selected subsystem.

Data Server 110 System Design Document

2.7

mdisg

MDI Status

periodic
= Data

update

Display Process ..
Status

> display
detailed status

Figure 4.86. Status GUI Data Flow Diagram

4.3.2.2 Model Design

Mdisg teleuse_main is the main routine of the MDI Status GUI. This routine is supplied by the
TeleUSE UIMS tool and is used as the entry point into the process. This routine is responsible for
setting up any TeleUSE specific environment and then invoking the application main module
followed by the INITIALLY events in the associated D modules. The mdisg teleuse main
structure chart is shown in Figure 4.87.

mdisg
teleuse_main

mdisg

. INITIALLY
main

Figure4.87 mdisg teleuse_main Structure Chart
The functions called by mdisg teleuse_main are described in more detail in Table 4.72.

Table4.72 mdisg teleuse_ main Functions

ITEM DESCRIPTION

INITIALLY This D event is the initial event that gets executed on startup of the MDI Status GUI
application. This routine is responsible for displaying the top-level shell, invoking the
application initialization routine, and setting the periodic timer to alow for periodic
updates.

Data Server 111 System Design Document

ITEM

DESCRIPTION

Mdisg main

Thisis the main routine of the MDI Status GUI. Thisroutineis responsible for loading the
configuration information, configuring the shared memory manager library, and attaching
to the Data Server status shared memory segments.

Mdisg_main is the main routine of the MDI Status GUI. Thisroutineis responsible for loading the
configuration information, configuring the shared memory manager library, and attaching to the
Data Server status shared memory segments. The mdisg_main structure chart is shown in Figure

4.88.

mdisg
main
signal cfg load cfg o
setu sigset configuration get new
P data value

Figure 4.88 mdisg_main Structure Chart
The functions called by mdisg_main are described in more detail in Table 4.73.

Table 4.73 mdisg_main Functions

ITEM

DESCRIPTION

cfg get value

MDI Configuration File Common Library routine used to return the value of the

specified configuration name.

cfg load configuration data

MDI Configuration File Common Library routine used to read the configuration
name-value pairs from the specified configuration file. These name-value pairs are
loaded into memory so they can be accessed on demand by the calling program.

signal setup Function to establish the signal handler, catch_signal(), and set signals to ignore and
catch.

Sigset C Library Function used to modify the disposition of a signal. The signal can be
caught, ignored, or returned to the default disposition.

sl new Library function to create a new status log file.

Data Server 112 System Design Document

The INITIALLY D event is the initial event that gets executed on startup of the MDI Status GUI
application. This routine is responsible for displaying the top-level shell, invoking the application
initialization routine, and setting the periodic timer to allow for periodic updates. The INITIALLY
structure chart is shown in Figure 4.89.

create
widget

INITIALLY

GET

send UPDATE

RATE

initialize
subsystem
ids

initialize periodic
application update

Figure4.89 INITIALLY Structure Chart

The functions called by INITIALLY are described in more detail in Table 4.74.

Table4.74 INITIALLY Functions

ITEM DESCRIPTION

create widget create widget is used to create a widget of a particular TeleUSE template alowing
for the specification of a widget name and a parent for the widget.

GET UPDATE RATE A bridge layer routine used to obtain the update rate value from the application layer.

initialize application

A GUI layer event used to inform the application layer to perform any initialization
required as part of the application start up.

initialize subsystem ids

The GUI layer routine responsible for initializing the userData resource for each of
the subsystem buttons.

periodic update

A GUI layer event used to perform the steps necessary to update the details of the
GUI on aperiodic basis.

send

A TeleUSE statement used to trigger events immediately or queue events for later
dispatch.

The GET_UPDATE_RATE function is a bridge layer routine used to obtain the update rate value
from the application layer. The GET_UPDATE_RATE structure chart is shown in Figure 4.90.

Data Server

113 System Design Document

GET
UPDATE
RATE

v

mdisg
get update
rate

v

cfg
get
value

Figure4.90 GET_UPDATE_RATE
The functions called by GET_UPDATE_RATE are described in more detail in Table 4.75.

Table4.75 GET_UPDATE_RATE Functions

ITEM DESCRIPTION

cfg get value MDI Configuration File Common Library routine used to return the value of the
specified configuration name.

mdisg get update rate The application layer routine responsible for returning the configured update rate for
the MDI Status GUI.

The initialize_application function is a GUI layer event used to inform the application layer to
perform any initialization required as part of the application start up. The initialize_application
structure chart is shown in Figure 4.91.

initialize
application

v

APPLICATION
INIT

Figure4.91 initialize_application Structure Chart
The function called by initidize_application is described in more detail in Table 4.76.

Data Server 114 System Design Document

Table4.76 initialize_application Function

ITEM DESCRIPTION

APPLICATION INIT A bridge layer routine used to invoke the application layer's initialization function.

The periodic_update function is a GUI layer event used to perform the steps necessary to update
the details of the GUI on a periodic basis. The periodic_update structure chart is shown in Figure
4.92.

periodic
update

PERIODIC

UPDATE send

]

Figure4.92 periodic_update Structure Chart
The functions called by periodic_update are described in more detail in Table 4.77.

Table4.77 periodic_update Functions

ITEM DESCRIPTION
PERIODIC UPDATE The bridge layer routine that invokes the application layer routine responsible for
handling the periodic update requests.
send A TeleUSE statement used to trigger events immediately or queue events for later
dispatch.

The PERIODIC_UPDATE function is a bridge layer routine that invokes the application layer
routine responsible for handling the periodic update requests. The PERIODIC_UPDATE structure
chart is ahown in Figure 4.93.

Data Server 115 System Design Document

PERIODIC
UPDATE

v

mdisg
periodic
update

read
segment
element

UPDATE
STATUS

Figure4.93 PERIODIC_UPDATE Structure Chart

The functions called by PERIODIC UPDATE are described in more detail in Table 4.78.

Table4.78 PERIODIC_UPDATE Functions

ITEM DESCRIPTION

mdisg periodic update The application layer routine responsible for updating the graphical user interface
components. This routine is invoked periodicaly based on the graphical user
interface update rate.

read segment el ement MDI Shared Memory Manager routine to read the contents of a specified shared
memory segment element. The contents are stored in a memory area allocated by the
cdler.

UPDATE STATUS A bridge layer routine invoked when the application layer wants to modify the status

information for a particular MDI subsystem indicator. The information in the
indicator is modified based on the input parameters.

The UPDATE_STATUS function is a bridge layer routine invoked when the application layer
wants to modify the status information for a particular MDI subsystem indicator. The information
in the indicator is modified based on the input parameters. The UPDATE_STATUS structure
chart is shown in Figure 4.94.

Data Server

116 System Design Document

UPDATE

STATUS
tu create tu assign tu tu
named event dispatch free
event field event event
update

status

Figure4.94 UPDATE_STATUS Structure Chart

The functions called by UPDATE_STATUS are described in more detail in Table 4.79.

Table4.79 UPDATE_STATUS Functions

ITEM

DESCRIPTION

tu assign event field

TeleUSE Library Function used to associate the contents of a C variable with the
contents of an event attribute.

Tu create named event

TeleUSE Library Function used to create the data structure necessary to interface the C
code with the D code event.

Tu dispatch event TeleUSE Library Function used to dispatch the created event. This causes the event to
be executed.

Tu free event TeleUSE Library Function used to free up any memory that was alocated to the event
data structure using tu_create_named_event.

Update status The D event that receives the status information and updates the appropriate GUI

components.

The display_detailed _status function is the GUI layer event that is invoked when the user selects

one of the satus

indicators from the status display. The structure charts for

display_detailed_status and the bridge layer function DISPLAY_DETAILED_STATUS are shown
in Figure 4.95 and Figure 4.96, respectively.

Data Server

117 System Design Document

display
detailed
status

v

DISPLAY
DETAILED
STATUS

Figure4.95 display_detailed_status Structure Chart

fork

DISPLAY
DETAILED
STATUS

v

mdisg
display
detailed status

execl

Figure4.96 DISPLAY_DETAILED_STATUS Structure Chart

The functions called by display_detailed_status and DISPLAY_DETAILED_STATUS are shown

in Table 4.80.

Data Server

118

System Design Document

Table4.80 display_detailed_status Functions

ITEM DESCRIPTION

DISPLAY DETAILED STATUS The bridge layer routine used to invoke the display of the detailed
status GUI for the specified MDI subsystem.

Execl System library function. Executes a file by overlaying a new process
image on an old process. The new process image is constructed from an
ordinary executable file.

Fork System library function. Creates a child process that is dedicated to
handling the newly-connected client.

Mdisg display detailed status The application layer routine used to display the detailed status of the
specified MDI subsystem. This routine is called as a result of the user
selecting an MDI subsystem button.

Data Server 119 System Design Document

4.3.3 Redtime Collect

The TransGuide ATMS acts as both a Data Generator and a Data Consumer to the Data Server.
This section describes the data received from the ATMS. The Redtime Collect process (in
conjunction with the Realtime Broadcast process) replaces the functiondity that was implemented
by the TransGuide program * SunBroadcast”, which was created for the first-generation Data
Server.

4.3.3.1 Process Design

The Redltime Collect process receives data synchronously from the TransGuide ATMS; the
ATMS sends the data every five seconds. On startup the Realtime Collect process loads
configuration files that contain information about the ATMS equipment and MDI LinkIDs. These
data are stored in a sorted fashion so that the data can be transmitted without including specific
equipment/LinklD names. Information is then accessed by the positiona relationship of the data
and itsindex in the configuration file.

The information received by the Realtime Collect system includes realtime data for each
instrumented ATMS lane, CMS, LCS, CCTV, Traffic Signal (TS) and for each active incident.
Thisinformation is formatted and sent to the Data Server process to be stored in shared memory or
infiles. Theinformation is aso sent directly to the Realtime Broadcast process to prevent it from
having to be re-retrieved from the Data Server.

The Realtime Collect process creates and initializes a socket which is used to receive data from the
ATMS. A socket is aso utilized to send data to the Realtime Broadcast process. A connection is
also established to the data server. The Realtime Collect process waits to receive data from the
ATMS, once received the information is written to the Data Server and then transmitted to the
Realtime Broadcast program for transmission to the various data consumers. The Realtime Collect
process sends a heartbeat message at regular intervals to the Data Server, which uses it to update
the status of the process in shared memory.

The Realtime Collect Data Flow diagram is shown in Figure 4.97.

1.9.1

ATMS Data Heartbeat
Realtime \ Incident Data
Collect / ATMS Data Req

Incident Data

Figure 4.97 Realtime Collect Data Flow Diagram

4.3.3.2 Model Design

The Redtime Collect Main function receives ATMS Data from the VAX, which it sends to the
Realtime Broadcast program, and to the Data Server. The Realtime Collect Main structure chart
is shown in Figure 4.98.

Data Server 120 System Design Document

Realtime
Collect
Main
ds update
signal ‘ incident
setup data
update
. A atms
sigset linkid
data
cfg load ‘ receive
configuration broadcast
data data
Cfgt sock
ge accept
value
dsif
getservbyname send
heartbeat
initialize send
dsif to
connection broadcast
alloc update
data ' linkid
space data
| llocat tablish sock fail
°g a qgae:(FS aplls listen socket T
ﬁrmrrtb t 'qc' en an_et with activity 3TS
eartbeal storage pointers reuse ata
select

Figure4.98 Realtime Collect Main Structure Chart
The functions called by Realtime Collect Main are described in more detail in Table 4.81.

Data Server 121 System Design Document

Table4.81 Realtime Collect Main Functions

ITEM

DESCRIPTION

alloc data space

Creates data structures for each of the data types to be received from the ATMS.

allocate incident storage

Allocates space to hold incidents.

cfg get value

MDI Configuration File Common Library routine used to return the value of the
specified configuration name.

cfg load configuration data

MDI Configuration File Common Library routine used to read the configuration
name-value pairs from the specified configuration file. These name-vaue pairs
are loaded into memory so they can be accessed on demand by the calling
program.

ds signal setup

Data Server Subsystem Common Library function that sets a common signa
handler routine for al catchable signals.

dsif send heartbeat

Sends the heartbeat and responds to any errors. If the ds_hb service is not
connected, an attempt is made to connect to it. Once the connection is
established, this routine takes the specified process status and sends it to the
ds_hb process.

establish lane pointers

Builds a table of pointers into the ATMS lane data so that an average speed can
be computed for each corresponding link.

fail atms data Marks al ATMS LinkiID's as inactive. Writes the resulting data to the Data
Server.
getservbyname C Library Function used to obtain an entry for the specified Internet service.

initialize dsif connection

Retrieves necessary configuration items and establishes a connection to the Data
Server Interface process.

log error heartbeat

Logs an error heartbeat to the Data Server.

receive broadcast data Reads the ATMS data request and associated data from the VAX. Returns the
data request and loads the data into the buffer pointed to by the incoming data
parameter.

select C Library Function used to multiplex synchronous 1/O. The list of file
descriptors for reading, writing, and receiving exceptions are examined and any
file descriptors that are ready for reading, writing, or have an exceptiona
condition pending are identified.

send to broadcast Sends data to the Realtime Broadcast program.

sigset C Library Function used to modify the disposition of a signal. The signal can be
caught, ignored, or returned to the default disposition.

sock accept MDI Socket Common Library routine that accepts a connection on the specified

socket.

sock listen with reuse

MDI Socket Common Library routine used to set up a socket to listen for
connections and to make the socket address reusable.

socket activity

Waits for activity on multiple sockets.

update atms linkid data

Computes the current speed value for each active TransGuide ATMS LinkID.
Writes the resulting data to the Data Server.

update incident data

Creates data structures for each of the data types to be received from the ATMS.
Accesses appropriate data file to determine sizing information to alocate
sufficient memory for each type of data.

Data Server

122 System Design Document

ITEM

DESCRIPTION

update linkid data

Reads the GPS, Theoretical and AV1 data from the Data Server, and copies the
datato loca storage.

The initialize_dsif_connection function is responsible for retrieving necessary configuration items
and establishing a connection to the Data Server Interface process. The initialize_dsif_connection
structure chart is shown in Figure 4.99.

initialize
dsif
connection
cfg process . ds dsif dsif
get status config send
)] connect
value with logfi heartbeat

Figure4.99 initialize_dsif_connection Structure Chart
The functions called by initidlize_dsif _connection are described in more detail in Table 4.82.

Table 4.82 initialize dsif_connection

ITEM

DESCRIPTION

cfg get value

MDI Configuration File Common Library routine used to return the value
of the specified configuration name.

dsdsif connect

MDI dsif Library routine that is used to connect to the Data Server Interface
process specified by the service name passed to this routine.

dsif send heartbeat

Sends the heartbeat and responds to any errors. If the ds_hb service is not
connected, an attempt is made to connect to it. Once the connection is
established, this routine takes the specified process status and sends it to
the ds_hb process.

process status config with logfi

process_status_config_with_logfile is an MDI Process Status Common
Library routine used to configure the process status handling for the
process. This routine is used to set up a logfile that will be used by the
caling program.

The dsif_send_heartbeat function sends the heartbeat and responds to any errors. If the ds_hb
service is not connected, an attempt is made to connect to it. Once the connection is established,
this routine takes the specified process status and sends it to the ds hb process. The
dsif_send_heartbeat structure chart is shown in Figure 4.100.

Data Server

123 System Design Document

dsif
send
heartbeat

process
status
message

ph send ph ph
heartbeat disconnect connect

Figure4.100 dsif_send_heartbeat Structure Chart

The functions called by dsif_send _heartbeat are described in more detail in Table 4.83.

Table 4.83 dsif_send heartbeat Functions

ITEM DESCRIPTION
ph connect MDI Process Heartbeat Common Library routine used to connect to the specified
process-level heartbeat service. The host name and service name are used to make
the connection.
ph disconnect MDI Process Heartbeat Common Library routine used to disconnect from the

process-level heartbeat service.

ph send heartbeat

MDI Process Heartbeat Common Library routine used to send the specified status
value to the heartbeat service configured by the ph_connect call.

process status message

MDI Proces Status Common Library routine used to log a status message for the
specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the message is
written to the configured status log file. process_status message will also keep track
of the current status value of the status type specified by the caller so that the current
status can be retrieved later.

The log_error_heartbeat function is responsible for logging an error heartbeat to the Data Server.
Thelog_error_heartbeat structure chart is shown in Figure 4.101.

Data Server

124 System Design Document

log
error

heartbeat
process dsif
status send
message heartbeat

Figure4.101 log_error_heartbeat Structure Chart
The functions called by log_error_heartbeat are described in more detail in Table 4.84.

Table4.84 log_error_heartbeat Functions

ITEM DESCRIPTION

dsif send heartbeat Sends the heartbeat and responds to any errors. If the ds_hb service is not connected,
an attempt is made to connect to it. Once the connection is established, this routine
takes the specified process status and sends it to the ds_hb process.

process status message MDI Proces Status Common Library routine used to log a status message for the
specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the message is
written to the configured status log file. process_status message will also keep track
of the current status value of the status type specified by the caller so that the current
status can be retrieved later.

The fail_atms_data function marks all ATMS LinkID's as inactive and writes the resulting data to
the Data Server. Thefail_atms_data structure chart is shown in Figure 4.102.

Data Server 125 System Design Document

fail
atms
data

ds dsif send
link write
request

dsif
reconnect

process
status
message

ds dsif
connect

Figure4.102 fail_atms data Structure Chart

The functions called by fail_atms_data are described in more detail in Table 4.85.

Table 4.85 fail_atms data Functions

ITEM

DESCRIPTION

dsdsif connect

Data Server Interface Library routine to connect with the Data Server
Interface Process.

ds dsif send link write request

Data Server Interface Library routine to send a link write request and link
data to the Data Server Interface process. The Data Server Interface process
will attempt to forward the data to the Data Server.

dsif reconnect

Reconnects to the Data Server i/f.

process status message

MDI Proces Status Common Library routine used to log a status message for
the specified status type. If the process status library was configured to use a
status logger, then the message is forwarded to the status logger. Otherwise
the message is written to the configured status log file
process_status_message will also keep track of the current status value of
the status type specified by the caller so that the current status can be
retrieved later.

The update linkid_data function reads the GPS, Theoretical and AVI data from the Data Server,
and copies the data to local storage. The update linkid_data structure chart is shown in Figure

4.103.

Data Server

126 System Design Document

ds dsif send
link read
request

update
linkid
data

dsif
reconnect

process
status
message

ds dsif
connect

Figure4.103 update linkid_data Structure Chart
The functions called by update linkid_data are described in more detail in Table 4.86.

Table 4.86 update linkid_data Functions

ITEM

DESCRIPTION

dsdsif connect

Data Server Interface Library routine to connect with the Data Server
Interface Process.

ds dsif send link read request

Data Server Interface Library routine to send a link read request to, and read
link data from the Data Server Interface process. The Data Server Interface
process will attempt to forward the request to the Data Server, and return the
data.

dsif reconnect

Reconnects to the Data Server i/f.

process status message

MDI Proces Status Common Library routine used to log a status message for
the specified status type. If the process status library was configured to use a
status logger, then the message is forwarded to the status logger. Otherwise
the message is written to the configured status log file
process_status_message will also keep track of the current status value of the
status type specified by the caller so that the current status can be retrieved
later.

The send _to _broadcast function is responsible for sending data to the Realtime Broadcast
program. The send _to_broadcast structure chart is shown in Figure 4.104.

Data Server

127 System Design Document

send
to
broadcast

sock sock
connect writen

Figure4.104 send_to_broadcast Structure Chart

The functions called by send_to_broadcast are described in more detail in Table 4.87.

Table 4.87 send_to broadcast Functions

ITEM DESCRIPTION
sock connect MDI Socket routine used to create a socket connection to the specified host and port.
sock writen MDI Socket Common Library routine used to write a specified number of bytes to a

specified socket.

The recelve_broadcast_data function reads the ATMS data request and associated data from the
VAX. It returns the data request and loads the data into the buffer pointed to by the incoming data
parameter. The receive broadcast_data structure chart is shown in Figure 4.105.

receive
broadcast
data

v

sock
readn

Figure 4.105 receive broadcast_data Structure Chart

The function called by receive_broadcast_datais described in more detail in Table 4.88.

Data Server

128 System Design Document

Table 4.88 receive broadcast_data Function

ITEM

DESCRIPTION

sock readn MDI Socket Common Library routine that reads a specified number of bytes from the

specified socket.

The update atms linkid_data function computes the current speed value for each active
TransGuide ATMS LinkID. It writes the resulting data to the Data Server. The structure chart for
update_atms linkid_datais shown in Figure 4.106.

update
atms
linkid data

ds dsif send
link write
request

dsif
reconnect

log
error
heartbeat

Figure4.106 update atms linkid_data Structure Chart

The functions called by update_atms _linkid are described in more detail in Table 4.89.

Table4.89 update atms linkid_data Functions

ITEM

DESCRIPTION

ds dsif send link write request

Data Server Interface Library routine to send a link write request and link
data to the Data Server Interface process. The Data Server Interface
process will attempt to forward the data to the Data Server.

dsif reconnect

Reconnects to the Data Server i/f.

log error heartbeat

Logs an error heartbeat to the Data Server.

The update_incident_data function creates data structures for each of the data types to be received
from the ATMS. It accesses the appropriate data file to determine sizing information to allocate

sufficient memory for each type of data

Data Server

129

System Design Document

update
incident
data

ds dsif send
inc write
request

dsif
reconnect

Figure 4.107 update incident_data Structure Chart
The functions called by update_incident_data are described in more detail in Table 4.90.

Table4.90 update incident_data Functions

ITEM

DESCRIPTION

ds dsif send inc write request

A ds dsif library function that packages the link data into the appropriate
ds_dsif message and sends it out to the ds_dsif_socket.

dsif reconnect

Reconnects to the Data Server i/f.

Data Server

130

System Design Document

4.3.4 GPS/Theoretical Subsystem

The GPS/Theoretical subsystem reads GPS and theoretical |ane data from the GPS/Theoretical
Database and sends it to the Data Server. The data is selected from the database based on the time
of the day, the day of the week, and a set of parameters that can be specified in a calendar file
through a user interface. The following sections provide the process and model designs of the
GPS/Theoretical subsystem.

4.3.4.1 Process Design

The externa environment of the GPS TH Data process is depicted in the Data Server data flow
diagram shown in Figure 4.2. The diagram shows the GPS TH Data process interacting with the
Data Server process. The GPS TH Data process sends client data and lane data requests to the
Data Server process. The GPS TH Data process is a pure data generator in that no data flows
enter the process.

The GPS TH Data process data flow diagram is shown in Figure 4.108. The GPS TH Data
process is composed of three processes: the GPS TH Main process, the GPS TH GUI process, and
the GPS TH Read Data process. Each of these processes are described in more detail in Table 4.91
and the GPS TH Read Data process data flow diagram is presented in Figure 4.109.

The GPS Main Process is responsible for initializing the GPS/Theoretical subsystem and
coordinating the processes that cooperate to generate the GPS and theoretical link data. Initial
configuration information is read from the GPS TH Configuration File.

The GPS/Theoretical link data is read from the GPS TH Database by the Read GPS TH Data
process. This process reads the data whenever it is sent a set of GPS TH Parameters by the GPS
TH Main process. The data is selected from the database based on the time of day and day of week
and is adjusted based on the values of the parameters. The GPS TH Parameters can be defined by
a 3-tuple of Boolean flags { holiday, school day, westher event}. The data in the GPS TH Database
can be characterized using this 3-tuple as {false, true, false}. The GPS Theoretical subsystem uses
the GPS TH Calendar and input from the user to determine when to adjust these default values.

The GPS TH Calendar fileis read by the GPS TH Main process each time the day changes. The
calendar file contains definitions of days or ranges of days that are defined as holiday or non-
school day. The GPS Calendar GUI alows the user to alter the current GPS TH Parameters and
change the values of the 3-tuple to reflect the current conditions.

The GPS TH Adjustment Factors quantify the adjustment that is to be applied to the speed data
when the GPS TH Parameters are in effect. The adjustment factors are fractional percentages that
increase or decrease the speed values. When the value in the 3-tuple of Boolean flags is true, the
corresponding adjustment factor is applied. The result of applying the adjustment factors is the
transformation from GPS TH Lane Data Records to GPS TH Adjusted Lane Data Records.

Data Server 131 System Design Document

GPS TH Configuration

GPS TH Data

GPS TH Config
Data

GPS TH Link
Data Record

GPS TH Adjusted
Client Data Init Req
Req HB Req GPS GPS TH Time Read GPS
Bﬂ TH Parameters ' TH Data
Close Req GPS TH Parameters

>

GPS TH Parameters

GPS TH Default
Parameters @PS TH Adjustment
Factors

Lane Write

GPS TH Parameters GPSTH
Parameters

File
GPS TH Parameters GPS TH Parameters

GPS TH Shared Memory GPS TH Calendar File

GPS TH Parameters

GPS TH Parameters GPS
TH

User

Data Server

Figure 4.108. GPS TH Data Data Flow Diagram

132 System Design Document

Table4.91. GPS TH Main Processes

ITEM

DESCRIPTION

GPS TH Cadendar GUI

A GUI that alows the user to define or view the settings of the School and Holiday
parameters for a selected date or a range of dates during the year. When the user
changes them, the GUI updates the GPS TH Calendar File with the new parameters.

GPSTH GUI A GUI that alows the user to change the current GPS TH parameters. The current
parameters are displayed on the screen. When the user changes them, the GUI updates
the GPS TH Shared Memory with the new parameters.

GPSTH Main The main process of the GPS/Theoretical subsystem. The process initializes the

connection with the Data Storage process, reads configuration data from the GPS TH
Configuration file and reads the default GPS TH Parameters and adjustment factors from
the GPS TH Calendar File.

On a periodic basis (defined in the configuration file), the process passes the current
GPS TH Parameters to the Read GPS Data process to read the data from the GPS TH
Datafile. It then packages the data into a Lane Write Req and sends the data to the Data
Server process.

The process aso sends a HB Reg to the subsystem heartbeat process periodicaly to
report the status of the process.

Read GPS TH Data

A process that reads GPS TH Link Data Records from the GPS TH Database. The
records are read when the process receives GPS TH Time Parameters and GPS TH
Parameters from the GPS TH Main process.

The process uses the time parameters to select the data that is read from the database.
The GPS TH Parameters are used to adjust the data once it is read. The data is then
passed to the GPS TH Main process.

Data Server

133 System Design Document

n

GPS TH Link
Data Record
GPS TH Time
Parameters
721
Read
Data
GPS TH Parameters
GPS TH Link

Data Record

GPS TH Adjusted GPS TH Adjustment

Link Data
Record

Factors

Figure 4.109. Read GPS TH Data Data Flow Diagram

The Read GPS TH Data process data flow diagram is presented in Figure 4.109. The process
obtains the time and GPS TH Parameters and accesses the GPS TH Database to obtain the GPS
TH Link Data Records. Adjustment factors are applied according to the flags specified in GPS TH
Parameters and the process outputs GPS TH Adjusted Link Data Records. The processes of the
Read GPS Data process are described in more detail in Table 4.92.

Table 4.92. Read GPS TH Data Processes

ITEM DESCRIPTION
Adjust Data Applies adjustment factors to the GPS TH Link Data Records to create GPS TH Adjusted Link
Data Records. The adjustment factors are read from the GPS TH Parameter File and are applied
according to the values of the GPS TH Parameters values.
Read Data Reads GPS Link Data Records from the GPS TH Database.
Data Server 134 System Design Document

4.3.4.2 Mode Design
The primary functions of the GPS/Theoretical subsystem are:

read and adjust GPS and theoretical link data on a periodic basis and send the data to the
Data Server, and
provide a mechanism for the user to alter the setting of the parameters that determine how
the data is adjusted.
The GPS TH Subsystem structure chart is shown in Figure 4.110. The GPS TH Subsystem
functions are described in more detail in Table 4.93.

Data Server 135 System Design Document

th
\ main
| ™ ~
N\
ds
signal | sleep
setup |
gpsth
sigset send
heartbeat
process
';gd status
get
data status

Pe 4l

process send
status link
config data

with logfi with retry
process process

status link

message data

init init
status cal
table file

. cal
init to
shared gpsth
memory date

\/ V)

process
status gpsth
set status time

type

v g

process
status
get
status

gpsth
connect
to dsif

v v

gpsth init
send link
heartbeat data

Figure4.110. GPS TH Subsystem Structure Chart

Data Server 136 System Design Document

Table 4.93. GPS TH Subsystem Functions

ITEM DESCRIPTION
cal to gpsth date Converts a date value from UNIX calendar format to an internal gpsth date
format.
ds signa setup Data Server Subsystem Common Library function that sets a common
signal handler routine for all catchable signals.
gpsth connect to dsif Connects the GPS TH process to the Data Server Interface process.

gpsth send heartbeat

Sends the process-level heartbeat to the Subsystem Heartbeat process.

gpsth time

Function to return the current time in UNIX calendar format. The function
is a wrapper to the UNIX time() function and provides specia behavior
when the TEST flag is on to alow the caler to specify the time that is
returned in subsequent calls.

init cal file

Reads the current gpsth parameters from the calendar file and writes them
to the parameter shared memory. If the parameters cannot be found in the
calendar file, the default parameters from the configuration file are used.

init link data

Initializes the data structures necessary to manage the link data in the data
file.

init shared memory

Function to create the GPS TH parameter shared memory segment.

init status table

Initializes the status table data structure passed by the caller.

load cfg data

Function to load configuration data from the configuration and data files.
The datais read using functions from the MDI Configuration Library and is
stored in atable that is passed by the caller.

process link data

A function to determine the current speed for each of the GPS TH links.
The speed is determined by reading the entries in the GPS TH database file
for the current day of the week and current time.

process status config with logfi

process_status_config_with_logfile is an MDI Process Status Common
Library routine used to configure the process status handling for the
process. This routine is used to set up a logdfile that will be used by the
caling program.

process status get status

MDI Process Status Common Library routine used to obtain the most
severe process-level status. This is an aggregation of the status for each of
the status types defined for the process.

process status message

MDI Proces Status Common Library routine used to log a status message
for the specified status type. If the process status library was configured to
use a status logger, then the message is forwarded to the status logger.
Otherwise the message is written to the configured status log file.
process_status_message will also keep track of the current status value of
the status type specified by the caler so that the current status can be
retrieved later.

process status set status type v

process_status set_status type value is used to set the value associated
with the specified status type.

send link data with retry

Attempts to write link data to the Data Server Interface process. If the
attempt fails, the function attempts to reconnect to the Data Server Interface
and send the data again. If the second attempt fails, the function returns an
error.

sigset C Library Function used to modify the disposition of a signa. The signa
can be caught, ignored, or returned to the default disposition.
Data Server 137 System Design Document

ITEM DESCRIPTION

sleep C Library function to suspend the execution of the process for a specified
number of seconds.

The ds_signal_setup function is the Data Server Subsystem Common Library function that sets a
common signal handler routine for all catchable signals. The structure chart for ds_signal_setup is
shown in Figure 4.111.

ds
signal
setup

v

sigset

Figure4.111 ds signal_setup Structure Chart
The function called by ds_signal_setup is described in more detail in Table 4.94

Table 4.94 ds signal_setup Function

ITEM DESCRIPTION

sigset C Library Function used to modify the disposition of a signal. The signal can be caught,
ignored, or returned to the default disposition.

The load_cfg_data function loads configuration data from the configuration and data files. The
data is read using functions from the MDI Configuration Library and is stored in a table that is
passed by the caller. The structure chart for load_cfg_datais shown in Figure 4.112.

Data Server 138 System Design Document

load
cfg
data

cfg load
configuration
data

cfg
get
value

load
LinkIDCount LinkIDData num
params

load
params

Figure4.112 load_cfg_data Structure Chart

The functions called by load_cfg_data are described in more detail in Table 4.95.

Table4.95 load_cfg_data Functions

ITEM

DESCRIPTION

cfg get value

MDI Configuration File Common Library routine used to return the value of the
specified configuration name.

cfg load configuration data

MDI Configuration File Common Library routine used to read the configuration
name-value pairs from the specified configuration file. These name-vaue pairs
are loaded into memory so they can be accessed on demand by the calling
program.

LinkIDCount MDI Redtime Common Library routine that returns the number of link
identifiers defined for the link type that is specified by the caller.
LinkIDData MDI Reatime Common Library routine to return a list of link identifiers of the

link type specified by the caller.

load num params

Function to determine the number of parameters that are defined in the GPS TH
parameter datafile.

load params

Function to retrieve the default parameters and the adjustment factors from the
GPS TH parameter datafile.

The load_num_params function determines the number of parameters that are defined in the GPS
TH parameter datafile. The structure chart for load_num_paramsis shown in Figure 4.113.

Data Server

139 System Design Document

ds
fopen
file

load
num
params

v

fscanf

fclose

Figure4.113 load_num_params Structure Chart

The functions called by load_num_params are described in more detail in Table 4.96

Table 4.96 load_num_params Functions

ITEM

DESCRIPTION

dsfopenfile

Data Server Subsystem File Library routine to open a file using formatted 1/0O and return

statistics about the file.

fclose

C Library Function to close afile.

fscanf

C Library Function to read a formatted string from a file and parse the contents of the string

into individual elements.

The ds _fopen_file function is the Data Server Subsystem File Library routine to open a file using
formatted 1/O and return statistics about the file. The structure chart for ds_fopen _fileis shown in

Figure 4.114.
ds
fopen
file
fopen stat
Figure4.114 ds fopen_file Structure Chart
Data Server 140 System Design Document

The functions called by ds fopen file are described in more detail in Table 4.97

Table 4.97 ds fopen_file Functions

ITEM

DESCRIPTION

open

C Library Function to open afile.

stat

C Library Function to obtain the status information about afile.

The load_params function retrieves the default parameters and the adjustment factors from the
GPS TH parameter datafile. The structure chart for load_params is shown in Figure 4.115.

load

params
ds
fopen malloc fclose free fscanf
file

Figure4.115 load_params Structure Chart

The functions called by load_params are described in more detail in Table 4.98.

Table 4.98 load_params Functions

ITEM DESCRIPTION

dsfopenfile Data Server Subsystem File Library routine to open afile using formatted I/O and return statistics
about thefile.

fclose C Library Function to close afile.

free C Library Function used to free previously allocated memory and make it available for further
alocation.

fscanf C Library Function to read a formatted string from a file and parse the contents of the string into
individual elements.

malloc C Library Function to alocate the specified amount of memory.

The init_status _table function initiaizes the status table data structure passed by the caller. The
structure chart for init_status tableis shown in Figure 4.116.

Data Server

141 System Design Document

init
status
table

v

init
gpsth
date

Figure4.116 init_status table Structure Chart
The function called by init_status table is described in more detail in Table 4.99.

Table 4.99 init_status table Function

ITEM DESCRIPTION

init gpsth date Function to initialize an internal GPS TH date structure.

The init_shared_memory function creates the GPS TH parameter shared memory segment. The
structure chart for init_shared_memory is shown in Figure 4.117.

init
shared
memory
config process create
shm status
segment
mgr message

Figure4.117 init_shared_memory Structure Chart
The functions called by init_shared memory are described in more detail in Table 4.100.

Table 4.100 init_shared_memory Functions

Data Server 142 System Design Document

ITEM

DESCRIPTION

config shm mgr

MDI Shared Memory Manager Common Library routine used to initidize and
configure the shared memory manager library routines for the calling program.

create segment MDI Shared Memory Manager Common Library routine used to create a shared
memory segment of the specified size. The shared memory segment is automatically
attached to the calling process.

process status message MDI Proces Status Common Library routine used to log a status message for the

specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the message is
written to the configured status log file. process_status message will also keep track
of the current status value of the status type specified by the caller so that the current
status can be retrieved later.

The gpsth_send_heartbeat function sends the process-level heartbeat to the Subsystem Heartbeat
process. The structure chart for gpsth_send_heartbeat is shown in Figure 4.118.

ph send
heartbeat

gpsth
send
heartbeat
ph ph process
. gethostname status
disconnect connect
message

Figure4.118 gpsth_send_heartbeat Structure Chart

The functions called by gpsth_send_heartbeat are described in more detail in Table 4.101.

Table 4.101 gpsth_send_heartbeat Functions

ITEM DESCRIPTION
gethostname C Library Function which returns a string containing the name of the host machine.
ph connect MDI Process Heartbeat Common Library routine used to connect to the specified
process-level heartbeat service. The host name and service name are used to make
the connection.
ph disconnect MDI Process Heartbeat Common Library routine used to disconnect from the

process-level heartbeat service.

ph send heartbeat

MDI Process Heartbeat Common Library routine used to send the specified status
value to the heartbeat service configured by the ph_connect call.

Data Server

143 System Design Document

ITEM DESCRIPTION

process status message MDI Proces Status Common Library routine used to log a status message for the
specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the message is
written to the configured status log file. process_status message will also keep track
of the current status value of the status type specified by the caller so that the current
status can be retrieved later.

The init_link_data function initializes the data structures necessary to manage the link data in the
datafile. The structure chart for init_link_datais shown in Figure 4.119.

init
link
data
process init
malloc status data
message file

Figure4.119 init_link_data Structure Chart
The functions called by init_link_data are described in more detail in Table 4.102.

Table 4.102 init_link_data Functions

ITEM DESCRIPTION
init datafile Function to initialize the system to process the GPS TH data file. The GPS TH data
file defines the speed values for each of the link identifiers based on day of the week
and time of day.
malloc C Library Function to alocate the specified amount of memory.
process status message MDI Proces Status Common Library routine used to log a status message for the

specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the message is
written to the configured status log file. process_status message will also keep track
of the current status value of the status type specified by the caller so that the current
status can be retrieved later.

The init_data file function initializes the system to process the GPS TH data file. The GPS TH
data file defines the speed values for each of the link identifiers based on day of the week and time
of day. The structure chart for init_data fileis shown in Figure 4.120.

Data Server 144 System Design Document

ds
fopen
file

init

data

file
process init process
status key status set
message table status type v

Figure 4.120 init_data_file Structure Chart

The functions called by init_data file are described in more detail in Table 4.103.

Table 4.103 init_data file Functions

ITEM

DESCRIPTION

dsfopenfile

Data Server Subsystem File Library routine to open a file using formatted
1/0 and return statistics about the file.

init key table

Function to initialize a table of keys to index the GPS TH data file. The
keys are used to facilitate efficient searching of the data file during
processing.

process status message

MDI Proces Status Common Library routine used to log a status message for
the specified status type. If the process status library was configured to use a
status logger, then the message is forwarded to the status logger. Otherwise
the message is written to the configured status log file.
process_status_message will also keep track of the current status value of
the status type specified by the caller so that the current status can be
retrieved later.

process status set status type v

process_status set_status type value is used to set the value associated
with the specified status type.

The init_key_table function initidizes a table of keys to index the GPS TH data file. The keys are
used to facilitate efficient searching of the data file during processing. The structure chart for
init_key tableisshownin Figure 4.121.

Data Server

145 System Design Document

init
key
table
process build
malloc status key
message table

Figure4.121 init_key table Structure Chart

The functions caled by init_key table are described in more detail in Table 4.104.

Table4.104 init_key table Functions

ITEM DESCRIPTION
build key table Function to build the key table from the GPS TH data file. The function searches the
file for each key and marks an entry in the key table indicating the position in the file
that the key can be found.
malloc C Library Function to alocate the specified amount of memory.
process status message MDI Proces Status Common Library routine used to log a status message for the

specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the message is
written to the configured status log file. process_status message will also keep track
of the current status value of the status type specified by the caller so that the current
status can be retrieved later.

The build_key table function builds the key table from the GPS TH data file. The function
searches the file for each key and marks an entry in the key table indicating the position in the file
that the key can be found. The structure chart for build_key_tableis shown in Figure 4.122.

Data Server

146 System Design Document

build
key
table

read process append
next feof status to key
key message table

copy
key

Figure 4.122 build_key_table Structure Chart

The functions called by build_key_table are described in more detail in Table 4.105.

Table 4.105 build_key_table Functions

ITEM DESCRIPTION
append to key table Function to add a key entry to the end of the key table.
copy key Function to copy the contents of one key structure to another key structure.
feof C Library Function to determine if the end of file has been reached while reading a
file.
process status message MDI Proces Status Common Library routine used to log a status message for the

status can be retrieved later.

specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the message is
written to the configured status log file. process_status message will also keep track
of the current status value of the status type specified by the caller so that the current

read next key Function to read the GPS TH data file and locate the next key in the file.

The read_next_key function reads the GPS TH data file and locates the
structure chart for read_next_key is shown in Figure 4.123.

Data Server 147

next key in the file. The

System Design Document

read
next
key

process
status stremp
message

strtok strcpy

Figure4.123 read_next_key Structure Chart
The functions called by read_next_key are described in more detail in Table 4.106.

Table 4.106 read_next_key Functions

ITEM DESCRIPTION

process status message MDI Proces Status Common Library routine used to log a status message for the
specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the message is
written to the configured status log file. process_status message will also keep track
of the current status value of the status type specified by the caller so that the current
status can be retrieved later.

strcmp C Library Function used to compare two strings.

strepy C Library Function used to copy characters from a source string to a destination
string.

Strtok C Library Function used to break the specified string into a sequence of tokens.

The append_to_key_table function adds a key entry to the end of the key table. The structure chart
for append_to_key tableis shown in Figure 4.124.

Data Server 148 System Design Document

process
status
message

append
to key
table

copy
key

Figure 4.124 append_to_key table Structure Chart

The functions called by append_to_key table are described in more detail in Table 4.107.

Table 4.107 append_to_key_table Functions

ITEM DESCRIPTION
copy key Function to copy the contents of one key structure to another key structure.
process status message MDI Proces Status Common Library routine used to log a status message for the

specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the message is
written to the configured status log file. process_status message will also keep track
of the current status value of the status type specified by the caller so that the current
status can be retrieved later.

The gpsth_connect_to_dsif function connects the GPS TH process to the Data Server Interface
process. The structure chart for gpsth_connect_to_dsif is shown in Figure 4.125.

gpsth
connect
to dsif
process ds dsif
status gethostname
connect
message

Figure 4.125 gpsth_connect_to_dsif Structure Chart

The functions called by gpsth_connect_to_dsif are described in more detail in Table 4.108.

Data Server

149

System Design Document

Table 4.108 gpsth_connect_to_dsif Functions

ITEM DESCRIPTION
ds dsif connect Data Server Interface Library routine to connect with the Data Server Interface
Process.
gethostname C Library Function which returns a string containing the name of the host machine.
process status message MDI Proces Status Common Library routine used to log a status message for the

specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the message is
written to the configured status log file. Process_status_message will also keep track
of the current status value of the status type specified by the caller so that the current
status can be retrieved later.

The ds_dsif_connect function is the Data Server Interface Library routine to connect with the Data
Server Interface Process. The structure chart for ds_dsif_connect is shown in Figure 4.126.

ds dsif

connect

rocess sock get
p) 9 sock
status service
connect
message port

Figure 4.126 ds_dsif_connect Structure Chart
The functions called by ds_dsif_connect are described in more detail in Table 4.109.

Table 4.109 ds dsif _connect Functions

ITEM DESCRIPTION

process status message MDI Proces Status Common Library routine used to log a status message for the
specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the message is
written to the configured status log file. process_status message will also keep track
of the current status value of the status type specified by the caller so that the current
status can be retrieved later.

sock connect MDI Socket routine used to create a socket connection to the specified host and port.

sock get service port MDI Socket Common Library routine that returns the port number associated with
the specified service name.

Data Server 150 System Design Document

The gpsth_time function returns the current time in UNIX calendar format. The function is a
wrapper to the UNIX time() function and provides specia behavior when the TEST flag is on to
allow the caller to specify the time that is returned in subsequent calls. The structure chart for
gpsth_timeis shown in Figure 4.127.

gpsth
time

time

Figure 4.127 gpsth_time Structure Chart
The function called by gpsth_time is described in more detail in Table 4.110.

Table 4.110 gpsth_time Function

ITEM DESCRIPTION

time C Library Function that returns the time in UNIX calendar format (i.e., number of seconds since
January 1, 1970 UTC).

The cal_to_gpsth_date function converts a date value from UNIX calendar format to an internal
gpsth date format. The structure chart for cal_to_gpsth_date is shown in Figure 4.128.

cal to
gpsth
date

localtime

Figure4.128 cal_to_gpsth_date Structure Chart
The functions called by cal_to_gpsth_date are described in more detail in Table 4.111.

Data Server 151 System Design Document

Table4.111 cal_to_gpsth_date Functions

ITEM DESCRIPTION
bd to gpsth date Function to convert the time in UNIX broken-down format to the internal GPS TH date
format.
locdtime C Library Function that converts a UNIX calendar time value to a UNIX broken-down
structure (struct tm). The function takes into account the local time zone and daylight saving
time flag.

Theinit_ca_file function reads the current gpsth parameters from the calendar file and writes them
to the parameter shared memory. If the parameters cannot be found in the calendar file, the default
parameters from the configuration file are used. The structure chart for init_cal_file is shown in
Figure 4.129.

init
cal
file

init process read set free process
params status cal params params status set
struct message file struct status type v

Figure4.129 init_cal_file Structure Chart
The functions called by init_cal_file are described in more detail in Table 4.112.

Table4.112 init_cal_file Functions

ITEM DESCRIPTION
free params struct Function to free the memory allocated for a GPS TH parameter structure.
init params struct Function to allocate space and initialize a GPS TH parameter structure.
process status message MDI Proces Status Common Library routine used to log a status message for

the specified status type. If the process status library was configured to use a
status logger, then the message is forwarded to the status logger. Otherwise
the message is written to the configured status log file.
process_status_message will also keep track of the current status value of
the status type specified by the caller so that the current status can be
retrieved later.

process status set status type v process_status set_status type value is used to set the value associated
with the specified status type.

Data Server 152 System Design Document

ITEM DESCRIPTION
read cal file Function to read and process the calendar file to locate the parameters that
are defined for the current day and month.
set params Function to write the parameters passed by the caler to the GPS TH

parameter shared memory segment.

The read_ca_file function reads and processes the calendar file to locate the parameters that are
defined for the current day and month. The structure chart for read ca_file is shown in Figure

4.130.

ds
fopen
file

process
status
message

read
cal
file

fgets

strtok

match
daymo

extract
date

feof

Data Server

Figure4.130 read_cal_file Structure Chart
The functions called by read _ca_file are described in more detail in Table 4.113.

153

System Design Document

Table4.113 read_cal_file Functions

ITEM

DESCRIPTION

dsfopenfile

Data Server Subsystem File Library routine to open a file using formatted 1/0 and
return statistics about thefile.

process status message

MDI Proces Status Common Library routine used to log a status message for the
specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the message is
written to the configured status log file. process_status message will also keep track
of the current status value of the status type specified by the caller so that the current
status can be retrieved later.

fgets

C Library Function to read a string from afile.

feof

C Library Function to determine if the end of file has been reached while reading a
file.

extract date

Function to extract a month and day value from a string. The sting should contain the
month and day separated by a /', asin 5/25 or 4/24. The function checks the date to
make sure the values are valid.

match daymo

Function to compare a date specified by the caller with the current date to determine
if the day and month of the date match the current date.

strtok

C Library Function used to break the specified string into a sequence of tokens.

The init_params_struct function allocates space and initializes a GPS TH parameter structure.
The structure chart for init_params_struct is shown in Figure 4.131.

init
params
struct

v

malloc

Figure 4.131 init_params_struct Structure Chart

The function called by init_params_struct is described in more detail in Table 4.114.

Table4.114 init_params_struct Function

ITEM

DESCRIPTION

Malloc

C Library Function to alocate the specified amount of memory.

Data Server

154 System Design Document

The extract_date function extracts a month and day value from a string. The string should contain
the month and day separated by a '/, asin 5/25 or 4/24. The function checks the date to make sure
the values are valid. The structure chart for extract_date struct is shown in Figure 4.132.

strtok

extract

date
process check
status sscanf
daymo
message

Figure 4.132 extract_date Structure Chart

The functions called by extract_date are described in more detail in Table 4.115.

Table 4.115 extract_date Functions

ITEM DESCRIPTION

check daymo Function to check the validity of a day/month pair. The function checks that the day
falls within 1..31, and the month falls within 1..12.

process status message MDI Proces Status Common Library routine used to log a status message for the

specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the message is
written to the configured status log file. process_status message will also keep track
of the current status value of the status type specified by the caller so that the current
status can be retrieved later.

sscanf

C Library Function to create a formatted string from a set of variable-type arguments.

strtok

C Library Function used to break the specified string into a sequence of tokens.

The check_daymo function checks the validity of a day/month pair. The function checks that the
day falls within 1..31, and the month falls within 1..12. The structure chart for check_daymo is
shown in Figure 4.133.

Data Server

155 System Design Document

check
daymo

v

process
status
message

Figure 4.133 check_daymo Structure Chart
The function called by check_daymo is described in more detail in Table 4.116.

Table 4.116 check_daymo Function

ITEM DESCRIPTION

process status message MDI Proces Status Common Library routine used to log a status message for the
specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the message is
written to the configured status log file. process_status message will also keep track
of the current status value of the status type specified by the caller so that the current
status can be retrieved later.

The match_daymo function compares a date specified by the caller with the current date to
determine if the day and month of the date match the current date. The structure chart for
match_daymo is shown in Figure 4.134.

match
daymo

v

localtime

Figure 4.134 match_daymo Structure Chart
The functions called by match_daymo are described in more detail in Table 4.117.

Data Server 156 System Design Document

Table 4.117 match_daymo Functions

ITEM DESCRIPTION
gpsth date to bd Function to convert a GPS TH date structure to a UNIX broken-down date structure (i.e.,
struct tm).
gpsth time Function to return the current time in UNIX calendar format. The function is a wrapper to the
UNIX time() function and provides special behavior when the TEST flag is on to alow the
caler to specify the time that is returned in subsequent calls.
locdtime C Library Function that converts a UNIX cadendar time value to a UNIX broken-down

structure (struct tm). The function takes into account the local time zone and daylight saving
time flag.

The set_params function writes the parameters passed by the caller to the GPS TH parameter
shared memory segment. The structure chart for set_paramsis shown in Figure 4.135.

set
params

v

write
segment

Figure 4.135 set_params Structure Chart

The function called by set_paramsis described in more detail in Table 4.118.

Table 4.118 set_params Function

ITEM

DESCRIPTION

write segment

MDI Shared Memory Manager Common Library routine that writes data to the specified shared
memory segment.

The free_params_struct function frees the memory allocated for a GPS TH parameter structure.
The structure chart for free_params_struct is shown in Figure 4.136.

Data Server

157 System Design Document

free
params
struct

v

free

Figure 4.136 free_params_struct Structure Chart
The function called by free_paramsis described in more detail in Table 4.119.

Table4.119 free params_struct Function

ITEM DESCRIPTION

free C Library Function used to free previously alocated memory and make it available for
further alocation.

The process _link_data function frees the memory allocated for a GPS TH parameter structure.
The structure chart for process link_datais shown in Figure 4.137.

process
link
data

init process ot free
params status 9 params link
params
struct message struct record
Figure 4.137 process link_data Structure Chart
The functions called by process _link_data are described in more detail in Table 4.120.
Table 4.120 process_link_data Functions
ITEM DESCRIPTION
adjust link record Function to adjust the speed of a link identifier based on the current GPS TH
parameters and adjustment factors.

Data Server 158 System Design Document

ITEM

DESCRIPTION

free params struct

Function to free the memory allocated for a GPS TH parameter structure.

get params

Function to retrieve the GPS TH parameters from the GPS TH parameter shared
memory segment.

init params struct

Function to allocate space and initialize a GPS TH parameter structure.

process status message

MDI Proces Status Common Library routine used to log a status message for the
specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the message is
written to the configured status log file. process_status message will also keep track
of the current status value of the status type specified by the caller so that the current
status can be retrieved later.

read link record

Function to read a single GPS TH link record from the GPS TH data file based on
the link identifier, day of week, and time of day.

The get_params function retrieves the GPS TH parameters from the GPS TH parameter shared
memory segment. The structure chart for get_paramsis shown in Figure 4.138.

get
params

read
malloc free
segment

Figure 4.138 get_params Structure Chart

The functions called by get_params are described in more detail in Table 4.121.

Table 4.121 get_params Functions

ITEM DESCRIPTION

free C Library Function used to free previously allocated memory and make it available for further
alocation.

malloc C Library Function to alocate the specified amount of memory.

read segment MDI Shared Memory Manager Common Library routine to read the contents of the specified
shared memory segment. The contents are stored in a memory area allocated by the caller.

Data Server

159 System Design Document

Theread_link_record function reads a single GPS TH link record from the GPS TH data file based
on the link identifier, day of week, and time of day. The structure chart for read_link_record is
shown in Figure 4.139.

get
key
index

process
status
message

read

link

record
ds find process
fopen active fclose status set
file record status type v

Figure4.139 read_link_record Structure Chart

The functions called by read_link_record are described in more detail in Table 4.122.

Table4.122 read _link_record Functions

ITEM DESCRIPTION
dsfopenfile Data Server Subsystem File Library routine to open a file using formatted
1/0 and return statistics about thefile.
fclose C Library Function to close afile.

find active record

Function to search the GPS TH data file for the record that is currently
active. The search begins with the record that is specified by the caller. The
currently active record is the last record in the data file which has an hour
and minute that fall before the current hour and minute.

get key index

Function to search the key table and retrieve the index of the key in the GPS
TH datafile. This step greatly reduces the time required to search the GPS
TH data file by refining the location that the search should start from.

process status message

MDI Proces Status Common Library routine used to log a status message for
the specified status type. If the process status library was configured to use a
status logger, then the message is forwarded to the status logger. Otherwise
the message is written to the configured status log file.
process_status_message will also keep track of the current status value of
the status type specified by the caller so that the current status can be
retrieved later.

process status set status type v

process_status set_status type value is used to set the value associated
with the specified status type.

The compare_key_entries function compares key entries to determine if one is greater than the
other, less than the other, or if they are equal. The structure chart for compare key entries is
shown in Figure 4.140.

Data Server

160 System Design Document

compare
key
entries

v

compare
keys

Figure 4.140 compare_key_entries Structure Chart
The function called by compare_key_entriesis described in more detail in Table 4.123.

Table 4.123 compare_key entries Function

ITEM DESCRIPTION

compare keys Function to compare two keys to determine if one is greater than the other, less than the
other, or if they are equal.

The compare_keys function compares key entries to determine if one is greater than the other, less
than the other, or if they are equal. The structure chart for compare _keys is shown in Figure
4.141.

compare
keys

v

strcmp

Figure 4.141 compare_keys Structure Chart
The function called by compare_keysis described in more detail in Table 4.98.

Table 4.124 compare_keys Function

ITEM DESCRIPTION

strcemp C Library Function used to compare two strings.

Data Server 161 System Design Document

The get_key_index function searches the key table and retrieves the index of the key in the GPS
TH datafile. This step greatly reduces the time required to search the GPS TH data file by refining
the location that the search should start from. The structure chart for get_key index is shown in
Figure 4.142.

get
key
index

bsearch

compare
key
entries

Figure 4.142 get_key_index Structure Chart
The functions called by get_key _index are described in more detail in Table 4.125.

Table 4.125 get_key_index Functions

ITEM DESCRIPTION

bsearch C Library Function implementing a binary search algorithm. A function is passed to this
routine specifying the comparison routine to be used during the binary search. A pointer
to the element found is returned or NULL if no element matching the search criteriais
found.

compare key entries Function to compare key entries to determine if one is greater than the other, less than
the other, or if they are equal.

The find_active record function searches the GPS TH data file for the record that is currently
active. The search begins with the record that is specified by the caller. The currently active record
is the last record in the data file which has an hour and minute that fall before the current hour and
minute. The structure chart for find_active _record is shown in Figure 4.143.

Data Server 162 System Design Document

find
active
record

fseek

read
record

compare
headers

copy
data

record

Figure 4.143 find_active record Structure Chart
The functions called by find_active record are described in more detail in Table 4.126.

Table 4.126 find_active record Functions

ITEM DESCRIPTION
compare headers Function to compare two record headers to determine if one is greater than the other, less
than the other, or if they are equal.
copy data record Function to copy one record structure to ancther.
fseek Standard 1/O function to reposition afile pointer in a stream.
read record Function to read a record from the data file at the location indicated by the file pointer

passed by the caller.

The read _record function reads a record from the data file at the location indicated by the file
pointer passed by the caller. The structure chart for read_record is shown in Figure 4.144.

read
record

fscanf

Data Server

Figure4.144 read_record Structure Chart

163

System Design Document

The function called by read record is described in more detail in Table 4.127.

Table 4.127 read_record Function

ITEM DESCRIPTION

fscanf C Library Function to read a formatted string from a file and parse the contents of the string into
individual elements.

The compare_headers function compares two record headers to determine if one is greater than the
other, less than the other, or if they are equal. The structure chart for compare_headersis shown in
Figure 4.145.

compare
headers

compare
keys

Figure 4.145 compare_headers Structure Chart
The function called by compare_headers is described in more detail in Table 4.128.

Table 4.128 compare_headers Function

ITEM DESCRIPTION

compare keys Function to compare two keys to determine if one is greater than the other, less than the
other, or if they are equal.

The copy_data record function copies one record structure to another. The structure chart for
copy_data record is shown in Figure 4.146.

Data Server 164 System Design Document

copy
data

record

copy
key

Figure 4.146 copy_data_record Structure Chart

The function called by copy_data record is described in more detail in Table 4.129.

Table 4.129 copy_data_record Function

ITEM

DESCRIPTION

copy key

Function to copy the contents of one key structure to another key structure.

The send_link_data with_retry function attempts to write link data to the Data Server Interface
process. If the attempt fails, the function attempts to reconnect to the Data Server Interface and
send the data again. If the second attempt fails, the function returns an error. The structure chart
for send_link_data with_retry is shown in Figure 4.147.

write
link
data

send link
data with

retry

ds dsif
disconnect

gpsth
connect
to dsif

process
status
message

Data Server

Figure 4.147 send_link_data_with_retry Structure Chart
The functions called by send_link_data with_retry are described in more detail in Table 4.130.

165

System Design Document

Table 4.130 send_link_data with_retry Functions

ITEM

DESCRIPTION

dsdsif disconnect

Data Server Interface Library routine to close the connection with the Data Server
Interface process.

gpsth connect to dsif

Connects the GPS TH process to the Data Server Interface process.

process status message

MDI Proces Status Common Library routine used to log a status message for the
specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the message
is written to the configured status log file. process_status message will also keep
track of the current status value of the status type specified by the caller so that the
current status can be retrieved later.

write link data

Function to write link data to the Data Server Interface Process. Link data is stored
inalocal array and transferred to the interface process using a Data Server Interface
Library function.

The write_link_data function writes link data to the Data Server Interface Process. Link data is
stored in a local array and transferred to the interface process using a Data Server Interface
Library function. The structure chart for write_link_datais shown in Figure 4.148.

write

link

data
ds dsif send process
link write status
request message

Figure 4.148 write_link_data Structure Chart

The functions called by write-link_data are described in more detail in Table 4.131.

Table 4.131 write link_data Functions

ITEM

DESCRIPTION

ds dsif send link write request

Data Server Interface Library routine to send a link write request and link
data to the Data Server Interface process. The Data Server Interface process
will attempt to forward the data to the Data Server.

Data Server

166 System Design Document

ITEM

DESCRIPTION

process status message

MDI Proces Status Common Library routine used to log a status message for
the specified status type. If the process status library was configured to use a
status logger, then the message is forwarded to the status logger. Otherwise
the message is written to the configured status log file
process_status_message will also keep track of the current status value of
the status type specified by the caller so that the current status can be
retrieved later.

The ds_dsif_send _link_write_request function is a Data Server Interface Library routine to send a
link write request and link data to the Data Server Interface process. The Data Server Interface
process will attempt to forward the data to the Data Server. The structure chart for
ds dsif_send link_write request is shown in Figure 4.149.

ds dsif is
socket
connected

ds dsif send
link write
request

process ds dsif
sock
. status read
writen
message status

Figure4.149 ds dsif_send_link_write request Structure Chart

The functions called by ds dsif_send link_write request are described in more detail in Table

4.132.

Table4.132 ds_dsif_send_link_write request Functions

ITEM

DESCRIPTION

dsdsif is socket connected

Function to determine if the socket is currently connected. If the socket value
isnot -1, it is assumed to be connected.

dsdsif read status

Function to read a status response from the Data Server Interface process.

process status message

MDI Proces Status Common Library routine used to log a status message for
the specified status type. If the process status library was configured to use a
status logger, then the message is forwarded to the status logger. Otherwise
the message is written to the configured status log file
process_status_message will also keep track of the current status value of
the status type specified by the caller so that the current status can be
retrieved later.

sock writen

MDI Socket Common Library routine used to write a specified number of
bytes to a specified socket.

Data Server

167 System Design Document

The ds_dsif_read status function reads a status response from the Data Server Interface process.
The structure chart for ds_dsif read statusis shown in Figure 4.150.

ds dsif
read
status
sock process
status ntohl
readn
message

Figure4.150 ds _dsif read_status Structure Chart
The functions called by ds_dsif_read status are described in more detail in Table 4.133.

Table 4.133 ds dsif_read_status Functions

ITEM

DESCRIPTION

ntohl

Network Function used to convert between network and host byte order.

process status message

MDI Proces Status Common Library routine used to log a status message for the
specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the message is
written to the configured status log file. process_status message will also keep track
of the current status value of the status type specified by the caller so that the current
status can be retrieved later.

sock readn

MDI Socket Common Library routine that reads a specified number of bytes from the
specified socket.

The gpsth_connect_to_dsif function connects the GPS TH process to the Data Server Interface
process. The structure chart for gpsth_connect_to_dsif is shown in Figure 4.151.

Data Server

168

System Design Document

gpsth

connect
to dsif
process ds dsif
status gethostname
connect
message

Figure 4.151 gpsth_connect_to_dsif Structure Chart
The functions called by gpsth_connect_to_dsif are described in more detail in Table 4.134.

Table 4.134 gpsth_connect_to_dsif Functions

ITEM DESCRIPTION
ds dsif connect Data Server Interface Library routine to connect with the Data Server Interface
Process.
gethostname C Library Function which returns a string containing the name of the host machine.
process status message MDI Proces Status Common Library routine used to log a status message for the

specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the message is
written to the configured status log file. process_status message will also keep track
of the current status value of the status type specified by the caller so that the current
status can be retrieved later.

The ds_dsif_connect function is a Data Server Interface Library routine to connect with the Data
Server Interface Process. The structure chart for ds_dsif_connect is shown in Figure 4.152.

Data Server 169 System Design Document

ds dsif

connect
rocess sock get
P) 9 sock
status service
connect
message port

Figure 4.152 ds_dsif_connect Structure Chart

The functions called by ds_dsif_connect are described in more detail in Table 4.135.

Table 4.135 ds dsif _connect Functions

ITEM

DESCRIPTION

process status message

MDI Proces Status Common Library routine used to log a status message for the
specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the message is
written to the configured status log file. Process_status_message will aso keep track
of the current status value of the status type specified by the caller so that the current

status can be retrieved later.

sock connect

MDI Socket routine used to create a socket connection to the specified host and port.

sock get service port

MDI Socket Common Library routine that returns the port number associated with

the specified service name.

The gpsth_send_heartbeat function is a Data Server Interface Library routine to connect with the
Data Server Interface Process. The structure chart for gpsth_send_heartbeat is shown in Figure

4.153.

Data Server

170

System Design Document

ph send
heartbeat

gpsth
send
heartbeat
ph ph process
. gethostname status
disconnect connect
message

Figure 4.153 gpsth_send_heartbeat Structure Chart

The functions called by gpsth_send_heartbeat are described in more detail in Table 4.136.

Table 4.136 gpsth_send_heartbeat Functions

ITEM DESCRIPTION
Gethostname C Library Function which returns a string containing the name of the host machine.
ph connect MDI Process Heartbeat Common Library routine used to connect to the specified
process-level heartbeat service. The host name and service name are used to make
the connection.
ph disconnect MDI Process Heartbeat Common Library routine used to disconnect from the

process-level heartbeat service.

ph send heartbeat

MDI Process Heartbeat Common Library routine used to send the specified status
value to the heartbeat service configured by the ph_connect call.

process status message

MDI Proces Status Common Library routine used to log a status message for the
specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the message is
written to the configured status log file. process_status message will also keep track
of the current status value of the status type specified by the caller so that the current
status can be retrieved later.

Data Server

171 System Design Document

4.3.5 Lane Closure GUI

The Lane Closure GUI process was previousy developed for TransGuide. Under the MDI project,
this process was integrated with the TransGuide Realtime Map and the Data Server.

The Lane Closure GUI process allows the operator to enter TransGuide lane closure information
into the TransGuide system. The Lane Closure GUI process displays the TransGuide Lane
Closure Control GUI with a form containing fields similar to the lane closure paper form. Figure
4.154 shows the layout of the window containing the form.

Modifications to the Lane Closure GUI process alow the operator to enter a lane closure by
pointing to the location of the lane closure on the Redltime Map. If this location is on an
instrumented segment, the Link 1D of that segment is retrieved. The coordinates and any available
segment information is automatically included in the lane closure form. When the operator is ready
to save the lane closures before exiting the form, the current lane closures are converted to incident
format, and sent to the Data Server. If the operator exits without saving the data, no lane closures
are sent to the Data Server.

Data Server 172 System Design Document

—

Lane Closure Control

File Edit

Help

02/03/97 14:29
10/29/96 06:01
07/15/96 08:21
01/28/97 13:50
01/22/97 13:16
01/28/97 13:54
01/29/97 09:28
02/04/97 13:51
02/04/97 13:55

02/07/97 16:12

LP 410E VANCE JACKSON ENMTRANCE RAMP
IH-10% WURZBACH RD. TO RAMSGATE

CULEERA RD. 1/2 MILE INSIDE LP 410 TO ALAMOD DOWNS ST.

WURZEACH PARKWAY FROM O CONMER TO INDEPENDENCE
LP 4105 FROM MEDINA BASE RD. TO RAY ELLISONM
WEIDMER RD N TO SCHERTZ RD

Us 281 ME FRONTAGE HENDERSON PASS TO LOOP 1604

LOOP 310 NORTH FROM RAY ELLISON DR. TO MEDINA BASE RD.

RAY ELLISON RD. UNDER LOOP 410

02/04/97 13:57 MEDINA EASE RD. UNDER LOOP 410

LOOP 410 NORTH FROM RAY ELLISON TO HEDINA BASE RD.

Highway:
Direction:
Date Start:
Date End:
Nature of Work:
Limits:
Existing Lanes:
Lane(s) Closed:
Ramp(s) Closed:
Contact Person:
Inspector:

Detour:

Motes:

MEDIMNA BASE RD. UNMDER LOOP 41

BOTH

02 Mo |1997 Start Time: 0330 End Time: 1630

oz M4 1997

[BRIDGE WIDEMING.

UNDER LOOP 410,

WO

ILTERMATING .

M/

T#00T - Operations Manager: 731-5139
PATTY CULLUM 3574-3

A

CLOSURE FROM 2-10-97 TO 2-14-97,
CCJ

‘ oK | App]yl Cancell
Hessages:
_|mJ =
Figure 4.154 Lane Closure Control GUI
Data Server 173

System Design Document

4.3.5.1 Process Design

The Lane Closure GUI flow diagram is shown in Figure 4.155. The Lane Closure GUI processis
started from the Redtime Map. Only one instance of the Lane Closure GUI process can be
running at atime. The map supplies the coordinates of the lane closure and the TransGuide LinkID
of any segment at that location to the Lane Closure GUI process.

Due to the transient nature of the Lane Closure GUI, it does not send status information
(heartbeats) to the Data Server.

The connection to the Data Server process is established by the ds_|c_init process, which is called
during initialization of the Lane Closure GUI. This process sends an initiaization request to the
Data Server. When the operator exits the Lane Closure GUI and chooses to save the modifications
to the lane closure file, the send_Ic_ds process converts the lane closures to incident format, sends
them to the Data Server and terminates the connection to the Data Server. If the operator does not
choose to save the lane closures, only the termination request is sent to the Data Server.

1.1 1.2
Launch LC GUI Con Req
E|] Lane Init ,D
Closure > ds_lc_init

Map Coordinate (Init Req
5 GUI

Close Req - \ Client Data ..
Req D

—

1.4

Exit

Incident Data

Req b

Incident Write

Lane Closure - (send_lc_ds Req
Incident Data -

O

Figure 4.155 Lane Closure GUI Data Flow Diagram

The processes shown on the Lane Closure GUI data flow diagram are described in more detail in
Table 4.137.

Table4.137 Lane Closure GUI Processes

ITEM DESCRIPTION

ds Ic_init Initidlizes the Data Sever related parts of the application. It loads the configuration
information, sets up status logging and initializes the connection to the Data Server.

Lane Closure GUI Existing Lane Closure GUI that has been intergated into Data Server, with minor
modifictions to incorporate the map coordinates, and to communicate with the Data Server
process. When al current lane closures are written to a file, the incident portion of the
information is sent to the Data Server as Lane Closure incidents.

send_Ic_ds This function calls the Data Server interface library function ds_write_inc_data to send al
current lane closures to the Data Server. If the Data Server is not connected, this function
attempts a new connection.

Data Server 174 System Design Document

4.35.2 Model Design

The ds Ic_init routine is responsible for initidizing the Data Server related portion of the
application. It loads the configuration data, sets up logging and initializes the connection to the
Data Server. The structure chart of ds _Ic_init is shown in Figure 4.156.

ds
lc
init

cfg load
configuration
data

cfg
get
value

read
config

write init
file

>
0]
2

cfg
get
value

Figure4.156 ds Ic_init Structure Chart
The functions called by ds Ic_init are described in more detail in Table 4.138.

Table4.138 ds Ic_init Functions

ITEM

DESCRIPTION

cfg get value

MDI Configuration File Common Library routine used to return the value of the
specified configuration name.

cfg load configuration data

MDI Configuration File Common Library routine used to read the configuration
name-value pairs from the specified configuration file. These name-vaue pairs
are loaded into memory so they can be accessed on demand by the calling
program.

dsinit MDI Data Server Common Library routine used to initialize the connection to
the Data Server.

read config file Initidlizes the values of the configurable variables with data read from the
configuration file.

sl new MDI Status Logging Library routine that creates a new instance of a log file
using the specified path and filename. Any log messages directed to thislog file
are appended to the end of the log file.

sl write MDI Status Logging Library routine used to write a message to the specified log
file.

Data Server 175 System Design Document

The send |c to ds routine sends al the current lane closure records as incidents to the Data
Server. The structure chart of send_Ic_to_dsis shown in Figure 4.157.

send
Ic to
ds

send
data
with retry

sl
write

ds
write
inc data

ds
init

Figure4.157 send_Ic_to_ds Structure Chart
The functions called by send_Ic_to_ds are described in more detail in Table 4.139.

Table4.139 send Ic to _dsFunctions

ITEM DESCRIPTION
dsinit MDI Data Server Common Library routine used to initialize the connection to the Data
Server.
dswrite inc data MDI Data Server Common Library routine to send incident data to the Data Server.
send data with retry This function sends all current lane closures to the Data Server. If no connection to the
Data Server exists, this function attempts to re-connect.
sl write MDI Statuslog common library function used to write a message to the specified log file.

Data Server 176 System Design Document

4.3.6 Road Closed Interface

The Road Closed Interface, is implemented by the transferfiles process and a Road Closed
configuration file. The transferfiles process is described in the Kiosk System Design Document,
and the configurable items for the Road Closed interface are described in Table 4.140.

Table 4.140 transferfiles configuration itemsfor the Road Closed Interface.

CONFIGURATION ITEM DESCRIPTION
DIRECTORY_PATH Name of directory where the Highway Condition file is stored by the Texas
State Roadway Closed Database.
FILE_ TYPE The name of the type of file that will be transferred.
MAX_FILES Maximum number of files.
TIMEOUT Not used.
FREQUENCY Time in seconds between file retrievals.
SLOG_PATH Status log path.

Data Server 177 System Design Document

4.3.7 911 Interface Subsystem

The 911 Interface subsystem receives 911 incident information from the City of San Antonio 911
Data Dispatch Computer. The datais read and processed for transmission to the Data Server. The
coordinates of the traffic related 911 incidents are converted from Texas State Plane to geographic
coordinates!, the data is converted to incident format and forwarded to the Data Server. The
following sections provide the process and model designs of the 911 Interface subsystem.

4.3.7.1 Process Design

The external environment of the 911 IF process is depicted in the Data Server data flow diagram
shown in Figure 4.158. The diagram shows the 911 IF process interacting with the Data Server
process of the Data Server. The 911 IF process sends client data and incident data requests to the
Data Server process. The 911 IF process is a pure data generator in that no data flows enter the
process.

The 911 IF process is composed of subsystems. the 911 External Interface subsystem, and the
Convert Coordinates subsystem. Each of these subsystems are described in more detail in Table
4.141 and the Convert Coordinates subsystem data flow diagram is presented below in Figure
4.159.

The 911 External Interface subsystem is responsible for initializing the 911 Interface connection
with the 911 Dispatch System, and reading the 911 Incident Data. It then passes coordinate data to
the Convert Coordinates subsystem, then sends the data to the Data Server.

It is necessary to convert the coordi nates because the | ocations of the 911
Incidents are specified in NAD-27 Texas State Plane Coordi nates and the data
consunmers of the Data Server expect |ocations to be specified in NAD 83 geographic
coordi nat es.

Data Server 178 System Design Document

911 Incident

=
Init Req
Client Data
Req HB Req Geo Coordinates
Interface Coordinates
SP Coordinates
Close Req

Con Req
Eq

Incident Data 911 Incident
Req Write Req

Figure 4.158. 911 | F Data Flow Diagram

The subsystems shown on the 911 IF data flow diagram are described in more detail in Table
4.141.

Table4.141. 911 |F Subsystem
ITEM DESCRIPTION

911 External The subsystem that interfaces with the City of San Antonio 911 Dispatch System. The 911 System
Interface sends 911 incident information to the subsystem. The subsystem then passes each accident related
traffic incident to the Convert Coordinates subsystem to convert the incident state plane]
coordinates to geographic coordinates. The subsystem then passes the incident data to the Dat
Server in the form of an Incident Write Req.

Convert A subsystem to convert NAD-27 Texas State Plane coordinates to NAD-83 geographic
Coordinates coordinates.

321 322

SP NAD27
to Geo
NAD27

Geo NAD27
to Geo
NADS83

E SP Coordinates Intermediate

Geo Coordinates

Geo Coordinates

Figure 4.159. Convert Coordinates Data Flow Diagram

The Convert Coordinates data flow diagram is shown in Figure 4.159. The SP Coordinates are
received by the SP NAD27 to Geo NAD27 process which first transforms the coordinates from
NAD-27 Texas State Plane to NAD-27 geographical coordinates. The Geo NAD27 to Geo NAD
83 process then completes the conversion by converting from NAD-27 geographic to NAD-83
geographic. The components of the Convert Coordinates subsystem are described in more detail in
Table 4.142.

Data Server 179 System Design Document

Table 4.142. Convert Coordinates Processes

ITEM DESCRIPTION

Geo NAD27to |A function to convert NAD-27 geographic coordinates into NAD-83 geographic coordinates.
Geo NADS83

SP NAD27 to A function to convert NAD-27 Texas State Plane coordinates to NAD-27 geographic coordinates.
Geo NAD27

4.3.7.2 Model Design

The 911 Main structure chart is shown in Figure 4.160. The 911 Main function reads the
configuration information, initializes status logging, initializes the 911 interface process by
connecting to the 911 Dispatch System and the Data Server Interface process. It then reads the 911
Incident data from the 911 Dispatch System, converts the coordinates of the accident related traffic
incidents, and writes the incident data to the Data Server.

911 Main aso issues a heartbeat request to the Data Server periodicaly to report the status of the
process.

Coordinates are converted using two functions adapted from the United States Government
Corpscon application. These functions, PCGP27 and CNAD, convert from state plane coordinates
to geographic coordinates.

Data Server 180 System Design Document

911
Main
ds ds dsif
ianal send inc
S|gtna write
Setup request
process
sigset 911
data
cfg load dsif
configuration send
data heartbeat
cfgt sock
ge close
value
sock
readn
open initialize sock lo
st‘?altus dsif get sock socket er?or sock
. service listen activity accept
log connection heartbeat
port
sl lect
new selec

Figure 4.160. 911 Main Structure Chart
The functions called by 911 Main are described in more detail in Table 4.143.

Data Server 181 System Design Document

Table 4.143. 911 Main Functions

ITEM

DESCRIPTION

911 Main

The main function of the 911 Interface subsystem. This function initializes
the 911 interface process by connecting to the 911 Dispatch System and the
Data Server. It then reads the 911 Incident data from the 911 Dispatch
System, converts the coordinates, and writes the incident data to the Data
Server.

The process also issues a heartbeat request to the Data Server periodically to
report the status of the process.

cfg get value

MDI Configuration File Common Library routine used to return the value of
the specified configuration name.

cfg load configuration data

MDI Configuration File Common Library routine used to read the
configuration name-value pairs from the specified configuration file. These
name-value pairs are loaded into memory so they can be accessed on demand
by the calling program.

ds dsif send inc write request

A ds dsif library function that packages the link data into the appropriate
ds_dsif message and sends it out to the ds_dsif_socket.

ds signal setup

Data Server Subsystem Common Library function that sets a common signa
handler routine for al catchable signals.

dsif send heartbeat

Sends the heartbeat and responds to any errors. If the ds_hb service is not
connected, an attempt is made to connect to it. Once the connection is
established, this routine takes the specified process status and sends it to the
ds_hb process.

initialize dsif connection

Retrieves necessary configuration items and establishes a connection to the
Data Server Interface process.

log error heartbeat

Logs an error heartbeat to the Data Server.

open status log

Opens a status log file with the given path and filename.

Process 911 data

This function processes the data for an incident. Only accident related
incidents are processed. Incident location coordinates are converted from
Texas State Plane to lat/long.

Select

C Library Function used to multiplex synchronous 1/0. The list of file
descriptors for reading, writing, and receiving exceptions are examined and
any file descriptors that are ready for reading, writing, or have an exceptiona
condition pending are identified.

Sigset

C Library Function used to modify the disposition of asignal. The signal can
be caught, ignored, or returned to the default disposition.

Sl new

MDI Status Logging Library routine that creates a new instance of a log file
using the specified path and filename. Any log messages directed to this log
file are appended to the end of the log file.

Sock accept

MDI Socket Common Library routine that accepts a connection on the
specified socket.

Sock close

MDI Socket Common Library routine used to close the specified socket
connection.

Sock get service port

MDI Socket Common Library routine that returns the port number associated
with the specified service name.

Sock listen MDI Socket Common Library routine that creates a socket, binds it to the
specified port number, and sets up the listen queue for the socket.
Data Server 182 System Design Document

ITEM DESCRIPTION

Sock readn MDI Socket Common Library routine that reads a specified number of bytes
from the specified socket.

Socket activity Waits for activity on multiple sockets.

The open_status |og routine opens a log file with a given path and filename. The structure chart
for open_status log is shown in Figure 4.161.

open
status
log

v

sl
new

Figure4.161 open_status log Structure Chart
The function called by open_status |og is described in more detail in Table 4.144.

Table4.144 open_status log Function

ITEM DESCRIPTION

sl new Library function to create a new status log file.

The process 911 data routine processes the data for an incident. Only accident related incidents
are processed. Incident location coordinates are converted from Texas State Plane coordinates to
to latitude/longitude. The structure chart for process 911 datais shown in Figure 4.162.

Data Server 183 System Design Document

process
911
data

B

PCGP27 mil2time_t disposition2status dispatcher2manager

Figure4.162 process 911 data Structure Chart

The functions called by process 911 data are described in more detail in Table 4.145.

Table4.145 process 911 data Functions

ITEM DESCRIPTION
dispatcher2manager Converts dispatcher code to manager text.
disposition2status Converts disposition code to status.
mil2time_t Converts date and time to time_t format.
PCGP27 A library function adapted from the U.S. Government Corpscon software. The function
converts coordinates from NAD-27 Texas State Plane to NAD-27 geographic.
Data Server 184 System Design Document

4.3.8 Realtime Broadcast

The Redtime Broadcast process replaces functionality that was previoudy implemented by the
TransGuide program “ SunBroadcast”. Realtime Broadcast retrieves ATMS/ATIS data from the
Data Server, and from Realtime Collect, and broadcasts this data over the TransGuide network to
receivers. The Realtime Receive process is used to receive the data from Realtime Broadcast.

4.3.8.1 Process Design

The ATMS data that is broadcast by the Realtime Broadcast process is received by an instance of
the Realtime Recelve process running on a workstation. The data broadcast by the Reatime
Broadcast program includes:

LinkID data

ATMS Lane data
VMS data

LCS data

TSdata

MDI Equipment data
Incident data

Realtime Broadcast receives the ATMS data directly from the Realtime Collect process. The non-
ATMS specific data is retrieved from the Data Server. The data is then combined into a single
packet and broadcast over the network. The TransGuide environment has two ethernets, these
ethernets are connected by a ethernet bridge that does not interchange UDP packets. As a result,
the Realtime Broadcast program must broadcast the UDP packets twice, once over each network.

The Realtime Broadcast process sends a heartbeat message at regular intervals to Data Server,
which uses it to update the status of the process in shared memory. The Redltime Broadcast data
flow diagram is shown in Figure 4.163.

Link Data Broadcast Data

E 181 Lane Data Req
ATMS Data Realtime \ Status Info

E Broadcast / Heartbeat
Incident Data Incident Data

= Req

Figure 4.163 Realtime Broadcast Data Flow Diagram

4.3.8.2 Model Design

The Redltime Broadcast Main function receives ATMS Data from the Realtime Collect program
and MDI data from the Data Server, which it then broadcasts on the TransGuide network. The
Realtime Broadcast Main structure chart is shown in Figure 4.164.

Data Server 185 System Design Document

ds

signal
setup

sigset

cfg load

data

configuration

cfg
get

value

getservbyname

initialize
dsif
connecti

ion

socket

Realtime
Broadcast
Main

dsif
send
heartbeat|

ds dsif
send inc
read
request

send
broadcast

CompressData

receive
atms
data

sock

listen socket sock sock
with activity accept readn
reuse

udpopenwrite

v v

setsockop select

Figure4.164 Realtime Broadcast Main Structure Chart

The functions called by Realtime Broadcast Main are described in more detail in Table 4.146.

Table4.146 Realtime Broadcast Main Functions

ITEM

DESCRIPTION

cfg get value

MDI Configuration File Common Library routine used to return the value of
the specified configuration name.

cfg load configuration data

MDI Configuration File Common Library routine used to read the
configuration name-value pairs from the specified configuration file. These
name-value pairs are loaded into memory so they can be accessed on demand
by the calling program.

Data Server

186 System Design Document

ITEM

DESCRIPTION

CompressData

Compresses data from one data structure into another using the PKWARE
implode() routine.

ds dsif send inc read request

A ds dsif library function that packages a request to read incident data from
the Data Server and sends the request to the dsif process. It then reads the
incident data returned by the dsif process.

ds signa setup

Data Server Subsystem Common Library function that sets a common signal
handler routine for al catchable signals.

dsif send heartbeat

Sends the heartbeat and responds to any errors. If the ds_hb service is not
connected, an attempt is made to connect to it. Once the connection is
established, this routine takes the specified process status and sends it to the
ds_hb process.

getservbyname

C Library Function used to obtain an entry for the specified Internet service.

initialize dsif connection

Retrieves necessary configuration items and establishes a connection to the
Data Server Interface process.

receive atms data Reads data size followed by the data from the Data Server.

Select C Library Function used to multiplex synchronous 1/0. The list of file
descriptors for reading, writing, and receiving exceptions are examined and
any file descriptors that are ready for reading, writing, or have an exceptional
condition pending are identified.

send broadcast Broadcasts the packet type and the data to the clients.

Setsockopt C Library Function used to set options on sockets.

Sigset C Library Function used to modify the disposition of a signal. The signal can
be caught, ignored, or returned to the default disposition.

sock accept MDI Socket Common Library routine that accepts a connection on the

specified socket.

sock listen with reuse

MDI Socket Common Library routine used to set up a socket to listen for
connections and to make the socket address reusable.

sock readn MDI Socket Common Library routine that reads a specified number of bytes
from the specified socket.

Socket C Library Function used to create an endpoint for communication.

socket activity Waits for activity on multiple sockets.

Udpopenwrite Opens and initializes the UPD socket for broadcasting.

The initialize_dsif_connection function is responsible for retrieving necessary configuration items
and establishes a connection to the Data Server Interface process. The initialize_dsif_connection
structure chart is shown in Figure 4.165.

Data Server

187 System Design Document

initialize
dsif
connection

process ds dsif dsif
status config send

)) connect
with logfi heartbeat

Figure 4.165 initialize_dsif_connection Structure Chart
The functions called by initialize_dsif _connection are described in more detail in Table 4.147.

Table 4.147 initialize dsf _connection Functions

ITEM

DESCRIPTION

cfg get value

MDI Configuration File Common Library routine used to return the value
of the specified configuration name.

dsdsif connect

MDI dsif Library routine that is used to connect to the Data Server Interface
process specified by the service name passed to this routine.

dsif send heartbeat

Sends the heartbeat and responds to any errors. If the ds_hb service is not
connected, an attempt is made to connect to it. Once the connection is
established, this routine takes the specified process status and sends it to
the ds_hb process.

process status config with logfi

process_status_config_with_logfile is an MDI Process Status Common
Library routine used to configure the process status handling for the
process. This routine is used to set up a logdfile that will be used by the
caling program.

The dsif_send_heartbeat function sends the heartbeat to the ds_hb heartbeat process, and responds
to any errors. If the ds_hb service is not connected, an attempt is made to connect to it. Once the
connection is established, this routine takes the specified process status and sends it to the ds_hb
process. The structure chart for dsif_send_heartbeat is shown in Figure 4.166.

Data Server

188 System Design Document

dsif
send
heartbeat

process
status
message

ph send ph ph
heartbeat disconnect connect

Figure4.166 dsif_send heartbeat Structure Chart

The functions called by dsif_send_heartbeat are described in more detail in Table 4.148.

Table 4.148 dsif _send_heartbeat Functions

ITEM DESCRIPTION
ph connect MDI Process Heartbeat Common Library routine used to connect to the specified
process-level heartbeat service. The host name and service name are used to make
the connection.
ph disconnect MDI Process Heartbeat Common Library routine used to disconnect from the

process-level heartbeat service.

ph send heartbeat

MDI Process Heartbeat Common Library routine used to send the specified status
value to the heartbeat service configured by the ph_connect call.

process status message

MDI Proces Status Common Library routine used to log a status message for the
specified status type. If the process status library was configured to use a status
logger, then the message is forwarded to the status logger. Otherwise the message is
written to the configured status log file. process_status message will also keep track
of the current status value of the status type specified by the caller so that the current
status can be retrieved later.

The send_broadcast function broadcasts the packet type and the data to the clients. The
send_broadcast structure chart is shown in Figure 4.167.

Data Server

189 System Design Document

send
broadcast

v

udpwrite

v

sendto

Figure 4.167 send_broadcast Structure Chart
The functions called by send_broadcast are described in more detail in Table 4.149.

Table 4.149 send_broadcast Functions

ITEM DESCRIPTION

sendto C Library Function used to send a message from a socket.

udpwrite Broadcasts data to the clients.

Data Server 190 System Design Document

4.3.9 Redtime Receve

The Redltime Recelve process is executed on each workstation which needs access to the realtime
data stream that is being transmitted by the Realtime Broadcast process. The Realtime Receive
process is typicaly started in the system startup procedure. The Realtime Receive process acts as
a server in the sense that applications “ connect” to the process and request realtime data refreshes.
The Redltime receive process continually monitors the networking waiting for a UDP packet
(which is transmitted from the Realtime Broadcast process). Once this data is received it is stored
in loca memory and then transmitted to client processes as the data is requested. All
communication to clients is performed over TCP/IP sockets.

4.3.9.1 Process Design

The Redtime Receive process monitors and controls two types of socket connections The socket
connections are:

UDP socket connection which waits for UDP packets (transmitted by the Realtime Broadcast
program) to be received. Oncethe dataisreceived it is stored in loca memory.

TCP/IP socket which waits for requests from client applications (e.g. Map). When a client
initialy connects to the Redtime Receive program, configuration information about the
currently active redltime data stream is transmitted to the client. The client then periodicaly
requests data refreshes from the Realtime Receive program.

The Redtime Recelve data flow diagram is shown in Figure 4.168.

1

TG Realtime Eealt!me
Network MDI Data Receive eceive
Memory
Initialize Request Data
Connection Refresh
MDI Data
Clients

Figure 4.168. Realtime Receive Data Flow Diagram

Data Server 191 System Design Document

4.3.9.2 Model Design

The Redtime Receive Main function receives data from the Realtime Broadcast program and data
requests from various clients (which use a set of library routines to access the Redltime Receive
data). The Realtime Receive main structure chart is shown in Figure 4.169.

Realtime
Receive
Main
cfg IF)ad . udp
configuration
close
data
cfg send
get A data
value refresh
tservb ‘ send
getservbyname configuration
sock
AllocateDataSpace
readn
) sock
CreateRealTimeData
accept
udp S.OCk socket upd) .
open listen L UncompressData VerifylncidentStorage
. activity read
read with reuse
select

Figure 4.169. Realtime Receive Structure Chart
The functions that are invoked by the Realtime Recelve main process are described in Table 4.150.

Table 4.150. Realtime Receaive Functions

ITEM DESCRIPTION

Data Server 192 System Design Document

ITEM

DESCRIPTION

AllocateDataSpace

Creates data structures for each of the data types to be received from the Data
Server. The function determines the sizing information from the data file and
allocates memory to hold the configuration data for each entry.

Cfg get value

MDI Configuration File Common Library routine used to return the value of the
specified configuration name.

Cfg load configuration data

MDI Configuration File Common Library routine used to read the configuration
name-value pairs from the specified configuration file. These name-vaue pairs
are loaded into memory so they can be accessed on demand by the calling
program.

CreateRea TimeData

Creates the Realtime memory.

Getservbyname

C Library Function used to obtain an entry for the specified Internet service.

Select

C Library Function used to multiplex synchronous 1/O. The list of file
descriptors for reading, writing, and receiving exceptions are examined and any
file descriptors that are ready for reading, writing, or have an exceptiona
condition pending are identified.

Send configuration

Sends the size of each of the staticaly defined realtime data el ements to the
client application, so that it can allocate appropriate space.

Send datarefresh Sends a copy of the Redltime data to the requesting client application using
send_data().
Sock accept MDI Socket Common Library routine that accepts a connection on the specified

socket.

Sock listen with reuse

MDI Socket Common Library routine used to set up a socket to listen for
connections and to make the socket address reusable.

Sock readn MDI Socket Common Library routine that reads a specified number of bytes
from the specified socket.

Socket activity Waits for activity on multiple sockets.

Udp close Terminates communication on the specified socket by issuing a shutdown()
command to the socket, followed by a close() command.

Udp open read Creates and initializes a UDP socket for receiving broadcast messages.

UncompressData Uncompresses data from one data structure into another using the PKWARE
explode() routine.

Upd read Network function used to receive a message from a socket.

VerifylncidentStorage

Increases the incident storage space if the number of incidents exceeds the
number of incidents for which space is currently allocated.

The udp_open function is responsible for establishing the UDP socket that is utilized to receive
data from the Realtime Broadcast program. The udp_open structure chart is shown in Figure

4.170.

Data Server

193 System Design Document

udp
open
read

socket

setsockopt

htonl

htons

bind

udp
make
blocking

v

fentl

Figure 4.170. udp_open Structure Chart

The functions that are invoked during the execution of udp_open are described in Table 4.151.

Table 4.151. udp_open Functions

ITEM DESCRIPTION
bind Network function used to bind a name to a socket.
fentl Unix system call used to provide control over open files.
Htonl Network function used to convert along integer from host to network byte format.
Htons Network function used to convert a short integer from host to network byte format.
Setsockopt C Library Function used to set options on sockets.
Socket C Library Function used to create an endpoint for communication.
Udp make blocking Sets up the UDP socket to block the read until data arrives.
upd open read Creates and initializes a UDP socket for receiving broadcast messages.

The send_configuration function is responsible for transmitting realtime configuration information
to client applications when they connect to the Redltime Receive program. The send_configuration

structure chart is shown in Figure 4.171.

Data Server

194

System Design Document

send
configuration

v

send
data

v

sock
writen

Figure4.171. send_configuration Structure Chart

The functions that are invoked during the execution of send_configuration are described in Table

4.152.
Table 4.152. send_configuration Functions
ITEM DESCRIPTION
send data Writes the value of the variable that was passed to it, to the client socket.
sock writen MDI Socket Common Library routine used to write a specified number of bytes to a

specified socket.

The send_data_refresh function is responsible for transmitting realtime data information to client
applications when they request a data refresh from the Redtime Recelve program. The
send_configuration structure chart is shown in Figure 4.172.

Data Server

195 System Design Document

send
data
refresh

v

send
data

Figure4.172. send_data_refresh Structure Chart

The function that isinvoked during the execution of send_data refresh is described in Table 4.153.

Table 4.153. send_data refresh Function

ITEM

DESCRIPTION

send data

Writes the value of the variable that was passed to it, to the client socket.

Data Server

196 System Design Document

4.3.10 World Wide Web Interface

The World Wide Web (WWW) Interface is the interface to the TransGuide WWW server. The
WWW Interface receives Realtime Map data by attaching to the shared memory area created by an
instance of Realtime Receive on that workstation. The WWW Interface process displays a version
of the Realtime Map on the TransGuide Web-page. Only speeds for the ATMS instrumented
segments, the AVI instrumented segments, and incidents are displayed on the WWW Map. The
speeds are color-coded by range of speed, as they are on the Realtime Map. The WWW Map
shows only a single lane for multi-lane ATMS segments, the color of which is determined by the
calculated aggregate speed for al lanes of that segment. This corresponds to the non-schematic
display mode on the Redltime Map.

The WWW Map can be accessed by Internet users. The initial view of the map shows the map
with the redltime traffic conditions. The user can click on a segment to display the speed of that
segment on the top of the Web-page aong with a textual description of the location of that
segment. The user can also select a view which overlays the traffic map with icons that indicate
current incidents. If there are any incidents, the user can select an incident to see more detailed
information about that incident. The user can also request a textual listing of al current incidents.
In the third map view, the user sees a view which overlays the traffic map with current lane
closures. The Web-page also contains a link to the Texas State Roadway Closed Database web-
page for state-wide road closures.

4.3.10.1 Process Design
The WWW Interface System consists of two processes:

an update task that accesses the shared memory created by Realtime Receive, and
a Hypertext Transfer Protocol daemon (HTTPd) Common Gateway Interface (cgi)
program, launched by the HTTPd.

The cgi program services each HTTPd request, determines what information is requested and then
builds or includes the page components and provides the Hypertext Markup Language (HTML)
document to the HTTPd.

The file update task retrieves ATMS and AV segment speed data, Lane Closure incident data and
ATMS incident data from the Realtime shared memory. It then uses this information and static
data to generate image files, image map files, information listing files and a data lookup file.

The file update task generates the following three time stamped image files: a gif-format image of
the map with color coded road segments, a gif-format image with lane closure icons overlaid on the
segment map, and a gif-format image with ATMS incident icons overlaid on the segment map. It
also generates an HTML formatted image map file for each of the three above mentioned images.
Two information listing files, in HTML table format, are aso created. One contains the lane
closure listings, and the other the incident listings. The file update task also creates a data lookup
file, which is an image map anchor reference data file. This data file is used by the cgi task to
locate information selected via the image map anchors. The data corresponding to the matching
line will be formatted and included in the requested map page. The lookup file itself will not be
sent to the client.

Data Server 197 System Design Document

When a user of the web-page clicks on an object on the screen, the cgi task, which processes user
interaction with the image map, determines the location on the map that was selected and displays
the corresponding information.

The WWW Interface system consists of the main WWW interface process (www_main), a WWW
Data Server Interface process (www_dsif), a WWW heartbest process (www_hb), and a WWW
status logger process (Www_slogger).

The www_dsif process provides the single point of interface between the WWW system and the
Data Server. The www_dsif is responsible for receiving messages from the other WWW
processes, and passing these messages on to the Data Server. The www_main process is
responsible for initialization, connecting to the project level heartbeat process and the Data Server
interface process, and for sending periodic heartbests to the project level heartbeat process. The
WWW Interface data flow diagram is shown in Figure 4.173.

Heartbeat

Heartbeat

Status Info
Heartbeat| v
3

Status Info

Heartbeat

Realtime
Data Shared
Memory

MDI Data

Status Info

> www_slogger

Figure4.173 WWW Interface Data Flow Diagram

4.3.10.2 Modd Design

The WWW Interface process is based on code that was developed for the Redtime Map. Data
Server interface code was added, as well as cgi code to implement the map on the Web-page.

The initia routine of the WWW Interface Subsystem is www_main. This routine is responsible
for reading the configuration file, setting up logging and connecting to the process level heartbeat
service.

The www_main structure chart is shown in Figure 4.174.

Data Server 198 System Design Document

main

process

sigset status
message
cfg load read process h
gethostname configuration config status config (F:)onnect
data file with logge
cfg
get
value
Figure4.174 www_main Structure Chart
The functions called by www_main are described in more detail in Table 4.154.
Table 4.154 www_main Functions
ITEM DESCRIPTION
cfg get value MDI Configuration File Common Library routine used to return the value
of the specified configuration name.
cfg load configuration data MDI Configuration File Common Library routine used to read the

configuration name-value pairs from the specified configuration file.
These name-value pairs are loaded into memory so they can be accessed
on demand by the calling program.

Gethostname C Library Function which returns a string containing the name of the host
machine.
ph connect MDI Process Heartbeat Common Library routine used to connect to the

specified process-level heartbeat service. The host name and service
name are used to make the connection.

process status config with logge process_status_config_with_logger is an MDI Process Status Common
Library routine used to configure the process status handling for the
process. This routine is used to set up the connection to the status logger
used by the calling program.

process status message MDI Proces Status Common Library routine used to log a status message
for the specified status type. If the process status library was configured to
use a status logger, then the message is forwarded to the status logger.
Otherwise the message is written to the configured status log file.
process_status_message will also keep track of the current status value of
the status type specified by the caller so that the current status can be
retrieved later.

read config file Initializes the values of the configurable variables with data read from the
configuration file.

Data Server 199 System Design Document

ITEM

DESCRIPTION

Sigset

C Library Function used to modify the disposition of a signal. The signal
can be caught, ignored, or returned to the default disposition.

Update Data CB is a WWW calback function that is caled in response to timer events which
occur at the configurable update rate. It calls Update_Data to update the Realtime data and the
active incidents. This information is used to update the WWW Map display and to create and
write the various lookup files, cross reference files and cgi files.

Data Server

200

System Design Document

Update
Data
CB
gifDispCreate A A XtAppAddTimeOut
Update /X 2/\| send
Data www
heartbeat
process
o status
gifDispSave set status
type v
i unlink
gifDispFree gifs
open unlink
process
close ' ‘ status
message
Write Generate Write Write Write
xref Map Imap Incidents Lookup
File Imap File File File

Figure4.175 Update Data CB Structure Chart

The functions called by Update Data CB are described in more detail in Table 4.155.

Data Server 201 System Design Document

Table 4.155 Update Data CB Functions

ITEM DESCRIPTION

close System library function. Closes afile.

Generate Map Imap Generates the image map file for the WWW map.

GifDispCreate Creates a gif display (GD) image for drawing a new map, and builds the
color table.

GifDispFree Destroys the current GD object using the GD Library gdimageDestroy()
function.

GifDispSave Saves the current GD image displayed to the specified file using the GD
Library function gdimageGif().

Open System library function. Opens file for reading or writing.

process status message MDI Proces Status Common Library routine used to log a status message for

the specified status type. If the process status library was configured to use a
status logger, then the message is forwarded to the status logger. Otherwise
the message is written to the configured status log file.
process_status_message will also keep track of the current status value of
the status type specified by the caller so that the current status can be

retrieved later.

process status set status type v process_status set_status type value is used to set the value associated
with the specified status type.

send www heartbeat Retrieves the overall process status and sends it to the heartbeat process.

Unlink Unix system call used to remove a specified directory entry.

unlink gifs Deletes old gif image files corresponding to the last time stamp.

Update Data This function updates the Realtime data and the active incidents. It then
uses this data to update each intelligent map object and any popup windows
currently displayed.

Write Imap File Writes the specified client-side image-map file for the WWW page. Each

image-map file contains the unique time stamped gif file name which
corresponds to the image map file. The cgi program will include this image
map file data into the HTML document which is sent to the client browser.
This function also generates the incident image map file and the lane
closure incident image map file.

Write Incidents File Writes the HTML file corresponding to the specified incident type for al
active incidents of that type. The file data is included in the WWW page
sent to the client.

Write Lookup File Writes the lookup file for the WWW page. The lookup file is used by the
cgi program to find data corresponding to a selected query, format that data
and send it to the client browser. Thisfileis not sent to the client browser.

Write xref File Generates and writes the default cross reference file.

XtAppAddTimeOut X Toolkit library function used to register a procedure to be called when a
specified time elapses.

The gifDispCreate routine is responsible for building a color map and for creating a gif Display
image for drawing a new map. The structure chart for gifDispCreate is shown in Figure 4.176.

Data Server 202 System Design Document

gifDispCreate

process
status
message

gdimageCreate

gdimageColorAllocate gdimageCopy

gdimageAColorTransparent gdimagelnterlace

Figure4.176 gifDispCreate Structure Chart
The functions called by gifDisplayCreate are described in more detail in Table 4.156.

Table 4.156 gifDispCreate Functions

ITEM DESCRIPTION

gdimageA ColorTransparent GD Library function used to make the specified color transparent.

gdimageColorAllocate GD Library function used to allocate a color.

gdimageCopy GD Library function used to copy an image.

gdimageCreate GD Library function used to create an image.

gdimagel nterlace GD Library function used to turn interlaced mode on or off.

process status message MDI Proces Status Common Library routine used to log a status message for
the specified status type. If the process status library was configured to use a
status logger, then the message is forwarded to the status logger. Otherwise the
message is written to the configured status log file. process status message
will also keep track of the current status value of the status type specified by
the caller so that the current status can be retrieved later.

The Update_Data routine is responsible for updating the Realtime data and the active incidents. It
then uses this data to update the colors on the map to reflect the current speeds, and any incident
icons that are displayed. The structure chart for Update_Datais shown in Figure 4.177.

Data Server 203 System Design Document

Update
Data

RefreshRealTimeData AccessActivelncidents

Figure4.177 Update Data Structure Chart

The functions called by Update Data are described in more detail in Table 4.157.

Table 4.157 Update Data Functions

ITEM

DESCRIPTION

AccessActivelncidents

MDI Realtime library function used to return alist of active incidents.

RefreshRea TimeData

MDI Realtime Library function used to request and receive the data from the
realtimereceive server.

The send www_heartbeat routine is caled when the overal WWW Interface process status is to
be sent to the Data Server. It retrieves the current overall status and calls send_heartbeat_pulse to
send it. The structure chart for send_www_heartbeat is shown in Figure 4.178.

Data Server

204 System Design Document

send

WWW
heartbeat
process send
status heartbeat
get status pulse

Figure4.178 send_www_heartbeat Structure Chart

The functions called by send www_heartbeat are described in more detail in Table 4.158.

Table 4.158 send_ www_heartbeat Functions

ITEM

DESCRIPTION

process status get status

MDI Process Status Common Library routine used to obtain the most severe
process-level status. This is an aggregation of the status for each of the status types

defined for the process.

send heartbeat pulse

Sends the process-level heartbeat to the Subsystem Heartbeat process.

Data Server

205

System Design Document

4.3.11 Data Server Common Interface Library

Due to the strong similarity of the interactions between the various MDI processes that interface
with the Data Server process, a set of common library functions were developed for interfacing
with the Data Server. In addition to establishing and terminating the connection with the Data
Server, library functions can send messages containing status information, or lane-, incident- or
raillroad data to the Data Server. The library also contains functions to read, write or delete a
specific file, and to retrieve a file's time and date stamp. The following is a list of the functions
included in the library, and a detailed description of them is contained in the sections bel ow:

ds init

ds close

ds send heartbeat

ds write lane data

ds write inc_data

ds write rr_sens data

ds write rr_cross data

ds write_equip_status

ds read lane data

ds read inc_data

ds read rr_sens data

ds read rr_cross data

ds read equip_status

ds write file

ds delete file

ds read file

ds get file time, and

ds _get file type time

4.3.11.1 ds init

The ds_init function initializes a socket connection to the Data Server’s Data Server process. This
function must be called prior to sending any other message, including status messages, to the Data
Server. If aconnection aready exists, or if the input parameter isinvalid, an error is returned. On
a successful return, the connection is established.

The ds _init function structure chart is shown in Figure 4.179.

Data Server 206 System Design Document

getservbyname

gethostname

ds
init

sock rd
uninterrupted

gethostbyname

sock
connect

sock
set
blocking

sock wr
uninterrupted

o

7

The functions called by ds _init are described in more detail in Table 4.159.

Figure4.179 ds_init Structure Chart

Table 4.159 ds init Functions

ITEM DESCRIPTION
gethostbyname C Library Function used to get information for a host with the specified host name.
gethostname C Library Function which returns a string containing the name of the host machine.
getservbyname C Library Function used to obtain an entry for the specified Internet service.
sock connect MDI Socket routine used to create a socket connection to the specified host and port.

sock rd uninterrupted

A wrapper around sock_readn, to prevent a socket read from failing because an
interrupt was received.

sock set blocking

MDI Socket routine that sets the specified socket to be a blocking socket

sock wr uninterrupted

A wrapper around sock_writen, to prevent a socket write from failing because an
interrupt was received.

4.3.11.2 ds close

The ds_close function terminates the socket connection to the Data Server’s Data Server process.
After this function has been called, no more messages can be sent to the Data Server, until another
connection has been established by calling ds init. If no connection exists when ds _closeis called,
or if the input parameter is invalid, an eror is returned. On a successful return, the socket
connection is terminated. Any buffers that were alocated for file and data transfers are released,
and the global static values are reset whether the connection was successfully terminated, or not.

Data Server

207

System Design Document

The ds_close function structure chart is shown in Figure 4.180.

ds
close

sock wr sock rd sock ¢
uninterrupted uninterrupted close ree
Figure4.180 ds close Structure Chart
The functions called by ds_close are described in more detail in Table 4.160.
Table 4.160 ds_close Functions
ITEM DESCRIPTION
free C Library Function used to free previously alocated memory and make it available for
further alocation.
sock close MDI Socket Common Library routine used to close the specified socket connection.
sock rd uninterrupted A wrapper around sock_readn, to prevent a socket read from failing because an
interrupt was received.
sock wr uninterrupted A wrapper around sock_writen, to prevent a socket write from failing because an
interrupt was received.

4.3.11.3 ds_send heartbeat

The ds_send_heartbeat function sends a status message to the Data Server. A connection must
have already been successfully established when this function is called. The Data Server expects
to get status messages at regular intervas from the processes. When no status message has been
received within the expected time, the Data Server assumes that the process' status is unknown.

The ds_send heartbeat function first checks that a connection to the Data Server has been
initialized, and that the input parameters are valid. If either test fals, an error is returned.
Otherwise the status is sent to the Data Server, which sends a response back to acknowledge the
receipt of the message. If the transmission of the status message was unsuccessful, one retry is
attempted. Retries are only attempted if the first call to the socket library function sock_writen

Data Server 208 System Design Document

falls. Before retrying, a new socket connection to the Data Server is attempted. If the retry fails,
an error is returned.

The ds_send_heartbeat function structure chart is shown in Figure 4.181

ds send
heartbeat
check sock wr resend sock rd
|(;1(|)tn " uninterrupted buf uninterrupted

Figure4.181 ds send_heartbeat Structure Chart

The functions called by ds_send_heartbesat are described in more detail in Table 4.161.

Table4.161 ds send heartbeat Functions

ITEM DESCRIPTION
check conn init Checks that the connection has been initialized.
resend buf Re-sends a buffer to Data Server, that was previously unsuccessfully sent. Attempts to

reconnect, and sends the buffer if the reconnection is successful. Saves the socket
descriptor of the new connection on successful transmission.

sock rd uninterrupted A wrapper around sock_readn, to prevent a socket read from failing because an
interrupt was received.

sock wr uninterrupted A wrapper around sock_writen, to prevent a socket write from failing because an
interrupt was received.

4.3.11.4 ds write lane data

The ds_write_|lane_data function sends lane speed or travel time information for one or more lanes
to the Data Server. A connection must have already been successfully established when this
function is called. The information passed to this function is the type of data being sent (which
implies the source of the data), the number of lane data structures being sent, followed by the data
for each lane. The data for each individual lane includes the status and the speed of the lane. The
data does not include a TransGuide LinkID, because the LinkID is automatically implied by the

Data Server 209 System Design Document

index of the data for each lane data type. Because of this, each call to ds write lane data should
contain the data for all lanes of the selected data type.

The ds write lane data function first checks that a connection to the Data Server has been
initialized, and that the input parameters are valid. If either test fals, an error is returned.
Otherwise the data is sent to the Data Server, which sends a response back to acknowledge the
receipt of the message. |If the transmission of the message was unsuccessful, one retry is
attempted. Retries are only attempted if the first call to the socket library function sock_writen
fails. Before retrying, a new socket connection to the Data Server is attempted. If the retry fails,
an error is returned.

The ds write_lane_data function structure chart is shown in Figure 4.182

ds write
lane
data
check sock wr resend sock rd
i(;?tnn uninterrupted buf uninterrupted

Figure4.182 ds write lane data Structure Chart

The functions called by ds write |lane_data are described in more detail in Table 4.162.

Table4.162 ds write lane data Functions

ITEM DESCRIPTION
check conn init Checks that the connection has been initialized.
resend buf Re-sends a buffer to Data Server, that was previously unsuccessfully sent. Attempts to

reconnect, and sends the buffer if the reconnection is successful. Saves the socket
descriptor of the new connection on successful transmission.

sock rd uninterrupted A wrapper around sock_readn, to prevent a socket read from failing because an
interrupt was received.

sock wr uninterrupted A wrapper around sock_writen, to prevent a socket write from failing because an
interrupt was received.

Data Server 210 System Design Document

4.3.11.5 ds write inc_data

The ds write inc_data function sends incident information for one or more traffic incidents to the
Data Server’s Data Server process. A connection must have already been successfully established
when this function is called. The information passed to this function is the source of the incident
data, the number of incident data structures being sent, followed by the data for each incident.
Each call to ds_write_inc_data causes all the existing incidents of the specified type to be replaced
by this new set of incidents. The data that is being passed for each incident, depends on the
incident source.

The ds write inc_data function first checks that a connection to the Data Server has been
initialized, and that the input parameters are valid. If either test fals, an error is returned.
Otherwise the data is sent to the Data Server, which sends a response back to acknowledge the
receipt of the message. If the transmission of the message was unsuccessful, one retry is
attempted. Retries are only attempted if the first call to the socket library function sock_writen
fails. Before retrying, a new socket connection to the Data Server is attempted. If the retry fails,
an error is returned.

The ds_write_inc_data function structure chart is shown in Figure 4.183.

ds

write

inc data
check sock wr resend sock rd
F:.?n uninterrupted buf uninterrupted
ini

Figure4.183 ds write_inc_data Structure Chart

The functions called by ds_write_inc_data are described in more detail in Table 4.163.

Table 4.163 ds write inc_data Functions

ITEM DESCRIPTION
check conn init Checks that the connection has been initialized.
resend buf Re-sends a buffer to Data Server, that was previously unsuccessfully sent. Attempts to

reconnect, and sends the buffer if the reconnection is successful. Saves the socket
descriptor of the new connection on successful transmission.

Data Server 211 System Design Document

sock rd uninterrupted A wrapper around sock_readn, to prevent a socket read from failing because an
interrupt was received.

sock wr uninterrupted A wrapper around sock_writen, to prevent a socket write from failing because an
interrupt was received.

4.3.11.6 ds write rr_sens data

The ds_write rr_sens data function sends information for the currently active railroad sensors to
the Data Server. A connection must have already been successfully established when this function
is called. The information passed to this function is the number of railroad sensor data structures
being sent, followed by the data for each sensor. Each call to ds write rr_sens data causes dl the
existing sensor data to be replaced by the new data. If there are no active sensors,
ds write rr_sens data is called with the number of sensor data structures being sent set to zero.
The information for the sensor includes the sensor's TransGuide LinkiD, status, speed,
acceleration and the time since the last update of the sensor.

The ds write rr_sens data function first checks that a connection to the Data Server has been
initialized, and that the input parameters are valid. If either test fals, an error is returned.
Otherwise the data is sent to the Data Server, which sends a response back to acknowledge the
receipt of the message. |If the transmission of the message was unsuccessful, one retry is
attempted. Retries are only attempted if the first call to the socket library function sock_writen
fails. Before retrying, a new socket connection to the Data Server is attempted. If the retry fails,
an error is returned.

Theds write_rr_sens_data function structure chart is shown in Figure 4.184.

ds write
Ir sens
data
check
sock wr resend sock rd
.cc.)tnn uninterrupted buf uninterrupted
ini

Figure4.184 ds write rr_sens data Structure Chart

The functions called by ds_write rr_sens data are described in more detail in Table 4.164.

Data Server 212 System Design Document

Table4.164 ds write rr_sens data Functions

ITEM DESCRIPTION
check conn init Checks that the connection has been initialized.
resend buf Re-sends a buffer to Data Server, that was previously unsuccessfully sent. Attempts to

reconnect, and sends the buffer if the reconnection is successful. Saves the socket
descriptor of the new connection on successful transmission.

sock rd uninterrupted A wrapper around sock_readn, to prevent a socket read from failing because an
interrupt was received.

sock wr uninterrupted A wrapper around sock_writen, to prevent a socket write from failing because an
interrupt was received.

4.3.11.7 ds write rr_cross data

The ds write rr_cross data function sends information for the railroad crossings to the Data
Server. A connection must have already been successfully established when this function is called.
The information passed to this function is the number of crossing data structures being sent,
followed by the data for each crossing. Each call to ds write rr_cross_data causes all the existing
crossing data to be replaced by the new data. If there is no crossing data, ds_write rr_cross data
is called with the number of crossing data structures being sent set to zero. The information for the
crossing includes the crossing's TransGuide LinkID, estimated time of arrival of the front and the
rear of the train, the length of the train and the expected duration of the blockage.

The ds_write rr_cross_data function first checks that a connection to the Data Server has been
initialized, and that the input parameters are valid. If either test fals, an error is returned.
Otherwise the data is sent to the Data Server, which sends a response back to acknowledge the
receipt of the message. If the transmission of the message was unsuccessful, one retry is
attempted. Retries are only attempted if the first call to the socket library function sock_writen
fails. Before retrying, a new socket connection to the Data Server is attempted. If the retry fails,
an error is returned.

Theds write_rr_cross_data function structure chart is shown in Figure 4.185.

Data Server 213 System Design Document

ds write
IT Cross
data

zgiﬁk sock wr resend sock rd
init uninterrupted buf uninterrupted
ini

Figure4.185 ds write_rr_cross_data Structure Chart

The functions called by ds_write rr_cross _data are described in more detail in Table 4.165.

Table4.165 ds write rr_cross data Functions

ITEM DESCRIPTION
check conn init Checks that the connection has been initialized.
resend buf Re-sends a buffer to Data Server, that was previously unsuccessfully sent. Attempts to

reconnect, and sends the buffer if the reconnection is successful. Saves the socket
descriptor of the new connection on successful transmission.

sock rd uninterrupted A wrapper around sock_readn, to prevent a socket read from failing because an
interrupt was received.

sock wr uninterrupted A wrapper around sock_writen, to prevent a socket write from failing because an
interrupt was received.

4.3.11.8 ds write_equip_status

The ds write_equip_status function sends equipment status information to the Data Server. A
connection must have aready been successfully established when this function is called. The
information passed to this function is the type of equipment whose status is being sent, the number
of equipment status values being sent, followed by the status for each piece of equipment. The
data for each individua piece of equipment does not include the TransGuide LinkiD of the
equipment, because this ID is automatically implied by the index of the data for that equipment
type. Because of this, each call to ds write_equip_status should contain the data for al pieces of
equipment of the selected type.

Data Server 214 System Design Document

The ds write write_equip function first checks that a connection to the Data Server has been
initialized, and that the input parameters are valid. If either test fals, an error is returned.
Otherwise the data is sent to the Data Server, which sends a response back to acknowledge the
receipt of the message. If the transmission of the message was unsuccessful, one retry is
attempted. Retries are only attempted if the first call to the socket library function sock _writen
fails. Before retrying, a new socket connection to the Data Server is attempted. If the retry fails,
an error is returned.

The ds_write_equip_status function structure chart is shown in Figure 4.186.

ds write
equip
status
check sock wr resend sock rd
i(;(i)tnn uninterrupted buf uninterrupted

Figure 4.186 ds_write_equip_status Structure Chart

The functions called by ds_write_equip_status are described in more detail in Table 4.166.

Table 4.166 ds_write_equip_status Functions

ITEM DESCRIPTION
check conn init Checks that the connection has been initialized.
resend buf Re-sends a buffer to Data Server, that was previously unsuccessfully sent. Attempts to

reconnect, and sends the buffer if the reconnection is successful. Saves the socket
descriptor of the new connection on successful transmission.

sock rd uninterrupted A wrapper around sock_readn, to prevent a socket read from failing because an
interrupt was received.

sock wr uninterrupted A wrapper around sock_writen, to prevent a socket write from failing because an
interrupt was received.

Data Server 215 System Design Document

4.3.11.9 ds read lane data

The ds_read |lane data function reads lane data from the Data Server. A connection must aready
have been successfully established when this function is called. The ds read lane data function
returns all available lane data of the requested type that was stored on the Data Server. The
information passed to this function is the type of data being requested (which implies the source of
the data). The function returns a pointer to the number of lane data values, and a pointer to the
array of lane data.

The ds read_lane data function first checks that a connection to the Data Server has been
initialized, and that the input parameters are valid. If either test fals, an error is returned.
Otherwise the request is sent to the Data Server. If the transmission of the request was
unsuccessful, oneretry is attempted. Retries are only attempted if the first call to the socket library
function sock_writen fails. Before retrying, a new socket connection to the Data Server is
attempted. If the retry fails, an error is returned.

On a successful transmission, a status response is sent back. If the status response indicates that
the request was successful, the number of values to follow is read from the socket, followed by the
lane data. If a buffer had not been previoudy allocated to store this data, or if the allocated buffer
istoo small, a buffer is allocated for the data read.

The data for each individua lane is a single byte that contains the lane data (speed or time) in the
lower 7 bits and the status in the highest bit. The data does not include a TransGuide LinkID,
because the LinkID is automatically implied by the index of the data for each lane data type.

ds read

lane

data
check sock wr resend sock rd
_C(?tnn uninterrupted buf uninterrupted
ini

Figure 4.187 ds read lane_data Structure Chart
Theds read lane data function structure chart is shown in Figure 4.187.

The functions called by ds read lane data are described in more detail in Table 4.167.

Data Server 216 System Design Document

Table 4.167 ds read lane data Functions

ITEM DESCRIPTION
check conn init Checks that the connection has been initialized.
resend buf Re-sends a buffer to Data Server, that was previously unsuccessfully sent. Attempts to

reconnect, and sends the buffer if the reconnection is successful. Saves the socket
descriptor of the new connection on successful transmission.

sock rd uninterrupted A wrapper around sock_readn, to prevent a socket read from failing because an
interrupt was received.

sock wr uninterrupted A wrapper around sock_writen, to prevent a socket write from failing because an
interrupt was received.

4.3.11.10 ds read inc_data

The ds_read inc_data function requests incident information from the Data Server. A connection
must have aready been successfully established when this function is called. The information
passed to this function is the source of the incident data requested. The function returns a pointer to
the number of incidents, and a pointer to the array of incidents.

The ds read inc_data function first checks that a connection to the Data Server has been
initialized, and that the input parameters are valid. If either test fals, an error is returned.
Otherwise the request is sent to the Data Server. |If the transmission of the message was
unsuccessful, one retry is attempted. Retries are only attempted if the first call to the socket library
function sock_writen fails. Before retrying, a new socket connection to the Data Server is
attempted. If the retry fails, an error is returned.

On a successful transmission, a status response is sent back. If the status response indicates that
the request was successful, the number of values to follow is read from the socket, followed by the
incident data. If a buffer had not been previously allocated to store this data, or if the allocated
buffer istoo small, abuffer is alocated for the data read.

The data for each individual incident is stored in a Rea TimelncidentData structure. Which fields
of the structure are significant, depend on the type of the incident.

Theds read_inc_data function structure chart is shown in Figure 4.188.

Data Server 217 System Design Document

ds read

inc

data
ggﬁﬁk sock wr resend sock rd
init uninterrupted buf uninterrupted
ini

Figure4.188 ds read inc_data Structure Chart

The functions called by ds read_inc_data are described in more detail in Table 4.168.

Table 4.168 ds read inc_data Functions

ITEM DESCRIPTION
check conn init Checks that the connection has been initialized.
resend buf Re-sends a buffer to Data Server, that was previously unsuccessfully sent. Attempts to

reconnect, and sends the buffer if the reconnection is successful. Saves the socket
descriptor of the new connection on successful transmission.

sock rd uninterrupted A wrapper around sock_readn, to prevent a socket read from failing because an
interrupt was received.

sock wr uninterrupted A wrapper around sock_writen, to prevent a socket write from failing because an
interrupt was received.

4.3.11.11 ds read rr_sens data

The ds read_rr_sens data function reads railroad sensor information from the Data Server. A
connection must have aready been successfully established when this function is called. The
ds read rr_sens datafunction returns all available sensor data that was stored on the Data Server.
The function returns a pointer to the number of railroad sensor data structures, and a pointer to the
array of railroad sensor structures.

The ds read rr_sens data function first checks that a connection to the Data Server has been
initialized, and that the input parameters are valid. If either test fals, an error is returned.
Otherwise the data is sent to the Data Server. If the transmission of the request was unsuccessful,
one retry is attempted. Retries are only attempted if the first call to the socket library function

Data Server 218 System Design Document

sock_writen fails. Before retrying, a new socket connection to the Data Server is attempted. If the
retry fails, an error is returned.

On a successful transmission, a status response is sent back. If the status response indicates that
the request was successful, the number of bytes to follow is read from the socket, followed by the
raillroad sensor data. If a buffer had not been previoudly alocated to store this data, or if the
dlocated buffer istoo small, a buffer is allocated for the data.

Theds read rr_sens data function structure chart is shown in Figure 4.189.

ds read
Ir sens
data
check sock wr resend sock rd
i(;?tnn uninterrupted buf uninterrupted

Figure4.189 ds read rr_sens data Structure Chart

The functions called by ds _read rr_sens data are described in more detail in Table 4.169.

Table4.169 ds read rr_sens data Functions

ITEM DESCRIPTION
check conn init Checks that the connection has been initialized.
resend buf Re-sends a buffer to Data Server, that was previously unsuccessfully sent. Attempts to

reconnect, and sends the buffer if the reconnection is successful. Saves the socket
descriptor of the new connection on successful transmission.

sock rd uninterrupted A wrapper around sock_readn, to prevent a socket read from failing because an
interrupt was received.

sock wr uninterrupted A wrapper around sock_writen, to prevent a socket write from failing because an
interrupt was received.

Data Server 219 System Design Document

4.3.11.12 ds read rr_cross data

The ds _read_rr_cross_data function reads railroad crossing information from the Data Server. A
connection must have aready been successfully established when this function is called. The
ds read rr_cross data function returns al available crossing data that was stored on the Data
Server. The function returns a pointer to the number of railroad crossing data structures, and a
pointer to the array of railroad crossing structures.

The ds read _rr_cross_data function first checks that a connection to the Data Server has been
initialized, and that the input parameters are valid. If either test fals, an error is returned.
Otherwise the data is sent to the Data Server. If the transmission of the request was unsuccessful,
one retry is attempted. Retries are only attempted if the first call to the socket library function
sock_writen fails. Before retrying, a new socket connection to the Data Server is attempted. If the
retry fails, an error is returned.

On a successful transmission, a status response is sent back. If the status response indicates that
the request was successful, the number of bytes to follow is read from the socket, followed by the
raillroad crossing data. If a buffer had not been previoudy alocated to store this data, or if the
dlocated buffer istoo small, a buffer is allocated for the data.

Theds read rr_cross_data function structure chart is shown in Figure 4.190.

ds read
IT Cross
data
check sock wr resend sock rd
i(;?tnn uninterrupted buf uninterrupted

Figure4.190 ds read rr_cross _data Structure Chart
The functions called by ds _read rr_cross_data are described in more detail in Table 4.170.

Table4.170ds read rr_cross data Functions

ITEM DESCRIPTION
check conn init Checks that the connection has been initialized.
resend buf Re-sends a buffer to Data Server, that was previously unsuccessfully sent. Attempts to

reconnect, and sends the buffer if the reconnection is successful. Saves the socket
descriptor of the new connection on successful transmission.

Data Server 220 System Design Document

sock rd uninterrupted A wrapper around sock_readn, to prevent a socket read from failing because an
interrupt was received.

sock wr uninterrupted A wrapper around sock_writen, to prevent a socket write from failing because an
interrupt was received.

4.3.11.13 ds read equip_status

The ds _read_equip_status function reads equipment status information from the Data Server. A
connection must have aready been successfully established when this function is called. The
ds read equip_status function returns all available equipment status data of the requested type that
was stored on the Data Server. The information passed to this function is the type of equipment
whose status is being requested. The function returns a pointer to the number of status values, and
apointer to the array of status values.

The ds read_equip_status function first checks that a connection to the Data Server has been
initialized, and that the input parameters are valid. If either test fals, an error is returned.
Otherwise the request is sent to the Data Server. |If the transmission of the request was
unsuccessful, one retry is attempted. Retries are only attempted if the first call to the socket library
function sock_writen fails. Before retrying, a new socket connection to the Data Server is
attempted. If the retry fails, an error is returned.

On a successful transmission, a status response is sent back. If the status response indicates that
the request was successful, the number of bytes to follow is read from the socket, followed by the
equipment status data. If the status information is requested for all equipment types, the returned
status data is grouped by equipment type, and the equipment types themselves are ordered by their
enumerated value. If a buffer had not been previoudy allocated to store this data, or if the
dlocated buffer istoo small, a buffer is allocated for the data.

The status data does not include an equipment ID because the ID is automatically implied by the
index of the data for each equipment type. If equipment statusis requested for al equipment types,
the status data in the array is ordered by the enumerated val ues of the equipment types.

Theds read equip_status function structure chart is shown in Figure 4.191.

Data Server 221 System Design Document

ds read

equip

status
check sock wr resend sock rd
.cc.)tnn uninterrupted buf uninterrupted
ini

Figure4.191 ds_read_equip_status Structure Chart

The functions called by ds_read equip_status are described in more detail in Table 4.171.

Table4.171 ds read equip_status Functions

ITEM DESCRIPTION
check conn init Checks that the connection has been initialized.
resend buf Re-sends a buffer to Data Server, that was previously unsuccessfully sent. Attempts to

reconnect, and sends the buffer if the reconnection is successful. Saves the socket
descriptor of the new connection on successful transmission.

sock rd uninterrupted A wrapper around sock_readn, to prevent a socket read from failing because an
interrupt was received.

sock wr uninterrupted A wrapper around sock_writen, to prevent a socket write from failing because an
interrupt was received.

4.3.11.14 ds write file

The ds_write file function sends a local file to the Data Server, where it is stored in a predefined
directory. The filename of the local and remote file do not have to be the same. The remote
filename cannot include path information, and the total length of the remote file name (including
any extensions) is limited to 12 characters. A connection must have already been successfully
established when this function is called.

The ds write file function first checks that a connection to the Data Server has been initialized,
and that the input parameters are valid. If either test fails, an error is returned. Otherwise the loca
file is opened, and a file buffer is alocated, if it had not already been allocated previoudy. If the
file is larger than the alocated buffer, the file is sent in pieces the size of the buffer. When the
entire file has been sent to the Data Server, it sends a response back to acknowledge the receipt of

Data Server 222 System Design Document

the data. If the transmission of the message was unsuccessful, one retry is attempted. Retries are
only attempted if the first call to the socket library function sock_writen fails. Before retrying, a
new socket connection to the Data Server is attempted. If the retry fails, an error is returned.

The ds_write file function structure chart is shown in Figure 4.192.

ds

write
file
EZEEK sock wr resend file rd sock rd
init uninterrupted buf uninterrupted uninterrupted

Figure4.192 ds write file Structure Chart

The functions called by ds write file are described in more detail in Table 4.172.

Table4.172 ds write file Functions

ITEM DESCRIPTION
check conn init Checks that the connection has been initialized.
file rd uninterrupted A wrapper around read, to prevent a file read from failing because an interrupt was
received.
resend buf Re-sends a buffer to Data Server, that was previously unsuccessfully sent. Attempts to

reconnect, and sends the buffer if the reconnection is successful. Saves the socket
descriptor of the new connection on successful transmission.

sock rd uninterrupted A wrapper around sock_readn, to prevent a socket read from failing because an
interrupt was received.

sock wr uninterrupted A wrapper around sock_writen, to prevent a socket write from failing because an
interrupt was received.

4.3.11.15 ds ddete file

The ds_delete file function sends a message to the Data Server to delete a file that is stored in a
predefined directory on the Data Server’s disk. The name of the file to delete cannot include path
information, and the total length of the name (including any extensions) is limited to 12 characters.
A connection must have aready been successfully established when this function is called.

Data Server 223 System Design Document

The ds_delete file function first checks that a connection to the Data Server has been initialized,
and that the input parameters are valid. If either test fails, an error is returned. Otherwise the
message is sent to the Data Server, which sends a response back to indicate the status of the delete
operation. If the transmission of the message was unsuccessful, one retry is attempted. Retries are
only attempted if the first call to the socket library function sock_writen fails. Before retrying, a
new socket connection to the Data Server is attempted. If the retry fails, an error is returned.

Theds _delete file function structure chart is shown in Figure 4.193.

ds

delete

file
check sock wr resend sock rd
qun uninterrupted buf uninterrupted
ini

Figure4.193 ds delete file Structure Chart

The functions called by ds_delete file are described in more detail in Table 4.173.

Table4.173 ds ddete file Functions

ITEM DESCRIPTION
check conn init Checks that the connection has been initialized.
resend buf Re-sends a buffer to Data Server, that was previously unsuccessfully sent. Attempts to

reconnect, and sends the buffer if the reconnection is successful. Saves the socket
descriptor of the new connection on successful transmission.

sock rd uninterrupted A wrapper around sock_readn, to prevent a socket read from failing because an
interrupt was received.

sock wr uninterrupted A wrapper around sock_writen, to prevent a socket write from failing because an
interrupt was received.

4.3.11.16 ds read file

The ds _read file function requests a remote file from the Data Server, where it was stored in a
predefined directory. The returned file is then stored locally. If a file with the same name as the
output filename aready exists, it will be overwritten. The filename of the remote and local file do
not have to be the same. The remote filename cannot include path information, and the total length

Data Server 224 System Design Document

of the remote file name (including any extensions) is limited to 12 characters. A connection must
have already been successfully established when this function is called.

The ds _read_file function first checks that a connection to the Data Server has been initiaized, and
that the input parameters are valid. If either test fails, an error is returned. Otherwise the output
fileis opened or created, and afile buffer is allocated if one did not aready exist. Next a message
is sent to the Data Server requesting the file. The Data Server sends a response back indicating the
status of the operation, followed by the size of the file and the file data. If the response indicates
that the operation was not successful, no data will follow.

If thefileis larger than the allocated buffer, the file is received in pieces the size of the buffer, and
written to the output file as they are received. When the entire file has been received, the file is
closed. If the transmission of the message was unsuccessful, one retry is attempted. Retries are
only attempted if the first call to the socket library function sock_writen fails. Before retrying, a
new socket connection to the Data Server is attempted. If the retry fails, an error is returned.

The ds read_file function structure chart is shown in Figure 4.194.

ds
read
file

check " sock wr resend sock rd file wr
?9{‘” crea uninterrupted buf uninterrupted uninterrupted
ini

Figure4.194 ds read file Structure Chart

The functions called by ds read file are described in more detail in Table 4.174

Table4.174 ds read file Functions

ITEM DESCRIPTION
check conn init This function checks that the connection has been initialized.
prepare output file Allocates afile buffer if none had yet been alocated. Creates the output file if it does
not exist. Open and truncate thefileif it exists.
read file data Reads a chunk of data from the socket and writes it to the local file.
resend buf Re-sends a buffer to Data Server, that was previously unsuccessfully sent. Attempts to

reconnect, and sends the buffer if the reconnection is successful. Saves the socket
descriptor of the new connection on successful transmission.

send read file header Builds the read file header and sendsiit to the Data Server process.

Data Server 225 System Design Document

ITEM DESCRIPTION

verify input params Checks input parameters for vaidity.

4.3.11.17 ds get file time

The ds_get_file time function sends a message to the Data Server to request the time and date
stamp of the specified file that is stored in a predefined directory on the Data Server’s disk. The
name of the file cannot include path information, and the total length of the name (including any
extensions) is limited to 12 characters. A connection must have aready been successfully
established when this function is called.

Theds get file time function first checks that a connection to the Data Server has been initialized,
and that the input parameters are valid. If either test fails, an error is returned. Otherwise the
message is sent to the Data Server, which sends a response back to indicate the status of the
operation. If the message was successfully sent, the time and date stamp of the file follow the
response. If the transmission of the message was unsuccessful, one retry is attempted. Retries are
only attempted if the first call to the socket library function sock_writen fails. Before retrying, a
new socket connection to the Data Server is attempted. If the retry fails, an error is returned.

Theds get file_time function structure chart is shown in Figure 4.195.

ds get

file

time
Ezﬁgk sock wr resend sock rd
init uninterrupted buf uninterrupted
ini

Figure4.195 ds get file time Structure Chart
The functions called by ds_get_file time are described in more detail in Table 4.175.

Table4.175 ds get_file time Functions

ITEM DESCRIPTION

check conn init Checks that the connection has been initialized.

Data Server 226 System Design Document

ITEM DESCRIPTION

resend buf Re-sends a buffer to Data Server, that was previously unsuccessfully sent. Attempts to
reconnect, and sends the buffer if the reconnection is successful. Saves the socket
descriptor of the new connection on successful transmission.

sock rd uninterrupted A wrapper around sock_readn, to prevent a socket read from failing because an
interrupt was received.

sock wr uninterrupted A wrapper around sock_writen, to prevent a socket write from failing because an
interrupt was received.

4.3.11.18 ds get file type time

The ds_get_file _type time function sends a message to the Data Server to request the names and
corresponding time and date stamps of al files of the specified file type that are stored on the Data
Server’'sdisk. A connection must have already been successfully established when this function is
caled. The information passed to this function is the file type for which the information was
requested. The function returns a pointer to the number of timestamp structures returned, and a
pointer to the array of timestamp structures.

The ds get file type time function first checks that a connection to the Data Server has been
initialized, and that the input parameters are valid. If either test fals, an error is returned.
Otherwise the message is sent to the Data Server. |If the transmission of the message was
unsuccessful, one retry is attempted. Retries are only attempted if the first call to the socket library
function sock_writen fails. Before retrying, a new socket connection to the Data Server is
attempted. If the retry fails, an error is returned.

On a successful transmission, a status response is sent back. If the status response indicates that
the request was successful, the number of values to follow is read from the socket, followed by the
file name and timestamp data. If a buffer had not been previously alocated to store this data, or if
the allocated buffer istoo small, abuffer is alocated for the data read.

The datafor each individual file is a structure that contains a string for the name of the file, and the
time/date stamp of the file. The format of the time stamp is seconds since 00:00:00 1/1/1970.

Theds get file type time function structure chart is shown in Figure 4.196.

Data Server 227 System Design Document

ds get

file type
time
check sock wr resend sock rd
::nc:tnn uninterrupted buf uninterrupted

Figure 4.196 ds_get_file type_time Structure Chart

The functions called by ds _get _file type time are described in more detail in Table 4.176.

Table4.176 ds_get_file type_time Functions

ITEM

DESCRIPTION

check conn init

Checks that the connection has been initialized.

resend buf

Re-sends a buffer to Data Server, that was previously unsuccessfully sent. Attempts to

reconnect, and sends the buffer if the reconnection is

successful. Saves the socket

descriptor of the new connection on successful transmission.

sock rd uninterrupted

A wrapper around sock_readn, to prevent a socket
interrupt was received.

read from failing because an

sock wr uninterrupted

A wrapper around sock_writen, to prevent a socket write from failing because an

interrupt was received.

Data Server

228

System Design Document

5. Traceability Matrix

The traceability matrix for the DS System is presented in this section. It lists the requirements of
the system that were presented in Section 3 of this document. Along with each requirement is the
source of the requirement and the test case that verifies the requirement.

This table was used throughout the design, development, and test of the system to ensure that the
requirements have been met. It was updated as requirements and design elements were refined.
During development of the Acceptance Test Plan (ATP), sections of the test plan were referenced
in the TEST CASE(S) column of this table to cross-reference to the ATP.

The requirements in the traceability matrix are organized by requirement number. The genera
requirements are presented first, followed by the interface, functiona, and physical requirements.

Data Server 229 System Design Document

Table5.1. Data Server System Traceability Matrix

REQUIREMENT REQUIREMENT SOURCE TEST CASE(S)
NUMBER
DS-GN-1 An 80% System Design Document shall be delivered. P-2.1.28.2 N/A
DS-GN-2 A 100% design document shall be delivered. P-21.28.2 N/A
DS-GN-3 A Software Acceptance Test Plan shall be delivered. P-21.28.2 N/A
DS-GN-4 A Version Description Document shall be delivered. P-2.1.28.2 N/A
DS-GN-5 Monthly status reports shall be delivered. P-2.1.28.2 N/A
DS-GN-6 A training program on the SAAWDB shall be presented after final | P-2.1.2.8.5 N/A
software integration has compl eted.
DS-GN-7 A videotape of the training program shall be delivered. P-2.1.285 N/A
DS-GN-8 A fina report shall be delivered. P-2.1.28.2 N/A
DSIF-1 The system shall interface with the TG ATMS. P-2.1.2.3p1 DS-RT-02
DSIF-1.1 The DGIS shall interface with the TG ATM S using protocol DSIF-1 DS-RT-02
defined by the existing TG ATMS data broadcast.
DSIF-1.1.1 The RTCIC shall interface with the TG ATMS using protocol DSIF-1.1 DS-RT-02
defined by the existing TG ATMS data broadcast.
DSIF-2 The system shall interface with the AV system. P-2.1.2.3p2 DS-AVI-01
DSIF-2.1 The DSILS shall interface with the MDI AV1 system. DSIF-2 DS-AVI-01
DS1F-211 The DSILC shdl interface with the MDI AVI system. DSIF-21 DS-AVI-01
DSIF-3 The system shall interface with the TG Operations user. P-2.1.2.2p1 DS-RD-01
DS-GPSTH-01
DS-RT-01
DSWwWw-01
DSWWW-02
DS-LC-01
DS-KIOSK/IVN-01
DS-AWARD-01
20 A& 2?0
??
222?72 ??
DSIF-3.1 The DGS shall interface with the TG Operations user using a DSIF-3 DS-RD-01
GUL. DS-GPSTH-01
DS-RT-01
DSWwWw-01
DSWWW-02
DS-LC-01
DS-KIOSK/IVN-01
DS-AWARD-01
DS-AVI-01
DS-911-01
DSWV-01
DSIF-3.1.1 The LCGUIC shall interface with the TG Operationsuser usinga | DS-IF-3.1 DSLC-01
GUL.
Data Server 230 System Design Document

REQUIREMENT REQUIREMENT SOURCE TEST CASE(S)
NUMBER
DSIF-3.2 The SGUIS shall interface with the TG Operations user using a pP-2122 DS-RD-01
GUL. DSIF-3 DS-GPSTH-01
DS-RT-01
DSWwWw-01
DS-KIOSK/IVN-01
DS-AWARD-01
DS-AVI-01
DS-911-01
DSWV-01
DSIF-3.2.1 The SGUIC shall interface with the user using a GUI. DSIF-3.2 DS-RD-01
DS-RT-01
DS-KIOSK/IVN-01
DS-AWARD-01
DS-AVI-01
DS-911-01
DSWV-01
DSIF-4 The system shall interface with the Texas State Roadway Closed P-2.1.2.3p7 DS-RD-02
database.
DSIF-4.1 The DGIS shall interface with the Texas State Roadway Closed DSIF-3 DS-RD-02
database.
DSIF-4.1.1 The RCIC shall interface with the Texas State Roadway Closed DSIF-4.1 DS-RD-02
database.
DSIF-6 The system shall interface with the IVN/Kiosk system. P-2.1.2.4p3 DS-KIOSK/IVN-01
P.2.1.2.4p4
DSIF-6.1 The DSILS shall interface with the IVN/Kiosk system. DSIF-6 DS-KIOSK/IVN-01
DS1F-6.1.1 The DSILC shal interface with the MDI IVN/Kiosk system. DSIF-6.1 DS-KIOSK/IVN-01
DSIF-7 The system shall interface with the San Antonio Police 911 P-2.1.2.3p5 DS-911-01
Dispatch system. DS-911-02
DSIF-7.1 The DGIS shall interface with the San Antonio Police 911 DSIF-7 DS-911-01
Dispatch system. DS-911-02
DSIF-7.1.1 The 911IC shall interface with the San Antonio Police 911 DSIF-7.1 DS-911-01
Dispatch System. DS.911-02
DSIF-8 The system shall interface with the TG WWW system. P-2.1.2.4p5 DS WWW-02
DSIF-8.1 The DCIS shall interface with the TG WWW system. DSIF-8 DS-WWW-02
DS1F-8.1.1 The WWWIC shdl interface with the TG WWW system. DSIF-8.1 DSWWW-02
DSIF-10 The system shall interface with the Emergency Response system. P-2.1.2.4p6 DS-RT-02
DSIF-10.1 The DCIS shdll interface with the Emergency Response system. DSIF-10 DS-RT-02
DSIF-10.1.1 The RTBC shall interface with the Emergency Response system. DSIF-10.1 DS-RT-02
DSIF-12 The system shall interface with the TG ATMS Map system. 2.1.2.4p1 DS-RT-02
DSIF-12.1 The DCIS shall interface with the TG ATMS Map system. DSIF-12 DS-RT-02
DSIF-12.1.1 The RTBC shall interface with TG ATMS Map system using the DSIF-12.1 DS-RT-02
protocol defined by the current TG ATM S operations broadcast
system.
DSIF-13 The system shall interface with the MDI Railroad Delay system. P-2.1.2.3p8 DS-AWARD-01
Data Server 231 System Design Document

REQUIREMENT REQUIREMENT SOURCE TEST CASE(S)
NUMBER
DSIF-13.1 The DSILS shall interface with the MDI Railroad Delay system. DSIF-13 DS-AWARD-01
DSIF-13.1.1 The DSILC shall interface with the Railroad Delay system. DSIF-13.1 DS-AWARD-01
DS-FN-1 The system shall maintain road segment data for the TG road P-2.1.1p4 DS-RT-02
segments. DSWWW-02
DS-FN-1.1 The DSS shall store TG Link Identifier data for the TG road DS-FN-1 DS-RT-02
segments.
DS-FN-1.1.1 The DSC shall storea TG Link Identifier for the TG road DS-FN-1.1 DS-RT-02
segments.
DSFN-1.1.2 The DSC shall store TG Equipment Identifier for TG equipment P-2.1.1p4 DS-RT-02
associated with a segment of interest. DSFN-1.1
DS-FN-2 The system shall maintain map data for areas outside of the P-2.1.1p5 DS-RT-02
segments of interest.
DS-FN-2.1 The system shall store San Antonio map datafor areas outside the | DS-FN-2 DS-RT-02
TG road segments.
DS-FN-3 The system shall maintain travel datafor the TG road segments. P-2.1.2.1p2 DS-GPSTH-02
DS-GPSTH-03
DS-RT-02
DSWWW-02
DS-AVI-02
DS-FN-3.1 The DSS shall store TG ATMS travel datafor TG ATMS road P-2.1.2.3p1 DS-RT-02
segments. DS-FN-3
DS-FN-3.1.1 The DSC shall store the current travel data for the travel data DS-FN-3.1 DS-RT-02
elements defined by the existing TG ATM S data broadcast
system.
DS-FN-3.2 The DSS shall store MDI AV travel datafor MDI AVI TG road P-2.1.2.3p2 DS-AVI-02
segments. DS-FN-3
DS-FN-3.2.1 The DSC shall store the current MDI AVI-measured vehicle travel | DS-FN-3.2 DS-AVI-02
time associated with MDI AVI TG road segments.
DS-FN-3.2.2 The DSC shall store the current MDI AVI-measured vehicle speed | DS-FN-3.2 DS-AVI-02
associated with MDI AVI TG road segments.
DS-FN-3.3 The DSS shall store theoretical travel datafor the theoretical TG P-2.1.2.3p3 DS-GPSTH-02
road segments. DS-FN-3 DS-GPSTH-03
DS-FN-3.3.1 The DSC shall store the current theoretical vehicle speed DS-FN-3.3 DS-GPSTH-02
associated with theoretical TG road segments. DS-GPSTH-03
DS-FN-3.4 The DSS shall store GPS travel data for the GPS TG road DS-FN-3 DS-GPSTH-02
segments. DS-GPSTH-03
DS-FN-3.4.1 The DSC shall store the current GPS-measured vehicle speed DS-FN-3.4 DS-GPSTH-02
associated with GPS TG road segments. DS-GPSTH-03
DS-FN-3.5 The DGS shall store theoretical travel data for the theoretical TG P-2.1.2.3p3 DS-GPSTH-02
road segments at 15-minute time intervals. DS-FN-3 DS-GPSTH-03
DS-FN-3.5.1 The GPSTHC shall store the vehicle speed at 15-minute intervals | DS-FN-3.5 DS-GPSTH-02
for theoretical TG road segments. DS-GPSTH-03
Data Server 232 System Design Document

REQUIREMENT REQUIREMENT SOURCE TEST CASE(S)
NUMBER

DS-FN-3.6 The DGS shdll store GPS travel datafor the GPS TG road DS-FN-3 DS-GPSTH-02
segments at 15-minute intervals. DS-GPSTH-03

DS-FN-3.6.1 The GPSTHC shall store the vehicle speed at 15-minute intervals | DS-FN-3.6 DS-GPSTH-02
for GPS TG road segments and theoretical TG road segments. DS-GPSTH-03

DS-FN-3.7 The DSILS shall acquire TG ATMS travel datafor TG ATMS P-2.1.2.3p1 DS-RT-02
road segments. DS-FN-3

DS-FN-3.7.1 The RTCIC shall acquire the current travel datafor the travel data | DS-FN-3.7 DS-RT-02
elements defined by the existing TG ATM S data broadcast
system.

DS-FN-3.8 The DSILS shall acquire MDI AVI travel datafor MDI AVI TG P-2.1.2.3p2 DS-AVI-02
road segments. DS-FN-3

DS-FN-3.8.1 The DSILC shall acquire the current MDI AVI-measured vehicle DS-FN-3.8 DS-AVI-02
travel time associated with MDI AVI TG road segments.

DS-FN-3.8.2 The DSILC shall acquire the current MDI AVI-measured vehicle DS-FN-3.8 DS-AVI-02
speed associated with MDI AVI TG road segments.

DS-FN-3.9 The DCIS shall provide TG ATMS travel datafor TG ATMSroad | P-2.1.2.3p1 DS-RT-02
segments. DS-FN-3 DSWWW-02

DS-FN-3.9.1 The WWWIC shall provide the current travel data for the travel DS-FN-3.9 DS'WWW-02
data elements defined by the existing TG ATMS data broadcast
system to the TG WWW system.

DS-FN-3.9.4 The RTBC shall provide the current travel data for the travel data | DS-FN-3.9 DS-RT-02
elements defined by the existing TG ATMS data broadcast system DS-WWW-02
to the TG ATMS Map system, the MDI IVN/KIOSK System, and
other ATM'S data broadcast listeners.

DS-FN-3.10 The DCIS shall provide MDI AVI travel datafor MDI AVI TG P-2.1.2.3p2 DS-WWW-02
road segments. DS-FN-3 DS-AVI-02

DS-FN-3.10.5 The RTBC shall provide the current MDI AVI-measured vehicle DS-FN-3.10 DS-WWW-02
travel time associated with MDI AVI TG road segmentsto the TG DS-AVI-02
ATMS Map system, the MDI IVN/KIOSK System, and other
ATMS data broadcast listeners.

DS-FN-3.10.6 The RTBC shall provide the current MDI AVI-measured vehicle DS-FN-3.10 DS-WWW-02
speed associated with MDI AVI TG road segments to the TG DS-AVI-02
ATMS Map system, the MDI IVN/KIOSK System, and other
ATMS data broadcast listeners.

DS-FN-3.11 The DCIS shall provide theoretical travel datafor the theoretical P-2.1.2.3p3 DS-GPSTH-02
TG road segments. DS-FN-3 DS-GPSTH-03

DS-FN-3.11.3 The RTBC shall provide the current theoretical vehicle speed DS-FN-3.11 DS-GPSTH-02
associated with theoretical TG road segments to the TG ATMS
Map system, the MDI IVN/KIOSK System, and other ATMS data
broadcast listeners.

DS-FN-3.12 The DCIS shall provide GPS travel datafor the GPS TG road DS-FN-3 DS-GPSTH-02
segments. DS-GPSTH-03

Data Server 233 System Design Document

REQUIREMENT REQUIREMENT SOURCE TEST CASE(S)
NUMBER
DS-FN-3.12.3 The RTBC shall provide the current GPS-measured vehicle speed | DS-FN-3.12 DS-GPSTH-02
associated with GPS TG road segments to the TG ATMS Map
system, the MDI IVN/KIOSK System, and other ATMS data
broadcast listeners.
DS-FN-4 The system shall maintain lane closure data. P-2.1.2.3p1 DS-RD-02
DSWWW-02
DS-LC-01
DS-FN-4.1 The DSS shall store State of Texas lane closure data. P-2.1.2.3p7 DS-RD-02
DS-FN-4
DS-FN-4.1.1 The DSC shall store non-construction related lane closure DS-FN-4.1 DS-RD-02
information for State of Texas roadway closed data.
DS-FN-4.2 The DSS shall store San Antonio lane closure data. DS-FN-4 DSLC-01
DS-FN-4.2.1 The DSC shall store the lane closure data elements defined inthe | DS-FN-4.2 DSLC-01
current TG Lane Closure system for San Antonio lane closure
data.
DS-FN-4.3 The DGS shall acquire lane closure data. DS-FN-4 DSLC-01
DS-FN-4.3.1 The LCGUIC shall acquire the lane closure data el ements defined | DS-FN-4.3 DSLC-01
in the current TG Lane Closure system for TG lane closure data.
DS-FN-4.4 The DGIS shall acquire State of Texas roadway closed data. P-2.1.2.3p7 DS-RD-02
DS-FN-4
DS-FN-4.4.1 The RCIC shall acquire non-construction related lane closure DS-FN-4.4 DS-RD-02
information for State of Texas road closed data.
DS-FN-4.5 The DSILS shall provide State of Texas roadway closed data. P-2.1.2.3p7 DS-RD-02
DS-FN-4
DS-FN-4.6 The DCIS shall provide TG lane closure data. DS-FN-4 DS-WWW-02
DS-LC-01
DS-FN-4.6.2 The RTBC shall provide the lane closure data elements defined in | DS-FN-4.6 DSLC-01
the current TG Lane Closure system for San Antonio lane closure
datato the TG ATMS Map system, the MDI IVN/KIOSK System,
and other ATM S data broadcast listeners.
DS-FN-6 The system shall maintain traffic incident data. P-2.1.2.3p1 DS-RT-02
P-2.1.2.3p5 DSWWW-02
P-2.1.2.3p6 DS-AWARD-02
DS-911-02
DS-FN-6.1 The DSS shall store TG ATMS traffic incident data. DS-FN-6 DS-RT-02
DS-FN-6.1.1 The DSC shall store current incident data for the incident data DS-FN-6.1 DS-RT-02
elements defined in the existing TG ATMSS data broadcast system.
DS-FN-6.2 The DSS shall store 911 traffic incident data. P-2.1.2.3p5 DS-911-02
DS-FN-6
DS-FN-6.2.1 The DSC shall store accident related incident data for 911 traffic DS-FN-6.2 DS-911-02
incident data.
DS-FN-6.3 The DSS shall store Railroad Delay incident data. P-2.1.2.3p8 DS-AWARD-02
DS-FN-6
DS-FN-6.3.1 The DSC shall store current incident data for Railroad Delay DS-FN-6.3 DS-AWARD-02
incident data.
DS-FN-6.4 The DGIS shall acquire TG ATMS traffic incident data. DS-FN-6 DS-RT-02
Data Server 234 System Design Document

REQUIREMENT REQUIREMENT SOURCE TEST CASE(S)
NUMBER
DS-FN-6.4.1 The RTCIC shall acquire current incident data for the incident DS-FN-6.4 DS-RT-02
data elements defined in the existing TG ATMSS data broadcast
system.
DS-FN-6.5 The DGIS shall acquire 911 traffic incident data. P-2.1.2.3p5 DS-911-02
DS-FN-6
DS-FN-6.5.1 The 9111C shall acquire accident related 911 traffic incident data. | DS-FN-6.5 DS-911-02
DS-FN-6.6 The DSILS shall acquire Railroad Delay incident data. P-2.1.2.3p8 DS-AWARD-02
DS-FN-6
DS-FN-6.6.1 The DSILC shall acquire current incident datafor Railroad Delay | DS-FN-6.6 DS-AWARD-02
incidents.
DS-FN-6.8 The DCIS shdll provide TG ATMS traffic incident data. DS-FN-6 DS-RT-02
DS WWW-02
DS-FN-6.8.4 The RTBC shall provide current incident data for the incident data [DS-FN-6.8 DS-RT-02
elements defined in the existing TG ATMS data broadcast system DS'WWW-02
to the TG ATMS Map system, the MDI IVN/KIOSK System, and
other ATM'S data broadcast listeners.
DS-FN-6.9 The DCIS shall provide 911 traffic incident data. P-2.1.2.3p5 DS-WWW-02
DS-911-02
DS-FN-6.9.4 The RTBC shall provide accident related 911 traffic incident data | DS-FN-6.9 DS-WWW-02
to the TG ATMS Map system, the MDI IVN/KIOSK System, and DS-911-02
other ATM'S data broadcast listeners.
DS-FN-6.10 The DCIS shall provide railroad delay incident data. P-2.1.2.3p5 DS-WWW-02
DS-FN-6 DS-AWARD-02
DS-FN-7 The system shall maintain traveler information. P-2.1.2.1p1 DSWV-02
DS-FN-7.1 The DSS shall store VIA data. P-2.1.2.3p10 DSWV-02
DS-FN-7
DSFN-7.1.1 The DSC shall store VIA data as specified in the MDI Traveler DS-FN-7.1 DSWV-02
Information Kiosk Preliminary Design Document.
DS-FN-7.2 The DSS shall store weather data. Design DSWV-02
DSFN-7.2.1 The DSC shall store weather data as specified in the MDI DS-FN-7.2 DSWV-02
Traveler Information Kiosk Preliminary Design Document.
DS-FN-7.4 The DSILS shall acquire VIA data. P-2.1.2.3p10 DSWV-02
DS-FN-7
DS-FN-7.4.1 The DSILC shall acquire VIA data as specified in the MDI DS-FN-7.4 DSWV-02
Traveler Information Kiosk Preliminary Design Document.
DS-FN-7.5 The DSILS shall acquire Weather data. DS-FN-7 DSWV-02
DS-FN-7.5.1 The DSILC shall acquire weather data as specified in the MDI DS-FN-7.5 DSWV-02
Traveler Information Kiosk Preliminary Design Document.
DS-FN-7.6 The DSILS shall provide VIA data. P-2.1.2.3p10 DSWV-02
DS-FN-7
DS-FN-7.6.1 The DSILC shall provide VIA data as specified in the MDI DS-FN-7.6 DSWV-02
Traveler Information Kiosk Preliminary Design Document to the
MDI IVN/KIOSK System.
DS-FN-7.8 The DSILS shall provide weather data. DS-FN-7 DSWV-02
DS-FN-7.8.1 The DSILC shall provide weather data as specified in the MDI DS-FN-7.9 DSWV-02
Traveler Information Kiosk Preliminary Design Document to the
MDI IVN/KIOSK System.
Data Server 235 System Design Document

REQUIREMENT REQUIREMENT SOURCE TEST CASE(S)
NUMBER
DS-FN-8 The system shall maintain TG ATMS equipment status data. 2.1.2.3p1 DS-RT-02
DS-FN-8.1 The DSS shall store TG ATMS CMS data. DS-FN-8 DS-RT-02
DS-FN-8.1.1 The DSC shall store the current CM S data for the CMS data DS-FN-8.1 DS-RT-02
elements defined in the existing TG ATMSS data broadcast system.
DS-FN-8.2 The DSS shall store TG ATMS LCS data. DS-FN-8 DS-RT-02
DS-FN-8.2.1 The DSC shall store the current LCS data for the LCS data DS-FN-8.2 DS-RT-02
elements defined in the existing TG ATMSS data broadcast system.
DS-FN-8.3 The DGIS shall acquire TG ATMS CMS data. DS-FN-8 DS-RT-02
DS-FN-8.3.1 The RTCIC shall acquire the current CMS data for the CMSdata | DS-FN-8.3 DS-RT-02
elements defined in the existing TG ATMSS data broadcast system.
DS-FN-8.4 The DGIS shall acquire TG ATMS LCS data. DS-FN-8 DS-RT-02
DS-FN-8.4.1 The RTCIC shdl acquire the current LCS data for the LCS data DS-FN-8.4 DS-RT-02
elements defined in the existing TG ATMSS data broadcast system.
DS-FN-8.5 The DCIS shall provide TG ATMS CM S data. DS-FN-8 DS-RT-02
DS-FN-8.5.1 The RTBC shall provide the current CMS data for the CM S data DS-FN-8.5 DS-RT-02
elements defined in the existing TG ATMS data broadcast system
to the TG ATMS Map system and other ATM S data broadcast
listeners.
DS-FN-8.6 The DCIS shall provide TG ATMS LCS data. DS-FN-8 DS-RT-02
DS-FN-8.6.1 The RTBC shall provide the current LCS data for the LCS data DS-FN-8.6 DS-RT-02
elements defined in the existing TG ATMS data broadcast system
to the TG ATMS Map system and other ATM S data broadcast
listeners.
DS-FN-9 The system shall maintain MDI system status data. 2.1.2.2p1 DS-RD-01
DS-GPSTH-01
DS-RT-01
DSWwWw-01
DS-KIOSK/IVN-01
DS-AWARD-01
DS-AVI-01
DS-911-01
DS-FN-9.1 The DGS shall monitor DGS process status information. DS-FN-9 DS-GPSTH-01
DS-FN-9.1.3 The GPSTHC shall provide GPSTHC process status information. DS-FN-9.1 DS-GPSTH-01
DS-FN-9.2 The DSILS shall acquire MDI AV1 system status information. DS-FN-9 DS-AVI-01
DS-FN-9.3 The DSILS shall acquire MDI Railroad Delay system status DS-FN-9 DS-AWARD-01
information.
DS-FN-9.4 The SGUIS shall display MDI AVI system status information. DS-FN-9 DS-AVI-01
DS-FN-9.4.1 The SGUIC shall display MDI AVI system current status. DS-FN-9.4 DS-AVI-01
DS-FN-9.4.2 The SGUIC shall display MDI AV system detailed status DS-FN-9.4 DS-AVI-01
information.
DS-FN-9.5 The SGUIS shall display MDI IVN system status information. DS-FN-9 DS-KIOSK/IVN-01
DS-FN-9.5.1 The SGUIC shall display MDI IVN system current status. DS-FN-9.5 DS-KIOSK/IVN-01
Data Server 236 System Design Document

REQUIREMENT REQUIREMENT SOURCE TEST CASE(S)
NUMBER
DS-FN-9.5.2 The SGUIC shall display MDI IVN system detailed status DS-FN-9.5 DS-KIOSK/IVN-01
information.
DS-FN-9.6 The SGUIS shall display MDI Kiosk system status information. DS-FN-9 DS-KIOSK/IVN-01
DS-FN-9.6.1 The SGUIC shall display MDI Kiosk system current status. DS-FN-9.6 DS-KIOSK/IVN-01
DS-FN-9.6.2 The SGUIC shall display MDI Kiosk system detailed status DS-FN-9.6 DS-KIOSK/IVN-01
information.
DS-FN-9.7 The SGUIS shdll display MDI Railroad Delay system status DS-FN-9 DS-AWARD-01
information.
DS-FN-9.7.1 The SGUIC shall display MDI Railroad Delay system current DS-FN-9.7 DS-AWARD-01
status.
DS-FN-9.7.2 The SGUIC shall display MDI Railroad Delay system detailed DS-FN-9.7 DS-AWARD-01
status information.
DS-FN-9.8 The SGUIS shall display DS DGS process status information. DS-FN-9 DS-GPSTH-01
DS-FN-9.8.3 The SGUIC shall display DS GPSTHC process status information. | DS-FN-9.8 DS-GPSTH-01
DS-FN-9.9 The SGUIS shall display DS DGIS process information. DS-FN-9 DS-RD-01
DS-RT-01
DS-AWARD-01
DS-AVI-01
DS-911-01
DSWV-01
DS-FN-9.9.1 The SGUIC shall display DS RTCIC process status information. DS-FN-9.9 DS-RT-01
DS-FN-9.9.2 The SGUIC shall display DS RDIC process status information. DS-FN-9.9 DS-AWARD-01
DS-FN-9.9.4 The SGUIC shall display DS 911IC process status information. DS-FN-9.9 DS-911-01
DS-FN-9.9.5 The SGUIC shall display DS RCIC process status information. DS-FN-9.9 DS-RD-01
DS-FN-9.9.6 The SGUIC shall display DS VIC process status information. DS-FN-9.9 DSWV-01
DS-FN-9.9.7 The SGUIC shall display DS WIC process status information. DS-FN-9.9 DSWV-01
DS-FN-9.11 The SGUIS shall display DS DCIS process information. DS-FN-9 DS-RT-01
DS WWW-01
DSFN-9.11.1 The SGUIC shall display DS WWWIC process information. DS-FN-9.11 DS'WWW-01
DS-FN-9.11.5 The SGUIC shall display DS RTBC process information. DS-FN-9.11 DS-RT-01
DS-FN-10 The system shall adjust travel datafor TG road segments based on | P-2.1.2.1p2 DS-GPSTH-03
current conditions.
DS-FN-10.1 The DGS shall adjust theoretical travel data for theoretical TG P-2.1.2.3p4 DS-GPSTH-03
road segments based on time of day. DS-FN-10
DS-FN-10.1.1 The GPSTHC shall adjust theoretical travel data for theoretical DS-FN-10.1 DS-GPSTH-03
TG road segments based on current conditions using adjustment
factors based on type of day and/or weather.
DS-FN-10.2 The DGS shall adjust GPS travel datafor GPS TG road segments | DS-FN-10 DS-GPSTH-03
based on time of day.
DS-FN-10.2.1 The GPSTHC shall adjust GPS travel datafor GPS TG road DS-FN-10.2 DS-GPSTH-03
segments based on current conditions using adjustment factors
based on type of day and/or weather.
Data Server 237 System Design Document

REQUIREMENT REQUIREMENT SOURCE TEST CASE(S)
NUMBER
DS-FN-11 The system shall have the ability to access the data based on P-2.1.1p5 DS-RT-02
geographic attributes.
DS-FN-11.1 The DSS shall store geographic attributes of data. P-2.1.1p4 DS-RT-02
DS-FN-11
DS-FN-11.1.1 The DSC shall store the altitude, latitude, and longitude of the DS-FN-11.1 DS-RT-02
endpoints of the TG road segments.
DSPY-1 The system will reside on a computer separate from the TG pP-2.1.27 DS-PHYS-01
operational computers.
DSPY-1.1 The MCS shall be a Sun Microsystems Ultra SPARCStation or pP-2.1.27 DS-PHYS-01
better. DSPY-1
DS-PY-1.2 The MCS shall have, at a minimum, the following items: pP-2.1.2.7 DS-PHYS-01
DSPY-1
167MHz SPARC CPU
4.2 GB Hard Disk
128 MB RAM
Floppy Disk drive
Sun CD-ROM drive
Turbo GX+ Graphics card
20" Sun color monitor
2 Ethernet cards
2 SCSl channedls
Data Server 238 System Design Document

