Railroad Delay Advance Warning System

(Advance Warning to Avoid Railroad Delays)
(AWARD)

Model Deployment Initiative

System Design Document
Version 1.0

March 25, 1998
SwRI Project No. 10-8684

P.O. No. 7-70030
Req. No. 50115-7-700-30

Prepared For:

Texas Department of Transportation
TransGuide
3500 NW Loop 410
San Antonio, Texas 78229

Prepared by:
Southwest Research Institute

P.O. Drawer 28510
San Antonio, Texas 78228

Approval Page

AWARD Project Manager Date

SwRI MDI Project Manager Date

Automation Engineering Director Date

ATMS
AWARD
ETA
ETTA
ITS
MDI
RRS
SwRI
TBD
TOS
TxDOT
VMS

AWARD

Acronym List

Advanced Traffic Management System
Advance Warning to Avoid Railroad Delays
Estimated Time of Arrival

Estimated Time Until Arrival
Intelligent Transportation Systems
Mode Deployment Initiative

Railroad Road Software Subsystem
Southwest Research Institute

To be Determined

TransGuide Operational Software
Texas Department of Transportation
Variable Message Sign

System Design Document

Table of Contents

Page

I 1 014 0o [Tox 1 o] o IR 1
O o B0 T0 = =0 Y = o o VPR SST 1
I @0 < ¢ 107 I G0 g or o ISP RSSTS 3
1.3 GOalS AN ODJECHIVES........coieiiiieiieie ettt n e n e ne e sn e e ne e 5
1.4 RefErenCed DOCUMENES.ccuuiiiieitieiteet ettt sttt s e e b e sse e nn e e neeesnesan e e neennes 5
2. EXterNal INTErfaceS.......ovi i 6
21 REMOE SENSON SO ...ttt ettt e e et b e b e e ss e e e s e e s ne e nnnesne e ne e e 6
2.2 TranSGUIOE LOCBIION........ceiieeiieeetieiieste ettt ettt ettt e e e b e nne e sse e e n e e s ne e s e e eneenneennes 6
2.3 SOfWAIE INLEITACES ...t n e n e ae e n e ne e e 7
3. REQUITEIMENES....co ittt e e e e s e e b e e snr e e e ansnee e 8
31 GENEral REOUITEIMENTSeiiieiiieiiee e etee et e et ee et e et e e e et e e sabeeesaeeeeaeeesmseeesneeesneeesnseeeanseeenneens 8
TS VA (= W= V= I o = 0T 01 9
3.3 Sensor SUDSYStEM REQUITEIMENTS.........eoiiieiieiie et 10
3.4 Communications SUDSYSIEM REQUITEMENTScocuiiiieieieie e 10
3.5 Electrical SUDSYSIEMS REQUITEIMENES.ooiuiiiieiiieiee et 10
3.6 Mechanical SUbSyStEM REQUITEMENTSccocueiiiiiieiie et e e 10
3.7 Railroad Software SUbSyStem REQUITEMENTS........ooiviriiiie et 10
3.8 TransGuide Operational Software Subsystem REQUIFEMENESceevviriieieenie e 11
381 3.8.1 TransGuide Alarm/Incident Handler ReqUIrEMENtS............cooveieeiienieenie e 11
3.8.2 TransGuide Scenario Manager REQUITEMENTS...........coiiiiiieiieieeieesee e 12
4, SENSOr SYSLEM DESIONcveiiiiiiieiiiiee ettt snae e e 13
VRS VIS (< 0 I (o 01 = o L0 = SRS 13
4.2 System GeOgraphiC LBYOUL.oiuieieeiieeiteeieesiee et ettt eesne e e e nnneenees 15
4.3 SENSOr SUDSYSIEM DESIGN........eiiiiiiiiiiieiie ettt n e es 18
431 Specifications fOr SEECIE SENSOIS......cccuviiiiiiieiie e 18
4.3.2 SySIEM PLACEMENL ..ot 23
4.3.3 POWEr REQUITEIMENTS.ciiiiiiiieitieite ettt ne e e s e e s neesnneeneesneennneen 23
4.3.4 Environmental Design REQUITEMENES.........ccviiiieiieiri e 23
4.4 CommunicCations SUDSYSIEM DESION......ccuuiiiieieeiie it 23
441 MoOOeM @ REMOIE SITE......eiiiieiee ettt 24
O S 0= o) o1 0] 1 24
BA.1.2 POWE ...ttt ettt ettt e et b et e bt ae e bt e et Rt e b e e he e Rt e R e e Rt R e e Rt e e heenn e nheenenne e 24
4.4.1.3 ENVITONMENTALooiiiiiiiieeeiee et nan e s nneennneeneas 24

45 Electrical SUDSYSIEMS DESIGNcuuiiiieiieeiiieeiieeeeeertiee et eeesee e e saeeeseeeesaeeesneeeaneeesneeesnseeenneeaans 25
4.6 MechaniCal SUDSYSIEM DESION........ceiiiieiiiiiie ettt 25
4.6.1 ENCIOSUIE fOI SENSOIS.....c.ueiiiieitieiiie ettt sttt n e nne e snneeneesneennneen 25
4.6.1.1 DeSIgN ASSUMPLIONScouteeieeririeieesiee st eseesseesseeseesseesseeeseesseesaseaneesseesaneaneesneennneeneas 25
4.6.1.2 MECNANICAl LBYOULceeeueirieieiieitie ettt nn e 26
4.6.1.3 EXIErNaAl MOUNTING......ceiiteiiiiiiieiiesiie st sn e s nneennneeneas 26
4.6.2 EIECtiCal CONMNECHIONS.eiitieieeiieeieesie sttt st ne e e n e esnneeneesnnennneen 26

AWARD ii System Design Document

LI R = g 0= I 1= g =0T 27
511 TransGuide PErSONNE ...ttt et e s e e sae e e sneeeeneeeans 28
512 ProCess SAUS GUI ...ttt ettt e e e 28
ST G T B = =B Y= PP OP TSP 29
514 SUDSYSIEM SEALUS LOGUENeeiieeiieiriiieiiesie sttt nne e 29
515 TransGUIdE ATIMS ... e e e e nne e s 29
516 RR SENSOIS....ciiiiiiiieiieiiee ettt ettt b et b et n e n e ne e 29
5.1.7 Subsystem Heartbeat ManagemMentcccvoiiieiieiicieee e 29
51.8 SuUbSySteM ProCeSS CONMIOL.........ccuiiiieiieiieeeie ettt 29
5.1.9 EXterNal Data FlOWS......cueiiiiee ettt et e e snee e e neeeen 29

5.2 SUDSYSIEM DESIGN ...ttt ettt n e e n e nne e 30
521 DigpatCh Data Server MESSAES..........eeiueeiieirrieitiesiee st et sne e e neenne e 31

5.2.1.1 DispatCh RR CroSSiNg Dat.......cccceiiiiereiiieiiieeiee et e see e e e e e e saeeenneeeens 34
5.2.1.2 DigpatCh RR SENSON D@A........cocveeirierieiiieeiie st nnne e 34
5.2.1.3 Dispatch Subsystem HEartheaL..............ooouiiiieii e 35
5.2.1.4 Generate Process HEartheaL...........c.ooiiiereee e 35
522 Digpatch CrosSSiNg DEI@YS........ooiuiiiiiieiiie ettt ettt et e e e sae e sneeeenneeeens 36
5.22.1 Generate Process HEarDEaL.........c.cuoiiiieieee e 38
5.2.2.2 Generate Crossing DEl@y Alooeiiiiiiieieeeee e 38
S IZaRC B |V [0 o 11 () I =1 1TSS 39
524 SNOW DEBIE SEIUScoimeieiieiiecei et 39
5241 BuUIld DEEIEH SEBIUS.......ccueiieeiieeiieiee et sn e nine e 40
5.2.4.2 Update DEailed SEALUS.........coeeiiieiieiieieeiee e 41
5.2.4.3 Delete DEtaileld SEAIUS.........cooviiieeiieiie et 41

5.3 TransGuide Subsystem Software ArChiteCIUNe...........ooviiiiieiie i 42

5.3.1 Digpatch Data Server Messages (aWard_dSif)ccvevveeieeiieiieeeesee e 42
ST 0t 0t R 1 17 o PP PR PP PRPOPRPR 42
5.3.1.2 award dSif_ClEANUDcoo et e 44
5.3.1.3 send_heartbeat PUISE.......cc.ooiiiiieie e 45
5.3.1.4 initialize award dSiT.... ..o e 46
5.3.1.5 award dsif ShMem SEIUDcoooiieii e 48
5.3.1.6 award dsif _config_SNM_MQEcoooiiiiieeee e e 49
5.3.1.7 award dsif sefup CrosSiNg_SMEM.......cooiiiiiiii e 50
5.3.1.8 award dsif Sefup SENSOr SNIMEM.. ... 53
5.3.1.9 1080 OO SMEM ...ttt n e sn e ne e s naneens 56
5.3.1.10 respond_tO real SOCKELS........cciiiiiiieeeiee ettt et e e e e snee e e e e saeeenneeeens 58
5.3.1.11 reCaVE OSIf MESSAE ..o iei ettt ettt et e et e et e e s te e e sneeeeneeesnneeenneeeans 60
5.3.1.12 diSCONNECE_ECEIVE SOCKELooiiiiiiieeeieiee e eiee et e ree e et e e e e e sneeeeneeesnteeenneeeens 61
5.3.1.13 SeNd _dala SErVEl IMESSA0E ... ceeiueeeiueeeeitieeateeeaeeeaaueeesreeeanseesaseeesnseeeaseeesaseeesseesaseeesns 61
53114 SIQAMMNANAIENo e 66

5.3.2 Digpatch Crossing Delays (@Ward_tgif)........coceeiieiiiiiiiiiieiiee e 67
ST 2Nt R 1 17 o DO PP PP TR PRPOPRPR 67
5.3.2.2 award tgif_ClEBNUDeoiiieiee e 69
5.3.2.3 5end_heartbeat PUISE.......cc.ooiiiiieeee e 71
5.3.2.4 initialize award_t0ifoo i 71
5.3.2.5 respond t0 read SOCKELScceieiiiiiiie et e e en 73
5.3.2.6 IECEIVE tOIf_MESSATR ... eeiitiiieiiiie ettt e e 75

AWARD iii System Design Document

5.3.2.7 diSCONNECE_reCaIVE SOCKEL.........ooi it 76

5.3.2.8 SN0 _BAN MESSA0L. .. ei i iiie ettt e et e et e st e et e e et e e s te e e nneeeene e e enneeenneeeans 76
5.3.2.9 TEIY_EAN_MESSAE.o itietieiie ettt b e sr e nne e 78
5.3.3 Show Detailed StAUS (BWOST)cvverureeieerieerie et 79
5.3.3.1 TEEUSE IMEIN ...ttt b et b e e bt nbe e sne e 79
G RC I 1110 s 117 | o R TP PP PRPOPRPRN 80
5.3.3.3 INITIALLY ¢ttt ettt b e b b e e bt et e bt e e e sneeneas 81
534 award dsif Library ROULINES..........ooouiiiiieiiiiiieee e 88
5.3.4.1 award dSif CONMNECT........oo it e et e e aeeenneeeens 88
5.3.4.2 award dsif_send_SeNSOr daa.......cccoeiuereiieeiiii e 89
5.3.4.3 award dsif_send CroSSiNg_AE@Y.......coceeeiieeiiie e 91
5.3.4.4 award dSif diSCONMNECL.........ooiiiieiie et e e 93
535 award tgif Library ROULINES..........cooiiiiiiiiiii e 94
5.35.1 award tgif CONMECL........coo ittt e e nee e e ne e e snaeeenneeeens 94
5.3.5.2 award tgif_send crossing_blOCKage.........ceeeiiiieiie e 95
5.3.5.3 award tgif diSCONNECEooiiiie e ens 97
5.4 Railroad Subsystem Software ArChiteCtUre............ccveiiiiiiiiie e 98
541 RR Configuration INfOMMBELION.cueeiiieieiiiieiiesie e 99
542 RR Software DeSign DELaIS.........c.coiiiiiiiiieiicieieeee s 100
5.4.2.1 Railroad System (RRSYSIEM) ClaSSccoiiiiriirieiiniesieeee et 102
5.4.2.2 Sensor Interface (SENSOIF) ClaSS.......cuiiiiiiiiiieiee e 105
5.4.2.3 RS-232 Port (Stream232) ClasS........cooeeiieriieieesee et 119
54.24 VaueTime Stamp (VaTIME) ClasS.......ccccoriiiiieiiiiiieieesee e 121
5.4.25 Sensor Status (SENSESLALUS) ClaSScueeieiriiiiieiie et 122
5.4.2.6 Virtua Sensor (VSeNnSOr) ClaSS.........oooueeiieiiieiieiee et 123
5.4.2.7 Acceeration Modification (ACCEIMOd) ClESS.........covviriiieiieiieeeeee e 127
5.4.2.8 Crossing (Crossing) ClaSS........cccueiiiriiieiieiiieieesee et 130
5.4.2.9 TrAIN ClBSS....ciutiiiieiiiieite ettt sttt sttt ettt e s bt e e she e b e s bt et e saeennesaeenbeannens 131
54210 Train Summary (TrainSUMIY) ClaSS.......ccceeieieiiiieiieiie e 136
54.211 Connection Description (ConnectioNETA) ClI8SS.......ccveiieiiiiiieiieseeee e 137
54212 EVENt (EVENL) ClESS......ooiiiiiiiiiiiie ettt b e sne e 144
54.2.13 Blockage (BlOCkage) ClaSS........c.cuiiiuiiiiiiiiiieeiee e 147
54.2.14 Dateand Time (DateTime) ClasS.......ccoouiriiiireiiieeiieeeee e et 151
5.4.2.15 ULHITY FUNCHONS. ...ttt ettt st e et e e sneeeeneens 152
6. Traceability MatriXcccooeiriiiee e 156

AWARD iv System Design Document

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.

AWARD

List of Figures

Award Sensor and CroSSING SITESueeiuieiiieiieiee e 2
Architectural BIOCK Di@gram........coeee i iiee ettt et e st e e seee e e nee e smnee e sneeeeneeas 4
VS = T = Lo Tox QI "o =0 o S 14
AWARD PrOCESS FIOW. ...ttt ettt e e e st e e smte e e snteeeneeesmreeesneeeennes 15
AWARD CONEXE DIBOIAIM.cutiieieieeeieeeee e e e ieeeeeee e seeeeste e e sseeeesseeesneeeesneeeeneeesnseeesnseeennes 28
AWARD SUDSYSIEM PIOCESSES.cciueiiieeieerite ettt sttt se e n e sseesinesneenneennneen 31
Dispatch Data Server Messages Data FIOW.........c..ooiiiiiiiiieicecece e 33
Dispatch Crossing Delays Data FlOW............cooiiiriiie e 37
Show Detailed StatUS Dala FIOWooiiiiiiiee e 40
award _dsif main StTUCLUrE Chart...........oouiiii e 43
award_dsif_cleanup SIrUCLUIE Chart...........cooiiie e 45
send_heartbeal pulse SITUCLUFE Chart...........ooo i 46
initialize award dsif StrUCLUrE Chartoouveeeeee e e 47
award_dsif_shmem_setup Structure Chart.............ocoo i 49
award_dsif_config_shm _mgr structure Chart............oocove i 50
award_dsif_setup_crossing_shmem Structur@ Chartcccoeoeereciee e 51
award_dsif_init_crossing_shmem Structure Chartcccoe i 53

- award_dsif_setup_sensor_shmem Structure Chartcccoooeeeeeee e 54
award_dsif_init_sensor_shmem StruCture Charteeeevieeec e 56
load_feq shmem SErUCLUrE ChEaIT..........c.eoi e e 57
respond_to_read SOCKetS Structure Chartccooe e 59
receive_dsif_message StrUCIUre Chartooo i e 60
disconnect_receive Socket StruCtUre Chartoooeieeiiee e 61
send_data_server_message Structure Chartooeee i 62
update_sensor_shmem SErUCLUrE ChaItocuevi i 64
update_crossing_shmem SIrUCLUNE Chaooiiiiieeee e 65
sigalrm_handler StrUCTUrE Chart..........oo.eer e 66
award_tgif main SrUCIUIE CRAITooouieiie e 68
award_tgif_cleanup SITUCLUrE Chartooieeiiieiie e 70
send_heartbeal pulse SITUCLUFE Chart...........ooo i 71
initialize_award _tgif Structure Chart.......... .o 72
respond_to_read SOCKetS Structure Chartocoe i 74
receive_tgif_message SIrUCtUrE Chartooviiieiie e 75
disconnect_receive Socket StruCtUre Chartoooeieeeee e 76
send_eah meSSage SEIUCLUNE ChaIT..........eieiee e et e e 77
retry_eah _message SIrUCtUrE Chartc.oooeiiiieicc e 78
awdsg teleuse Main SITUCLUINE CHa...........coiiiiiieieeee e 79
aWASY_MAIN SEIUCLUNE CRAITei ettt e eee e et e e smee e e sneeeeneeeens 80
INITIALLY SIrUCIUIrE ChaT ..ot 82
GET_UPDATE_RATE Structure Chart...........cooooe e 83
periodic_update StruCture Chart............cooiir e 84
PERIODIC_UPDATE StrUCIUr€ Chartoeiueeiieiieesiee et enneas 85
UPDATE_STATUS STUCLUIE Chart.......cceeeieeiie et 87
award_dsif conNECt SErUCTUrE Calt...........eei e 89
award dsif _send sensor_data Structure Chart..........c..eeeeiiieeie e 90

Y System Design Document

Figure 46.
Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.
Figure 63.
Figure 64.
Figure 65.
Figure 66.
Figure 67.
Figure 68.
Figure 69.
Figure 70.
Figure 71.
Figure 72.
Figure 73.
Figure 74.
Figure 75.
Figure 76.

AWARD

award_dsif_send_crossing_delay Structure Chartoocoeeiereiiee e 92
award_dsif_disconnect StruCture Chartccueeei i 93
award_tgif_conNECt SEIUCLUIE CaIToooeiieee et 95
award_tgif_send_crossing_blockage structure chartocccooeiiriiii i 96
award_tgif_disconNect SIrUCTUFE Chartoooveiiiiee et 97
RR Software Object Relationship Diagramccooieeeioieeiie e 101
RRSystem::sendCancel MajorAlarm Sequence Diagramcccoeceeercerenieeeniee e 103
RRSystem::MainLoop Sequence Diagram...........ceeeieeeeeeeiieeerieeeieeesieeeseeeeseeeesneeeenneeeens 105
Sensor Interface (SensorlF) Class State Diagramcoveeveeieeieeniieeseesee e 107
SensorlF::reactivate Sequence DIagramc.cueeeeieereeeieesiee e 110
SensorlF::reactivate:Normal CycleBadL ast (Use Case) Sequence Diagram...........cccoceeeueenee. 111
SensorlF:estAccel SeqUENCE DIagramooeiiieiee e 113
Sensorl F::modemCmd Sequence DIagram.........c.covieeeeee e 114
SensorlF::nextDatum SequenCe DIagramc.coceeieerireeneene e 115
SensorlF::nextDatum: ReadDataFromBuffer (Use Case) Sequence Diagram............cccceeeene 116
SensorlF::probeRadar Sequence Diagramcoooeerieeeiee e 117
Sensor|F::tryPhone Sequence DIagram.........c.coveeeeiierireeseese e 118
SensorlF::tryPhone:M akeConnection (Use Case) Sequence Diagramccccvceeeiveeneennenns 119
Virtual Sensor (Vsensor) Class State Diagramc.eeeveeieerieniiiesie e 124
V Sensor::newValue SEqUENCE DIAgraM........cooeiiieeieenieeie et 126
AccelMod::thruRule SequenCe DIagram..........c.ee it 129
Train::merge SequENCE DIagrameeeiiiie et e et e see e e ae e e see e e sneeeenneeeens 133
Train::updateETA SequenCe DIiagraM.........ccceeiieeeiiee e eeeeseeeeee e e e seeeesee e smeeeesneeeenees 135
ConnectionETA::checkETTA Sequence DIagram.........cccoevireeieeniesieesee e 140
ConnectionETA::incrementETTA Sequence Diagram..........ccoeoeeeieeerieeeniee e see e 141
CONNECHIONETAIUDPAALE. ...ttt n e e nnneens 143
Event::checkETTA SeqUeNCe DIagraM........ccoiueeeiiee e e sieeesieeesieeeeee e e seeeeseeeesneeesneens 145
Event::sendData SequeNnCe DIiagraiM........c.cueeeiieeeiiee e e seeesieeesieeeseeeesneeeseeeeseeeesneeesneens 147
Blockage::sendData SEqUENCE DIagram.........coviiiieiieiiieieesiee e e 150
calcDistance SEqUENCE DIBGIAIMcccuiiiiieiiiiie et 153
CAICETTA SeqUENCE DIBOIaIM......coiuiiirieiieiiee ettt n e nneenene e 154

Vi System Design Document

Table 1.

Table 2.

Table 3.

Table 4.

Tableb.

Table 6.

Table 7.

Table 8.

Table 9.

Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.

AWARD

List of Tables

Sensor Locations and OFENTAIONS.........cccueeieeiieeieesee et n e nnneens 17
SMartSoniC TSS-1 SPECITICATIONSc..viiiieiieiie ettt 20
Doppler Radar Speed Sensor SPECITICAIONS.ccviiiiiiieieiee e 21
Doppler Radar Command COOES........coouieiieie e eeiee ettt et ee e e e e see e sneeeenneeeennes 22
MOAEM SPECITICALIONSeeeeeeeeeiee ettt ettt e et e e et e e e s te e e sneeesnee e snteeeneeeennes 24
Enclosure Internal POWEr LOAOING.coiiiieiiie et 25
EXtErNal Data FlOWS.........ooieieieeee e 30
Dispatch RR Crossing Data Input Data FIOWSooiiiiiiiiee e 34
Dispatch RR Crossing Data Output Data FIOWS.........cooiiiiiiiieiie e 34
Dispatch RR Sensor Data Input Data FIOWS..........cccviiiiiiieicieeeeesec e 34
Dispatch RR Sensor Data Output Data FIOWS............ooviiiieiiciieeieesee e 35
Dispatch Subsystem Heartbeat Input Data FIOWS...........cocveiiiiiiiiieiec e 35
Dispatch Subsystem Heartbeat Output Data FIOWScoeiiiiiiiiieiec e 35
Generate Process Heartbeat INput Data FIOWS...........coiiiiiiiiee e 36
Generate Process Heartbeat Output Data FIOWS.........oooceiiiiiiiee e 36
Generate Process Heartbeat INput Data FIOWS...........ooiiiieiiiieee e 38
Generate Process Heartbeat Output Data FIOWS.........ooociiiiieiiee e 38
Generate Crossing Delay Alarm Input Data FlOWSooiiieiiiiieeee e 38
Generate Crossing Delay Alarm Output Data FIOWS........coooeviiiieeiiiecee e 39
Build Detailed Status INput Data FlIOWSc..oooiiiieieie e 41
Build Detailed Status Output Data FIOWS...........cocuieiieiieiieeeesee e 41
Update Detailed Status INput Data FIOWS...........ooiiiiriiiie e 41
Update Detailed Status Output Data FIOWS...........ccooiiiiiiiiiiiceeeee e 41
Delete Detailed Status INput Data FlOWS..........coiiiiiieee e 42
Routines called by award _dSif Mainooooioie e 44
Routines called by award_dSif _CleanUPoo i 45
Routines called by send_heartbeat_pulSe...........ccoe i 46
Routines called by initidlize_ award dSif.........coooeieie e 47
award_dsif configuration ITEMISc.cuiie et s aee e eneeas 48
Routines called by award_dsif_Shmem _SEtUDoovieir e 49
Routines called by award_dsif_config_Shm mgr.........oocoiiiiiii e 50
Routines called by award_dsif_setup_crossing_Shem..........cccoieriiee e 52
Routines called by award_dsif_init_Crossing_Shem........cccooieiiiie e 53
- Routines called by award _dsif_Setup_SENnSOr _ShEMoooiiiiie e 55
Routines called by award _dsif_init_Sensor_SNMemM..........coooiiiie e 56
Routines called by award_dsif_setup_crossing_Shem.........ooceeviie i 58
Routines called by respond _t0_read SOCKELSccoceieiiieiie e 60
Routines called by receive_dSif MESSA0e......ouvie it 61
Routines called by disconnect_reCaiVe SOCKEL...........ceiiiieriiee e 61
Routines called by send_data Server_MESSA0R......ccccueieiiieeiee e 63
Routines called by update SeNSOr _SMEMcouiiiiiie s 64
Routines called by update crossing_SNMeMoo i 66
Routines called by Sigalrm_handleroooeoiiiii e 67
Routines called by award tgif mMain............ooooooirei s 69
Vil System Design Document

Table 45.
Table 46.
Table 47.
Table 48.
Table 49.
Table 50.
Table 51.
Table 52.
Table53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 64.
Table 65.
Table 66.
Table 67.
Table 68.
Table 69.

AWARD

Routines called by award tgif Cleanupcoo i 70

Routines called by send_heartbeat_pulSe...........ccoo i 71
Routines called by initialize_ award tgifcooiieeiee e 72
award_tgif CONfigUIratioN ITEIMS........oociie e et e e 73
Routines called by respond _t0_read SOCKELSccoceieiiiiiee e 75
Routines called by recaive tgif MESSA0E........cui it 75
Routines called by disconnect_reCeiVe SOCKEL...........ceiiiieeiie e 76
Routines called by send €8h MESSA0E......coo i e 77
Routines called by retry_eah MeSSage........ooee e 78
Routines called by awdsg tEl@USE MaINooiiiiee e 80
Routines called by @nvaSg Maineoeiiie e e 81
Routines called DY INITIALLY ..ottt 82
Routines called by GET_UPDATE _RATEcciiiiieeee e 83
Routines called by periodic_UPdate..........coo i 84
Routines called by PERIODIC_UPDATE..........oooiiiiieie e 86
Routines called by UPDATE_STATUSoo e s 88
Routines called by award_dSif_CONNECTooeiiiieee e 89
Routines called by award_dsif_send Sensor_data............oocceeeiiiieiiee i 91
Routines called by award_dsif_send _crossing_delay..........ooceeeieeeeieeeiee e 93
Routines called by award_dsif _diSCONNECL............oiiiiieiie e 94
Routines called by award tgif_CONNECL...........cooiiiiiee e 95
Routines called by award_tgif_send_crossing_bloCKage............ccovvririieiicnieseeseee e 97
Routines called by award_tgif_diSCONNECEooouiiiieiiiiieee e 98
Railroad Configuration INfOrMELIONccviiiiiiiee e 100
AWARD System Traceability M@triXccceieriiiiiiiieee e 157
viil System Design Document

AWARD
(Advance Warning to Avoid Railroad Delays)

System Design Document

1. I ntroduction

The Advance Warning to Avoid Railroad Delays (AWARD) system is an Advanced Traveler
Information Service (ATIS) implementation designed to help motorists and emergency response vehicles
avoid delays due to railroad operations that cross freeway access frontage roads. Railroad operations in
urban areas are usually carried out at low speeds which can result in grade crossings being closed to
vehicular traffic for several minutes. In high traffic areas and during peak traffic times, closing a
frontage road for several minutes can prevent traffic from entering a freeway and can aso block exiting
traffic. Eventually this can result in traffic congestion on feeder roads and in the exiting lanes of the
freeway. The AWARD system includes sensors to detect the presence and characteristics of trains
operating in affected areas and computer algorithms to predict the time and duration of blockage of grade
crossings at or near freeway exits and entrances. The AWARD system is integrated with TransGuide
operations to provide advance knowledge of train operations and alow motorists and emergency vehicles
to select different freeway exits or entrances or choose alternate routes to avoid congestion.

The AWARD system includes sensors at selected locations along the Union Pacific Kerrville line
track near IH 10. Trains on this section of track operate at speeds of approximately 10 mph and can
block freeway access at severa frontage road locations for periods of over five minutes. The sensors
measure the speed of trains approaching grade crossings and transmit speed information to a centra
computer at the TransGuide facility. Computer agorithms predict the time and duration that selected
grade crossings will be blocked and provide this information to TransGuide operators, motorists, and
emergency operations through other Model Deployment Initiative (MDI) components including the
Automatic Route Guidance System, the Traveler Advisory Information System, and the Area Wide
Database. The system hardware and software are designed to allow expansion for additional sensor and
grade crossing locations in the future.

11 Purpose of System

The purpose of the AWARD system is to predict when specified grade crossings will be closed
by train operations and provide this information to TransGuide operators, the motoring public and
emergency vehicle operators in time for them to select alternate routes and avoid traffic congestion at the
closed grade crossing. This has the capability to reduce congestion, reduce hazards that can cause
accidents and reduce delaysin travel time.

The interactions between different modes of transportation often present particular difficulties in
traffic management and are the cause of traffic hazards, motorist delays, and obstructions to emergency
vehicle operations. In the case of freeway-railroad interaction addressed here, the Kerrville line of the
AWARD 1 System Design Document

Union Pacific Railroad runs nearly parallel to IH 10 from south of Culebra Road to near Basse Road
where IH 10 turns westerly. The railroad line continues northward, crossing under 1H 410 at Jackson
Keller Road. Inthisinterval of dightly over five miles, the railroad track crosses three major roads where
crossing blockages can affect freeway traffic.

Hu;;’é(DREAmmND DR

(281}

ORESDEN DR -

i 7
QW MARIPOSA DR

Qlmnos

Bark ®
¥ /
o

¥
SAN FRANCIZCO ST

CIMCINMATI AVE

W POPLAR ST

Figurel. Award Sensor and Crossing Sites

AWARD 2 System Design Document

Figure 1 shows the locations of sensors and major railroad grade crossings from Dreamland
Road, north of IH 410 to Poplar Street on the west side of IH 10. This section of track crosses three
major intersections that directly affect traffic on IH 10 and IH 410:

Jackson-Keller at IH 410. Traffic on Jackson-Keller as well as both directions on the IH 410 access
road is blocked by trains at this crossing. Traffic exiting IH 410 East can be blocked by a train
causing congestion to back up onto the freeway lanes.

Fredericksburg Road and Woodlawn Avenue at IH 10. At this point, traffic exiting from IH 10 and
attempting to turn east on either Woodlawn or Fredericksburg is blocked by passing trains. If the
grade crossing is blocked for several minutes, traffic can back up until it interferes with the exit lanes
and eventually causes congestion and hazards on the freeway.

Hildebrand and IH 10. Traffic exiting from IH 10 and turning east on Hildebrand is blocked by
trainsin grade crossings.

This track is used primarily to haul gravel and rock from a quarry north of town. Due to the
congestion of the area and the condition of the track, trains operating on this section of track are limited to
speeds of ten mph (discussions with Mr. Doug Woods of Union Pacific). Since the trains are moving so
slowly it takes a long time for them to clear a grade crossing and delays of up to ten minutes have been
reported by residents and motorists in the area. The trains do not maintain a fixed schedule but five or
more trains may move across the track on some days (according to businesses located next to the track).
As aresult of all these factors, train operations in this section have an appreciable effect on freeway
traffic and on the travel time of motorists, including emergency vehicles.

12 Operational Concept

The AWARD system predicts grade crossing blockage by detecting approaching trains a distance
from the crossing. Sensors are placed at selected distances from the three chosen grade crossings. Trains
are detected by acoustic sensors consisting of directional microphones sensitive to the sound of railroad
cars moving on the track. The presence of atrain energizes a doppler radar unit aimed at the tracks. The
doppler radar measures the speed of the passing train and transmits speed data to a central computer
located at the TransGuide center as shown in the Architectural Block Diagram. A workstation in the
TransGuide center calculates an equation of motion for the train and predicts the time of arrival and the
duration of closure for grade crossings ahead of the train.

The predicted time and duration of crossing closures is provided to TransGuide operators in the
form of a “ralroad grade crossing event” patterned after traffic events currently used in TransGuide
operations. TransGuide operators may respond to the railroad grade crossing event by initiating variable
message sign displays or other appropriate actions. Information on grade crossing closures is aso placed
in the Area Wide Database for use by other Model Deployment activities.

AWARD 3 System Design Document

AWARD

Radar

Radar

Radar

Award Master Computer

Kiosks

In Vehicle
Navigation

Map

ATMS

Figure 2. Architectural Block Diagram

System Design Document

13 Goals and Objectives

The immediate goa of the AWARD system is to provide information on predicted grade crossing
closures early enough to allow motorists and emergency vehicle operators to select aternate routes to
avoid the congested areas. This results in reducing travel time for motorists, reducing congestion on
freeway exit lanes at the affected crossings and reducing delays in emergency vehicle response.

14 Referenced Documents
The following documents are referenced in this design:

Texas Department of Transportation Request for Offer (RFO) for the Mode Deployment
Initiative System Integration, 60115-7-70030; TXxDOT Specification No. 795-SAT-01.

San Antonio Advanced Traffic Management Software Requirements Document (December,
1995).

Object Oriented Analysis and Design by Martin and Odell, Prentice Hall, 1992.

Southwest Research Institute Proposal No. 10-20352, A Proposal for 60115-7-70030: Request
for Offer, Model Deployment Initiative System Integration.

Installation and Operations Manua - SmartSonic™ TSS-1, International Road Dynamics,
Saskatoon, Sask., 1997

MDI Common Code Software Design Document

AWARD 5 System Design Document

2.

External Interfaces

AWARD system interfaces include electrical power and signal connections between hardware

subsystems (electrical interfaces), data interfaces between computer programs (software interfaces), and
between programs and operators (user interfaces). Each of these is described briefly below.

21

22

Remote Sensor Site
Interfaces at the remote sensor site include:

Electrica power connection to the field unit is through liquid tight strain relief fittings. A surge
suppresser and circuit breaker is provided in the input power circuit.

A power supply at each sensor site provides 12 VDC to the SmartSonic acoustic detector and to
the O’ Conner radar unit.

A signal from the SmartSonic controller card is wired directly to atime delay relay located on the
SmartSonic enclosure. The output of the time delay relay is wired directly to the transmit power
circuit of the radar unit.

The Radar to Modem connection is EIA-232 aso known as RS-232 at 2400 baud, 8 bit, no
parity, 1 stop bit. A DB 24 connector on a cable from the radar connects to a DB 24 connector
on the modem. EIA-232 establishes the electrical connections.

The Modem to Telephone line connection includes a surge suppresser. RJ11 connectors are used
for the telephone line connections.

Field modem to TransGuide modem: Each modem provides an RJ11 Socket for connecting to the
commercial telephone system through a surge suppresser. The electrical connection using RJ-11
connectors is standard U.S. telephone practice. The communication protocol used is standard,
uncompressed, serial, modulated signal technique.

TransGuide L ocation
Interfaces at the TransGuide location include:

Telephone Lines to Modems at TransGuide: the telephone hook-up connects to computer
modems using RJ-11 connectors and is standard U.S. telephone connections. The communication
protocal is standard, uncompressed, serial, modulated signal technique.

Modems at TransGuide to Workstation: the modem pool provides a SCSI-2 cable connection to
the workstation. The SCSI-2 standard defines the pertinent electrical and communication
protocols.

AWARD 6 System Design Document

2.3 Softwar e | nter faces
External interfaces associated with the AWARD software are;

AWARD software to TransGuide ATMS: The AWARD system provides the train delay
information to the TransGuide ATMS. This information is sent to the existing TransGuide
ATMS as an externa event using a socket communication protocol. This event is smilar to the
alarm incidents currently handled by the TransGuide ATMS. Crossing location and train delay
duration are transmitted as part of this event. The crossing location and train delay duration are
used by the TransGuide ATMS to perform automatic scenario searches and as an aid to the
TransGuide operators in determining the execution time for the selected scenario.

AWARD Software to MDI Data Server: The AWARD system provides raw sensor information
and train delay information to the MDI Data Server.

AWARD 7 System Design Document

3. Requirements

This section presents the attributes that are required for a successful implementation of the
AWARD Railroad Delay Advance Warning System. Most of these requirements are derived directly
from TxDOT Specification 795-SAT-01, “ Modd Deployment Initiative System Integration Request for
Offer” and the Southwest Research Institute Proposal 10-20352. Listed in Section 3.1, General
Requirements, are the programmatic requirements that specify what items are to be delivered and the
schedule for specific events. Section 3.2, System Level Requirements, lists requirements that apply to the
overall AWARD system and Sections 3.3 through 3.8 list requirements that apply to each of the
subsystems individualy.

The requirement definition number provides a unique code for reference and tracking. The first

two characters identify the Railroad Delay Project of MDI. The next 3 characters designate the group or
subsystem associated with the requirement. The numeric entry is a sequence number within the group.

31 General Requirements

The following section lists requirements for delivery of specific items during the project.

RR-GEN-01 An 80% System design document shall be delivered on February 14, 1997. (SwRI
Proposal 10-20352, section 2.1.2.8.3)

RR-GEN-02 A 100% design document shall be ddlivered on December 31, 1997. (SwRI Proposa 10-
20352, section 2.1.2.8.3)

RR-GEN-03 A Software Acceptance Test Plan shall be delivered. (SwRI Proposal 10-20352, section
2.1.2.8.3)

RR-GEN-04 A Version Description Document shall be delivered. (SwRI Proposal 10-20352, section
2.1.2.8.3)

RR-GEN-05 Monthly status reports shall be provided via a presentation with the customer. (SwRI
Proposal 10-20352 stated a report will be delivered. An aternative was negotiated.)

RR-GEN-06 A training program shall be presented. (SwRI Proposal 10-20352, section 2.1.2.8.3)

RR-GEN-07 A videotape of the training program shall be delivered. (SwRI Proposa 10-20352,
section 2.1.2.8.3)

RR-GEN-08 A fina report shall be delivered. (SwRI Proposal 10-20352, section 2.1.2.8.3)

AWARD 8 System Design Document

3.2 System Level Requirements

The following requirements specify the overal operation and performance of the system. Each
requirement is identified by a unique code and is referenced to the source from which the requirement was

derived.

RR-SY S-01

RR-SY S-02

RR-SY S-03

RR-SYS-04

RR-SY S-05

RR-SY S-06

RR-SY S-07

RR-SY S-08

RR-SY S-09

AWARD

The system shall ddiver advance warning to motorists of expected delays at railroad
crossings. (TxDOT 795-SAT-01, Paragraph 28)

The system shall determine the speed and length of a train engine and attached railroad
cars. (TxDOT 795-SAT-01, Paragraph 28)

The system shall determine expected delay times at selected grade crossings. (TxDOT
795-SAT-01, Paragraph 28)

The system shal transmit an expected delay to TransGuide Operators as an alarm
through a software interface with the existing TransGuide ITS system. (TxDOT 795-
SAT-01, Paragraph 28)

Expected railroad delays shall be transmitted to the traveling public by use of existing
variable message signs and also to the San Antonio Area Wide Database. (TxDOT 795-
SAT-01, Paragraph 28)

The system shall provide warnings for grade crossings at IH 10 and Fredericksburg
Road, IH 10 and Hildebrand Road, and IH 10 and Vance Jackson Road. (TxDOT 795-
SAT-01, Paragraph 29.1.3)

The field equipment shall be mounted on a suitable structure at some location aong the
rallroad line in advance of the crossing for which warnings are to be given. (TxDOT
795-SAT-01, Section 29.2.1 refers to an “existing structure” aong the track.
Investigation has determined that there are no existing structures at some locations where
sensors will be needed.)

Field equipment shall be located in TXDOT or the City of San Antonio right of way.
(TxDOT 795-SAT-01, Section 29.2.1)

The field equipment shall determine length and speed of trains through observation only.

No connection to the railroad tracks or controlling equipment is allowed. ((TXxDOT
795-SAT-01, Paragraph 29.2.2)

9 System Design Document

3.3 Sensor Subsystem Requirements

RR-SNS-01 Thetrain speed sensor shal have arange to alow measurement of the train speed from a
location outside the railroad right-of-way. This distance is normally 50 feet on either
side of the track center line but may vary in some locations. (RR-SY S-04)

RR-SNS-02 The detector unit shall measure locomotive speed within 2 miles per hour (+/-) at the
maximum train speeds alowed for the section of track where sensors are installed.
(TXxDOT 795-SAT-01, Paragraph 29.2.4 specifies £2 mph for trains traveling at 60
mph. Trains on the selected section of track operate at less than 10 mph. Specifying a
sensor that operates at 60 mph will reduce the measurement accuracy at low speeds.)

34 Communications Subsystem Requirements

RR-COM-01 The field unit shall communicate to the TransGuide equipment using a non-proprietary
protocol. (TxDOT 795-SAT-01, Paragraph 29.1.2)

35 Electrical Subsystems Requirements

RR-ELC-01 Thefield unit shall operate on standard line power. (nomina 120 VAC) (RR-545-07)

3.6 M echanical Subsystem Requirements

RR-MEC-01 The equipment will be designed to operate within an ambient temperature range of -12°C
to 49°C (10°F to 120°F) and will not alow condensation accumulations which would
interfere with its operation. (RR-SY S-07)

RR-MEC-02 The system enclosure will be able to be mounted to a pole or other suitable structure.
(RR-SY S-07 and RR-SY S-08)

RR-MEC-03 The system will provide an internal mechanism for accurate pointing of the sensor. (RR-
SNS-01)

3.7 Railroad Softwar e Subsystem Requirements

RR-RRS-01 The RR-Delay Master Computer shall calculate the length of the train from measured
train speed integrated over time. (SwRI Proposal 10-20352, Section 2.4.1) The RFO
stated (Paragraph 29.2.2) “The detector unit shall measure the length of the locomotive
and all attached cars within 10 feet (+/-).” The detector itself does not measure train
length directly. The specified accuracy is possible for trains traveling at speeds of 50
mph or more but can only be done for dow trains (10 mph) if acceleration or deceleration
is constant.

AWARD 10 System Design Document

RR-RRS-02 The RR-Delay Master Computer shall calculate the expected time of arrival of the first
element of the train and the last element of the train at selected downrail crossings.
(SwWRI Proposal 10-20352, Section 2.4.1)

RR-RRS-03 The RR-Delay Master Computer shall determine expected delay times at railroad
crossings. The RR-Delay Master Computer shall estimate delay time within +30
seconds. (TxDOT 795-SAT-01, Paragraph 29.3.3)

RR-RRS-04 The RR-Delay Master Computer shall transmit the railroad delay data to the existing
TransGuide ITS system. (TXxDOT 795-SAT-01, Paragraph 29.3.3)

3.8 TransGuide Operational Software Subsystem Requirements

Software modifications to the TransGuide ATMS provide the system software interface and
operational control required to incorporate train delay information generated by the AWARD system into
the existing traffic management system software. The requirements related to these software changes are
in the table below.

RR-TGS-01 The TransGuide Operational Software shal interface with and receive ralroad delay
data from the Railroad Operationa Software. (RR-RRS-04)

RR-TGS-02 The TransGuide Operational Software shall transmit expected delay information to
TransGuide operators as an darm. (TxDOT 795-SAT-01, Paragraph 28)

RR-TGS-03 The TransGuide Operational Software shall be capable of performing a scenario search
for aRR delay incident. (SwRI Proposal 10-20352, Section 2.4.1)

3.8.1 TransGuide Alarm/Incident Handler Requirements

The Alarm/Incident Handler (AIH) subsystem of the TransGuide ATMS is responsible for the
handling of traffic incidents or alarms. This subsystem was be modified as part of the AWARD project
in order to handle the RR delay information being sent by the RSS. The requirements related to the
modifications made to the AlIH are listed below.

RR-TGS-02.01 The AIH shall accept a RR delay alarm from the RSS. (RR-TGS-02)

RR-TGS-02.02 The AIH shall indicate the RR delay alarm as an update darm if the RR delay darm is
related to a current RR delay incident. (RR-TGS-02)

RR-TGS-02.03 The AlIH shall create a new AIH RR incident if the RR delay darm is not related to a
current RR delay incident. (RR-TGS-02)

RR-TGS-02.04 The AIH RR incident shall contain data from the railroad delay information contained in
the RR delay darm. (RR-TGS-02)

AWARD 11 System Design Document

RR-TGS-02.05 The AIH shall build the AIH RR incident screen for new RR delay darms. (RR-TGS
92)

RR-TGS-02.06 The AIH shall display the AIH RR incident screen, as an icon, on the workstation of the
manager responsible for the sector containing the RR incident. (RR-TGS-02)

RR-TGS-02.07 The AIH shal generate an audio notification of new RR incident darms at the
workstation of the manager responsible for the sector containing the RR incident. (RR-
TGS-02)

RR-TGS-02.08 The AIH shal update the railroad delay information for an existing incident using the
raillroad delay information contained in the associated RR delay update darm. (RR-
TGS-02)

RR-TGS-02.09 The AIH RR incident screen shall provide the same actions currently provided by the
AlH-NewlIncidentScreen. (RR-TGS-02)

3.8.2 TransGuide Scenario Manager Requirements

The Scenario Manager (SCM) subsystem of the TransGuide ATMS is responsible for the
searching and execution of pre-defined and operator generated incident scenarios. This subsystem will
need to be modified as part of the AWARD project in order to search and execute scenarios related to
incidents occurring as a result of a RR delay. The requirement related to the modifications made to the
SCM s listed below.

RR-TGS-03.01 The SCM-ScenarioSearchScreen shall contain the RR incident type for selection by a
TransGuide operator. (RR-TGS-03)

AWARD 12 System Design Document

4, Sensor System Design

The AWARD system described in this design document is the initial implementation and test of a
new approach to handling intermodal traffic problems. It includes a limited number of sensors to predict
train activity at three specific grade crossings where blocked intersections affect freeway traffic. The
results of this limited implementation are being used to assess the effectiveness and benefits of the
concept. The effectiveness of the system will serve as the basis for future expansion of the system and for
implementation of advance warning methods at additiona intersections. The design of the AWARD
system is based on the following goals:

Provide advance information on train crossings to allow motorists to plan and take dternate
routes which avoid blocked intersections. This will reduce congestion at intersections and on
freeways and reduce traffic hazards.

Provide advance information on train crossings to TransGuide operators to alow them to respond
to predicted crossing blockages. This will alow operators to include train information in
planning VM S messages and in responding to traffic incidents.

Provide advance information to emergency services to alow route planning that avoids congested
intersections. Thiswill lead to faster response time of emergency vehicles.

Provide a system architecture that can be expanded to include additional sensor locations and
additional grade crossings in the future. This will allow expansion of the system and
implementation at other locations.

41 System Ar chitecture

The AWARD system from an operationa standpoint is depicted in Figure 3. Equipment in the
field is primarily composed of an acoustic detector and a radar speed gun connected to a modem. This
unit relays train velocity information using standard telephone communications through a second modem
to the Award Master Computer located at the TransGuide facility. Software running on the Award
Master Computer monitors the remote radar units to determine train locations and speeds. After
calculating where street blockages will be occurring, the data is relayed to the TransGuide ATMS and the
Area Wide Database. From the Area Wide Database, the data is available for use by other elements of the
Mode Deployment Initiative.

AWARD 13 System Design Document

Radar Sensor ——— Acoustic Sensor J

RF Beam
Control

>

Rs232 Cable
(2400 Baud)

G

Modem
(Auto Answer)

Other MDI Components

%

Telephone Line

(

In Vehicle Transguide

Nav Map Kiosks

Modem

"

SCSlI /
Cable

N\

MDI Data
Server

Serial Port ——

TransGuide
ATMS

Sun Computer

Figure 3. System Block Diagram

The flow of information related to grade crossing closuresisillustrated in Figure 4. Train speed
measurements are transmitted to the Railroad Master Computer Subsystem where estimated time and
duration of crossing blockages are calculated. If any blockages are predicted to occur within specified
timeintervals arailroad incident event is generated. Thisinformation is provided to the Scenario
Management Subsystem which communicates with TransGuide operations personnel through graphical
user interfaces.

AWARD 14 System Design Document

RR
Detection
Field
Equipment

RR
Detection
Data

FE Comm
Subsystem

RR
Detection
Data

RR
Software
Subsystem

RR Event
Generation
Subsystem

RR Delay Data

RR Delay Data
and
Sensor Data

RR
Incident
Event

MDI Data TransGuide
Server ATMS

Figure4. AWARD Process Flow

4.2 System Geogr aphic L ayout

One important consideration in the design of the AWARD system was the location of sites for
train speed sensors. Sensors are located far enough from the grade crossings to provide enough advance
warning to alow motorists to decide on an alternate route, possibly change freeway lanes, and take an
earlier or later exit from the freeway. On the other hand, the sensors must be close enough to the
crossings so that train speed is relatively constant and accurate predictions of crossing closure can be
made. For this section of freeway, an advance warning time of 4 to 8 minutes was selected to provide
motorists with several miles of driving in which to make aternate route plans and execute them.

Discussions with Union Pecific determined that the particular section of track (the Kerrville line)

has a posted speed of 10 mph, the lowest in the city. The distance from sensors to grade crossings was
then calculated based on the nominal train speed.

AWARD 15 System Design Document

distance = time* speed
distance = 6min*(1hr / 60min)*10mi / hr
Distance = 1mile

Based on this distance, six sensors (one on each side of each crossing) are used to provide accurate time
and duration estimates.

Regions of the track approximately one mile on each side of the three grade crossings were
investigated to determine the availability of sites for mounting train sensors. In addition to the correct
distance from grade crossings, acceptable sites must provide opportunities for mounting the sensor, an
un-obstructed view of the railroad track and the availability of power and communications.

Sites were identified at each required location which provided the required characteristics.

SITE 1 - One mile south of the Fredericksburg-Woodlawn crossing the track runs through a
mixed residential/warehouse area. The sensor was mounted on a new 25-ft utility pole at Poplar
Street between a warehouse and a paved area adjacent to a loading dock. The acoustic detector
and the radar are aimed toward the track in the northward direction. There is very little
background noise at this location.

SITE 2 - One mile south of the Hildebrand Street crossing the track runs beside IH 10 which is
double-decked at this location. The sensor at this location is mounted on an existing utility pole
on the north side of Cincinnati Street. The acoustic detector and the radar are aimed toward the
track in the northward direction. The acoustic sensor also picks up traffic noise from IH 10
which can be significant during heavy traffic.

SITE 3 - One mile north of the Fredericksburg-Woodlawn crossing the track runs between the
edge of Martinez Creek and Capitol Street in an area of light industry. At this location the sensor
is mounted on a newly installed 30-foot utility pole located on the south side of San Francisco
Street. This pole is taller than the others since the sensor is directed northward looking across
San Francisco Street and the sensor must be high enough to clear any obstructing traffic on the
Street.

SITE 4 - One mile north of the Hildebrand Street crossing the track runs along Martinez creek
between Mardell Boulevard and Wildwood Drive. The sensor is mounted on a 25-foot pole on the
north side of Mariposa Street and is directed northward.

SITE 5 - One mile south of the Jackson-Keller grade crossing the track runs parallel to Arroya
Vista Drive in aresidential area. This sensor is located on a 25-foot utility pole on the north side
of Dresden Drive.

SITE 6 - North of the Jackson-Keller grade crossing the track runs along Olmos Creek through a
wooded floodplain area without much development. The sensor is mounted on a 25-foot utility
pole on the south side of Dreamland Drive.

AWARD 16 System Design Document

Distance from Sensor Location to |
Sensor | Site Location Location Orientation
Code Telephone # Coordinates (angle to tracks)
Jackson-Keller Hildebrand
A6 Dreamland Lat: -98 32 22 44° facing south 8400 ft. South
(10689 TCM) Lon: 29 32 11
341-9615
A5 Dresden Lat: -98 31 05 39° facing north 7100 ft North
(379 #TCM) Lon: 29 29 55
340-4689
Ad Mariposa Lat: -98 30 56 20/ facing north 5600 ft South
Lon: 29 28 50
733-6041
A3 San Francisco | Lat: -98 30 47 25/ facing north 900 ft South
Lon: 29 28 06
735-0124
A2 Cincinnati Lat: -98 30 52 29/ facing north 6600 ft North
(431 #TCM) Lon: 29 26 54
738-3894
Al Poplar Lat: -98 30 45 22/ facing north 10000 ft North
Lon: 29 26 21
733-6021

Tablel. Sensor Locations and Orientations

AWARD 17 Sysl

4.3 Sensor Subsystem Design

Each remote site includes an acoustic sensor to detect the presence of atrain and a speed sensor
to measure the speed of trains approaching a crossing.

Doppler radar was chosen as the most appropriate among the speed measurement technologies
although it has some certain limitations. No commercial off-the-shelf (COTS) radar unit was found
which was designed for viewing trains and communicating with a remote computer. Therefore, a vendor
was found who was willing to quote such a system (the quote was part of the proposal for AWARD).
Normal frequency bands of the radar units are X, K, and Ka. The least affected by rainfall isthe X band,
however, the vendor had no X band radar’s which could measure vehicles approaching and receding,
therefore K band was chosen. Radar gun technology is based on measuring frequency shift of areturned
signal (i.e. Doppler shift) and is not very sensitive to slow speeds because these result in small frequency
shifts. Radar units, however, may be adjusted so that they are more sensitive to slower or faster speeds
than the nominal 60 miles per hour. One fina limitation of using radar gun technology is that the FCC
does not want radar guns to remain transmitting when unattended; therefore the radar gun was used with
an acoustic sensor to activate the RF transmit beam only when atrain is present.

4.3.1 Specifications for Selected Sensors

The SmartSonic Traffic Surveillance System (TSS-1) is a non-contact sensor designed for
highway use. It is capable of detecting the acoustic emissions of a vehicle and providing vehicle presence
signals to a traffic controller or other system. Each SmartSonic sensor is comprised of a microphone
array which listens continuously to sound energy emitted from vehicles or other sources within its
detection zone. The signals from the microphones are processed to provide sensor directivity, creating an
effective detection beam of only afew degrees. Only sounds coming from within a specific detection zone
are retained. Sounds from locations outside the detection zone (such as an adjacent highway or freeway)
are severely attenuated and are ignored. The detection zone size and shape is determined by the sensor
installation geometry. For the typical instalation along the Union Pacific railroad track, the detection
zone is approximately a12' x 12' area.

When a train enters the detection zone, an increase in sound energy is detected and a train
presence signal is generated. Thissignal isused to close arelay, providing power to the transmitter of the
radar. When the train leaves the detection zone, the sound energy level drops below the detection
threshold, and the train presence signal becomes inactive. During tests it was noted that the sound level
may drop below the detection level for short periods of time. In order to prevent the radar power from
being turned on and off intermittently as a train passes, atime delay relay was used to hold the radar on
for the short quiet intervals as atrain passes.

The SmartSonic TSS-1 microphone array is mounted overhead on utility poles just beside the
enclosure holding the radar and modem. Each TSS-1 sensor has a single detection zone, and is aimed at
the railroad tracks at approximately the same location as the radar.

Each TSS-1 sensor is small and lightweight to facilitate easy installation using off-the-shelf
mounting hardware. The sensor utilizes a fully programmable digital signal processor (DSP) to process

AWARD 18 System Design Document

the microphone signals. Selectable processing bands provide flexibility to control detection zone size for
different installation geometries. For AWARD, the sensors have been set to operate in the lowest
frequency band to provide the greatest sensitivity to the low frequency sounds generated by the trains.

The cable (termed the? home run? cable) from the TSS-1 acoustic sensor is brought through the
bottom of the pole mounted enclosure at a sealed fitting. The cable terminates at screw connectors on the
transition module which serves as the junction between the home run cable and the six conductor modular
cables connected to the TSS-1 controller card. The Transition Module is mounted on the case containing
the controller. Signal probe points on the transition module are readily accessible to facilitate trouble
shooting if it is necessary.

The TSS-1 controller uses a programmable microprocessor to implement detection processing.
The controller provides vehicle presence relay signals at the controller edge connector and visual LED
detection indicators on the front panel. A complete list of SmartSonic TSS-1 specificationsis provided in
Table 1.

The time delay relay used to control the radar RF beam when the acoustic signal of a train is

present is a Syrelec Chronos multifunction timer. It operates from a 12 volt DC supply and can provide
time delays from 0.1 second to 10 hours. For thisuse, the time delay is set to 15 seconds.

AWARD 19 System Design Document

SENSOR

Detection Method

Passive (Non-Emitting)

Detection Frequency Band

1 of 4 bands

Detection Beam Pattern

3dB Beamwidth of 8 degrees

Mounting Position

Overhead or side mount

Detection Range

(20ft to 40ft) or (6.1 mto 12.2m)

Temperature (-30°F to 160°F) or (-34°C to 71°C)
Wind Load Design (120mph) or (190Km/hr)

Weight Less than (8lb) or (3.62Kg)

Size 15.0" square x 3.0" deep

Color Gray

Enclosure Aluminum with baked enamel
Current Requirement Less than 55mA @ 24VDC
CONTROLLER

System Interface

Type 170/NEMA cardfile/RS-232C

Relay Contacts

Solid state coupled

Size of Controller Card

4.5"H x 6.875"D

Size (Shelfmount)

6.75"H x 7.94"D x 2.85"W

Power Requirements

Less Than 90 mA @24VDC for Controller Card

SYSTEM

Power Requirements

12 to 24 VDC

Total Power Consumption

7 watts @24VDC (4 Sensors & Controller)

Sensor Interconnect Cable

Twisted pair cable(4 pairs)

Sensor Home run Cable

Twisted pair cable(4 Pairs)

Table2. SmartSonic TSS-1 Specifications

The selected doppler radar sensor is Model 3004 from MPH Industries, Inc. manufactured by
O’ Conner Engineering. Sensor specifications are listed in the table below.

AWARD 20 System Design Document

Criteria Specification
Sensor Type Doppler Radar
Frequency 24.125 Ghz
Power Output 0.005 Watt

Power Required

2.4 Watts, 10.8-24V, 250 mA at 12V

Size Approx: 4" x 4" x 9”

Antenna Type 100 mm (4 inch) sealed lens horn
Beam Width 7°

Range up to 2 miles

Train Response

35 Hz to 15,000 Hz weighted response
(0.5 to 185 mph)

Accuracy

+ 0.50 mph across response range

Output Signals

target velocity
target closing
target receding
timer output
timed relay output

External Communications/
Connector

RS 232 signals (EIA 232)
DB 9 connector

System Control

Unit may be placed intro transmit mode by an external RS
232 command. Time to awaken transmitter until
transmitting data may take a few seconds.

Environment

Designed for all weather, day/night, continuous operation.
-30°C to +60°C (-22°F to 140°F)
90% Relative Humidity at 37°C (99°F)

Lifetime

Designed to last 7 to 10 years.
Actual lifetime may vary.

Manufacturers Warranty

2 years

Approval

FCC, Part 15 (No license required.)

Table3. Doppler Radar Speed Sensor Specifications

The radar communicates over abidirectional RS-232 interface which is set for 2400 baud, 8 data bits, no
parity, | stop bit. When power isfirst turned on to the radar it isin a dormant state and commands must be
issued to start the desired operation. The setup commands for specific actions are:

AWARD 21 System Design Document

Desired Action Command (ASCII)
Turn microwave transmitter on D40

Turn microwave transmitter off D41

Send a single speed sample S

Begin sending continuous samples B1

Discontinue sending continuous samples BO

Set sending rate to 4/sec (250 mS period) T0

Set sending rate to 2/sec (500 mS period) TI

Set sending rate to 1/second T3

Table4. Doppler Radar Command Codes

Commands sent to the radar unit must be separated by a minimum of 50 milliseconds for proper

processing.

Output data format

The radar transmits coded data over the RS-232 port to the modem. Each speed sampleisin the
form of an output string consisting of 5 groups of ASCII numbers separated by spaces. Groups are defined

as follows:

Group 1 - Receding target speed when receding flag = 1
Group 2 - Approaching target speed when approaching flag = 1

Group 3 - Don't care (appears to be uncorrected measurement)

Group 4 - Don't care (normally all I's)

Group 5 - Data Flags (don't care(normally 1), beam off, valid data, don't care (normally 1), approaching

target, receding target)

RRR AAA XXX 255 Don't
Care

Beam
Off

valid Don't Appr.
Data Care Target

Recd.
Target

<cr>
<|f>

The target speed data transmitted by the speed sensor isadigital value which must be converted to speed in
miles per hour for processing. Thisis done by the following equation:

Target Speed (MPH) =.55 + (.318 * N) + (.000257 * N?)

Where N is the transmitted speed data (RRR or AAA in the table above)

AWARD

22

System Design Document

4.3.2 System Placement

The radar sensor requires a clear view of trains on the track. The unit is most accurate when
placed near the track so that the radar beam is aimed directly at an approaching train. In this application,
the sensors are located away from the RR track and the beam is aimed at an angle to the sides of the cars.

Since the unit is mounted in a box, alexan window is provided for the sensor so that the radar unit
isrelatively protected and the radar beam is barely attenuated.

4.3.3 Power Requirements

The radar unit requires approximately 250mA at 12 V. The supply of power for the unit is
described in the Electrical Subsystems Design.

4.3.4 Environmental Design Requirements

The radar unit requires that temperature be maintained between -30°C and +60°C (-22°F and
140°F). The relative humidity at 37°C (99F) may not exceed 90%. The enclosure providing the
environmental conditions is described in the Mechanical Subsystem Design.

4.4 Communications Subsystem Design

The communications subsystem transmits train speed measurements from the train sensor to the
workstation located in the TransGuide operational center. Severa alternative communication techniques
were considered as a part of the system design with the design goals of:

reliability

economical installation and operation

adaptability to installation in multiple locations

expandability to allow use of many sensors for many grade crossings

Based on system trade-off analysis, dial-up telephone lines were selected for communications
between the remote train sensors. This option also alows future inclusion of cellular telephone links if the
system is expanded. Wireless telephone service will be the lowest cost for locations where telephone
serviceis not available.

Telephone line communications between the computer located at TransGuide and each MPH train
sensor in the field is depicted in Figure 2 (see page 3). The radar unit provides an RS-232 (EIA-232)
connection at 2400 baud (8 bit, no parity, 1 stop bit, DB 9 connector). Per the MPH specification, the
radar unit is either placed into transmit mode or disabled by an external command. The total process of
awakening the radar transmitter, reading the train speed, and transmitting the data takes place in only afew
seconds.

A modem configured to automatically answer (and establish communications) is attached to the

radar unit and the telephone lines. The selected modem is a Maxtech Net Pacer, selected because it is rated
for environmental extremes that may be encountered.

AWARD 23 System Design Document

At the TransGuide facility, a Practical Peripherals 28.8 modem provides the other telephone
connection. The modem interfaces to the Award Master Computer (a Sun Workstation) via a SCSI
interface and provides a standard serial port application interface to the Award Software.

441 Modem at Remote Site

A number of modems were considered for placement at the remote site. The required specifications
include:

Operation to 54° C (130°F)

External modem configuration (i.e. not a computer board)
Normal telephone line operation

Auto-pickup (auto-answer)

2400 baud

4.4.1.1 Specifications

Criteria Specification

Communication Rate Up to 33 KB

Type Stand Alone/External

Digital Interface RS-232

Telephone Interface RJ11, RJ45

Environmental 0°C to 55° (32° to 131°F)
Humidity 95% non-condensing

Power 120 VAC, 10W nominal

Auto Answer Yes

Table5. Modem Specifications

4.4.1.2 Power

The modem requires 115 V AC. The supply of power for the unit is described in the Electrical
Subsystems Design.

4.41.3 Environmenta

The modem requires that temperature be maintained between 0°C and +55°C (32°F to 131°F).
The relative humidity must not allow condensation accumulations which would interfere with equipment
operation. The enclosure providing the environmental conditions is described in the Mechanical Subsystem
Design.

AWARD 24 System Design Document

45 Electrical Subsystems Design

The remote train speed sensor installation is connected to 115 VAC single phase powe A
terminal strip provides a circuit breaker and surge protection. The terminal strip provides 120 VAC power
to the modem and a power supply. The power supply provides 15 VDC power for the acoustic detector
and the doppler radar sensor. These are commercial, off-the-shelf components and have been selected to
have wide operating temperature ranges. The power supply is a Solo model 85-15-2150, chosen to have
low heat dissipation to minimize internal heating in the enclosure. Specific electrical parameters are
provided in Table 6.

46 M echanical Subsystem Design

The mechanical design includes the enclosure for the remote sensor and electronics.

4.6.1 Enclosurefor Sensors

The physical enclosure for the sensing system is based upon current enclosure designs selected and
used for traffic control instalations in the City of San Antonio. Typical enclosures considered as
representative examples are those used at traffic lights to house the signal electronics and power.

4.6.1.1 Design Assumptions

The control volume is defined about the enclosure.
The enclosure and internal components are at best at ambient temperature.

Internal sources of heat are as specified in Table 6.

Component | No Signal Signal Operating Temperature

Power (W) Power (W) Range
Radar 3 5 -30°C to +60°C (-22°F to +140°F)
SmartSonic 2 2 -34°C to 71°C (-30°F to 160°F)
TSS-1
Modem 10 10 0°C to +55°C (32°F to +131°F)
Power Supply | 5 5 -25°C to +70°C (-13°F to 158°F)
Total 20 22

Table6. Enclosure Internal Power Loading

Maximum ambient temperature is 49°C (120°F). During summer months at extreme conditions a
sun-shield is required. The sun-shield provides protection from the elements, as well. Analysis
shows vents will always be needed.

AWARD 25 System Design Document

Minimum ambient temperature is -12°C (10°F). During extreme winter months, low temperatures
in San Antonio may exceed component design limits. Analysis shows that internal heating of
components in the sealed enclosure will maintain a suitable internal temperature.

4.6.1.2 Mechanical Layout

The dimensions of the enclosure are 12" x 12" x 12". These dimensions provide ready access to
components and ample room for additional components if needed.

The radar window islexan. The thickness and clarity are designed to prevent thermal loading, and
damage due to elements and/or vandalism.

4.6.1.21 Alignment for Sensor

Sensor aignment is provided for by a two degree-of-freedom mount. This mount allows for
rotation about the pitch and yaw axis of the enclosure. All components are designed for rigid mounting
within the enclosure.

4.6.1.3 External Mounting

The enclosure and sun-shield are designed for pole mount. Pole brackets are considered the
primary system for installation.

4.6.2 Electrica Connections

Power and communication access are being provided by industry standard electrica and
communication external connections. These provide for cabling isolation from the elements.

AWARD 26 System Design Document

5. Softwar e System Design

The AWARD Software monitors the field sensors, filtering data from them and detecting the speed
and length of trains. The software is cognizant of crossings and sensors downstream from the current
sensor of interest. Crossing blockage times and durations are calculated. This information is provided to
the Area Wide Database and to the TransGuide ATMS. The discussion which follows describes the
software in two sections: the TransGuide Operational Software related to receiving events through the
TransGuide system to motorists, the public and emergency vehicles and the Railroad Operational Software
related to determining the speed of trains and predicting arrival times at grade crossings and.

51 External Interfaces

The AWARD subsystem has eight external interfaces as shown inFigure 5. The following
sections describe these external systemsin more detail.

AWARD 27 System Design Document

TransGuide
Personnel

————

User Commands

Subsystem
Process
Control
Display Detailed Process
Status Status
Stop Process S
Subsystem
Process Heartbeat
Heartbeat
Subsystem <iI—— L
Heartbeat e . g:'tser
Management ensor Data
Most Severe
Process Status
RR Crossing
Data
Sensor Command
Status Log
i Message
RR Sensor Data glrossmg Delay
Sensors arm
TransGuide gzgﬁzstem
ATMS
Logger

Figure5. AWARD Context Diagram

5.1.1 TransGuide Personnel

TransGuide Personnel represents the operations and system adminstration personnel assigned to
the TransGuide ATMS. These are the end-users of the AWARD subsystem and will interact with the
AWARD subsystem via graphical user interfaces associated with the detailed status GUI.

5.1.2 Process Status GUI

The Process Status GUI is the graphical user interface providing the visual description of each of
the processes within the subsystem. The user has the ability to stop and start processes as configured by
the status GUI. The user can also invoke the detailed status GUI of the subsystem from the Process Status

AWARD 28 System Design Document

GUI. The detailed status GUI can provide information about field equipment associated with the
subsystem or other information of importance.

5.1.3 DataServer

Data Server is the central repository of information generated and maintained by the MDI
subsystems. The AWARD subsystem sends sensor data and crossing data to the Data Server. The Data
Server aso receives the subsystem-level heartbeat which includes the overal status of the AWARD
subsystem.

514 Subsystem Status Logger

Subsystem Status Logger is the process responsible for logging status information to alog file. A
log file for each day of the week is maintained. Theselog files are kept only for the current week.

515 TransGuide ATMS

TransGuide ATMS is the existing Advanced Traffic Management System currently in place at the
TransGuide facility. Modifications to the TransGuide ATMS have been made to support the AWARD
subsystem. These modifications are described in the TransGuide ATM S maintenance manual .

516 RR Sensors

RR Sensors represent the physical hardware deployed in the field. These sensors are used to detect
trains travelling on the monitored tracks.

5.1.7 Subsystem Heartbeat M anagement

Subsystem Heartbeat Management receives all the process-level heartbeat messages and maintains
the current status information for the subsystem. The most severe process-level status is sent periodically
to the Data Server through the subsystem's Data Server Interface.

5.1.8 Subsystem Process Control

Subsystem Process Control is responsible for starting and automatically restarting the processes
associated with the AWARD subsystem.

519 Externd DataFlows

Several data flows exist between the AWARD subsystem and the external interfaces described
above. These dataflows are described in more detail inTable 7.

AWARD 29 System Design Document

| Data Flow | Description |
Crossing Delay Alarm Crossing Delay Alarm is an external alarm (external to TransGuide ATMS) generated by the AWARD
subsystem. This alarm indicates changes in delays at a specified crossing. The alarm could
represent a crossing being blocked or a clearing of a previously blocked crossing.

Display Detailed Status Display Detailed Status is an event used to trigger the display of the subsystem's detailed status GUI.

GUIs GUIs are graphical user interfaces. These interfaces are used to communicate information from the
subsystem to the user and to allow the user to control certain aspects of the execution of the
subsystem.

Most Severe Process Status | Most Severe Process Status is the value of the process status being managed by the Subsystem
Heartbeat Management that represents the worst status of all the processes. For example if all
processes indicated an ok status except one process indicated a warning status then the Most
Severe Process Status would be warning.

Process Heartbeat Process Heartbeat is the heartbeat pulse sent from each process within the subsystem. The
Process Heartbeat contains the status information for the process along with the process identifier.
RR Crossing Data RR Crossing Data is the data associated with the railroad crossing being monitored by the AWARD

subsystem. This data includes the railroad crossing identifier, the expected arrival times of the front
and rear of a train, and the expected duration of the crossing delay.

RR Sensor Data Railroad Sensor Data is the data associated with the sensor field equipment. This data includes the
sensor identifiers, the current status of the sensors, and the current readings obtained from the
Sensors.

Sensor Commands Sensor Commands are commands sent to the field equipment. Initialization sequences are an
example of Sensor Commands.

Sensor Data Sensor Data represents the actual data stream from the Sensors. This data stream is used to detect
trains and calculate railroad crossing delays.

Start Process Start Process is an event used to start the execution of a process.

Status Log Message Status Log Message contains information to be logged to the subsystem log file. Typical Status Log

Messages include error messages such as memory allocation errors or data being logged from field
equipment associated with the subsystem.

Stop Process Stop Process is an event used to stop the execution of a process.

Subsystem Heartbeat Subsystem Heartbeat is the heartbeat message containing the overall status of the AWARD
subsystem. This message is generated by the Subsystem Heartbeat Management process and is
passed on to the Data Server by the subsystem's Data Server Interface process.

User Commands User Commands are the commands selected by the user from the graphical user interfaces. These
commands are generated through push buttons, radio buttons, text boxes, and other user interface
components.

Table7. External Data Flows

52 Subsystem Design
The AWARD subsystem software resides on the AWARD master computer and the TransGuide

ATMS master computer. The AWARD subsystem consists of four data processes shown inFigure 6.
These data processes and associated data flows are described in the following sections.

AWARD 30 System Design Document

[
Lo

Status Log

R

Sensor Commands Most Severe

Process;Status

L
4 Sensor Data
Status Log

Message

essage
A

Start Process
Process
Heartbeat

Stop Process

RR Crossing

3 Process 2\ 1 Data
Heartbeat .
Monitor Dispatch DE
4
Stop Proces Trains Sensor Data 'I\D/Ie;tsasgeé\éer RR Sensor Data
v s
Crossing Data Subsystem
7~ Start Process Meartbeat
S |
43
Crossing Delay Sensor Crossing
Data L Data Data
\/
2 /X Stop Process
Dispatch
Status Log Crossing <] O]
Delays
Message Start Process 4
Show GUIs rE)
. Detailed
4 Crossing Delay Status
Alarm
Process Display Detailed
Heartbeat Status

User Commands

Figure6. AWARD Subsystem Processes

5.2.1 Dispatch Data Server Messages

Dispatch Data Server Messages receives messages to be sent to the Data Server and sends these
messages on to the Data Server. This process represents the subsystem's single interface point to the Data
Server. This process periodically sends a heartbeat message containing the status of the process. This

AWARD 31 System Design Document

process is also responsible for setting up the Sensor Data and Crossing Data to be displayed by the detail
status GUI.

The data flow diagram for the Dispatch Data Server Messages data process is shown inFigure 7.
The data processes and associated data flows are described in the subsections that follow.

AWARD 32 System Design Document

RR Crossing
Configuration

RR Crossing
Data

Message

Dispatch
RR Crossing
Data

Crossi

Start Process

Stop Process

Sensor Data

Status Lo

Message 1.2

Dispatch
RR Sensor
Data

RR Sensor Data

B

Sensor Data

RR Sensor

Configuration
Start Process

Most Severe
Process Status

Process
Status

Status Log
Message

Subsystem
Heartbeat

13

Dispatch
Subsystem
Heartbeat

]
Start Process

Process
Heartbe

Generate
Process
Heartbeat

Start Process

Stop Process
Figure7. Dispatch Data Server M essages Data Flow
AWARD 33 System Design Document

5.2.1.1 Dispatch RR Crossing Data

Dispatch RR Crossing Data is responsible for receiving the Crossing Data from the Monitor
Trains data process and sending the RR Crossing Data to the Data Server and storing the Crossing Data
for viewing by the detail status GUI. Errors that occur sending the data to the Data Server or in storing the
information are logged using Status Log M essages.

The input data flows are described inTable 8 and the output data flows are described inTable 9.

[DataFlow | Description |

Crossing Data Crossing Data is the data associated with a specific railroad crossing being monitored by the AWARD
subsystem. This information is updated whenever a change is detected at the specific railroad crossing. This
information is maintained within the subsystem for the Detailed Status GUI as well as being dispatched to the
Data Server to be made available to other MDI subsystems.

RR Crossing RR Crossing Configuration contains the equipment IDs for each of the crossings defined for the AWARD
Configuration system. This information is used to initialize the Crossing Data data store for use by the detail status GUI.
Start Process Start Process is an event used to start the execution of a process.
Stop Process Stop Process is an event used to stop the execution of a process.

Table8. Dispatch RR Crossing Data I nput Data Flows

[DataFlow | Description |

Crossing Data Crossing Data is the data associated with a specific railroad crossing being monitored by the AWARD
subsystem. This information is updated whenever a change is detected at the specific railroad crossing. This
information is maintained within the subsystem for the Detailed Status GUI as well as being dispatched to the
Data Server to be made available to other MDI subsystems.

Process Status Process Status contains the current value associated with the execution status of the process. This status
can indicate an OK condition, a warning condition, or an error condition.

RR Crossing Data | RR Crossing Data is the data associated with the railroad crossing being monitored by the AWARD
subsystem. This data includes the railroad crossing identifier, the expected arrival times of the front and rear
of a train, and the expected duration of the crossing delay.

Status Log Status Log Message contains information to be logged to the subsystem log file. Typical Status Log

Message Messages include error messages such as memory allocation errors or data being logged from field equipment
associated with the subsystem.

Table9. Dispatch RR Crossing Data Output Data Flows

5.2.1.2 Dispatch RR Sensor Data

Dispatch RR Sensor Data is responsible for receiving the Sensor Data from the Monitor Trains
Data process and sending the RR Sensor Data to the Data Server and storing the Sensor Data for viewing
by the detail status GUI. Errorsthat occur sending the data to the Data Server or in storing the information
arelogged using Status Log Messages.

The input data flows are described inTable 10 and the output data flows are described inTable

11.
[DataFlow | Description
RR Sensor RR Sensor Configuration contains the equipment IDs for each of the sensors being monitored by AWARD.
Configuration This information is used to initialize the Sensor Data data store for use by the detail status GUI.
Sensor Data Sensor Data represents the actual data stream from the Sensors. This data stream is used to detect trains
and calculate railroad crossing delays.
Start Process Start Process is an event used to start the execution of a process.
Stop Process Stop Process is an event used to stop the execution of a process.

Table10. Dispatch RR Sensor Data I nput Data Flows

AWARD 34 System Design Document

[DataFlow | Description

Process Status Process Status contains the current value associated with the execution status of the process. This status
can indicate an OK condition, a warning condition, or an error condition.

RR Sensor Data Railroad Sensor Data is the data associated with the sensor field equipment. This data includes the sensor
identifiers, the current status of the sensors, and the current readings obtained from the sensors.

Sensor Data Sensor Data is the shared information between the AWARD subsystem and the Detailed Status GUI. The
Dispatch Data Server Messages process maintains this information and the Detailed Status GUI uses the
information to display the current status to the TransGuide ATMS personnel.

Status Log Status Log Message contains information to be logged to the subsystem log file. Typical Status Log

Message Messages include error messages such as memory allocation errors or data being logged from field equipment
associated with the subsystem.

Table1l. Dispatch RR Sensor Data Output Data Flows

5.2.1.3 Dispatch Subsystem Heartbeat

Dispatch Subsystem Heartbeat is responsible for receiving the Most Severe Process Status from
the Subsystem Heartbeat Management data process and sending the Subsystem Heartbeat to the Data
Server. Errorsthat occur sending the Subsystem Heartbeat to the Data Server are logged using Status Log

M essages.

The input data flows are described inTable 12 and the output data flows are described inTable

13.

[DataFlow | Description |
Most Severe Most Severe Process Status is the value of the process status being managed by the Subsystem Heartbeat
Process Status Management that represents the worst status of all the processes. For example if all processes indicated an

ok status except one process indicated a warning status then the Most Severe Process Status would be
warning.
Start Process Start Process is an event used to start the execution of a process.
Stop Process Stop Process is an event used to stop the execution of a process.
Table12. Dispatch Subsystem Heartbeat | nput Data Flows

[DataFlow | Description

Process Status Process Status contains the current value associated with the execution status of the process. This status
can indicate an OK condition, a warning condition, or an error condition.

Status Log Status Log Message contains information to be logged to the subsystem log file. Typical Status Log

Message Messages include error messages such as memory allocation errors or data being logged from field equipment
associated with the subsystem.

Subsystem Subsystem Heartbeat is the heartbeat message containing the overall status of the AWARD subsystem. This

Heartbeat message is generated by the Subsystem Heartbeat Management process and is passed on to the Data Server

by the subsystem'’s Data Server Interface process.

Table13. Dispatch Subsystem Heartbeat Output Data Flows

5.2.1.4 Generate Process Heartbeat

Generate Process Heartbeat periodically sends the Process Heartbeat to the Subsystem Heartbeat
Management process. The current Process Status is read and sent as part of the Process Heartbeat. The
time interval for sending the Process Heartbeat is specified by the Heartbeat Interval configuration item.
Errors and other status information is logged using the Status Log Message.

AWARD 35 System Design Document

The input data flows are described inTable 14 and the output data flows are described inTable

15.
[DataFlow | Description
Process Status Process Status contains the current value associated with the execution status of the process. This status
can indicate an OK condition, a warning condition, or an error condition.
Start Process Start Process is an event used to start the execution of a process.
Stop Process Stop Process is an event used to stop the execution of a process.

Table14. Generate Process Heartbeat | nput Data Flows

[DataFlow | Description
Process Heartbeat Process Heartbeat is the heartbeat pulse sent from each process within the subsystem. The Process
Heartbeat contains the status information for the process along with the process identifier.

Process Status Process Status contains the current value associated with the execution status of the process. This status
can indicate an OK condition, a warning condition, or an error condition.

Status Log Status Log Message contains information to be logged to the subsystem log file. Typical Status Log

Message Messages include error messages such as memory allocation errors or data being logged from field equipment

associated with the subsystem.

Table15. Generate Process Heartbeat Output Data Flows

5.2.2 Dispatch Crossing Delays

Dispatch Crossing Delays is responsible for receiving Crossing Delay Data from the Monitor
Trains process and generating a Crossing Delay Alarm which is sent to the TransGuide ATMS. This
process periodically sends a heartbeat message containing its current status.

The data flow diagram for the Dispatch Crossing Delays data process is shown inFigure 8. The
data processes and associated data flows are described in the subsections that follow.

AWARD 36 System Design Document

Start Process
Process
Heartbeat

Generate
Process
Heartbeat

Stop Process

Heartbeat
Interval

Process
Status

Stop Process

Start Process

2.2
Generate
Crossing
Delay Alarm

E]

Crossing Delay
Data

Crossing Delay
Alarm

Figure8. Dispatch Crossing Delays Data Flow

AWARD 37 System Design Document

5.2.2.1 Generate Process Heartbeat

Generate Process Heartbeat periodically sends the Process Heartbeat to the Subsystem Heartbeat
Management process. The current Process Status is read and sent as part of the Process Heartbeat. The
time interval for sending the Process Heartbeat is specified by the Heartbeat Interval configuration item.
Errors and other status information is logged using the Status Log Message.

The input data flows are described inTable 16 and the output data flows are described inTable
17.

[DataFlow | Description
Heartbeat Interval Heartbeat Interval is a configuration item that indicates how often the process-level heartbeat message is sent
to the Subsystem Heartbeat Management process. This value is specified in seconds.

Process Status Process Status contains the current value associated with the execution status of the process. This status
can indicate an OK condition, a warning condition, or an error condition.

Start Process Start Process is an event used to start the execution of a process.

Stop Process Stop Process is an event used to stop the execution of a process.

Table16. Generate Process Heartbeat | nput Data Flows

[DataFlow | Description
Process Heartbeat Process Heartbeat is the heartbeat pulse sent from each process within the subsystem. The Process
Heartbeat contains the status information for the process along with the process identifier.

Process Status Process Status contains the current value associated with the execution status of the process. This status
can indicate an OK condition, a warning condition, or an error condition.

Status Log Status Log Message contains information to be logged to the subsystem log file. Typical Status Log

Message Messages include error messages such as memory allocation errors or data being logged from field equipment

associated with the subsystem.

Tablel17. Generate Process Heartbeat Output Data Flows

5.2.2.2 Generate Crossing Delay Alarm

Generate Crossing Delay Alarm receives the Crossing Delay Data and submits the Crossing Delay
Alarm to the TransGuide ATMS. Errors and other status information are logged using the Status Log

Message.

The input data flows are described inTable 18 and the output data flows are described inTable

19.

[DataFlow | Description |
Crossing Delay Crossing Delay Data contains the information needed to generate the Crossing Delay Alarm to be sent to the
Data TransGuide ATMS. This data is used to create new Crossing Delay Alarms for the TransGuide ATMS as well

as update existing Crossing Delay Alarms.
Start Process Start Process is an event used to start the execution of a process.
Stop Process Stop Process is an event used to stop the execution of a process.

Table18. Generate Crossing Delay Alarm Input Data Flows

AWARD 38 System Design Document

[DataFlow | Description

Crossing Delay Crossing Delay Alarm is an external alarm (external to TransGuide ATMS) generated by the AWARD

Alarm subsystem. This alarm indicates changes in delays at a specified crossing. The alarm could represent a
crossing being blocked or a clearing of a previously blocked crossing.

Process Status Process Status contains the current value associated with the execution status of the process. This status
can indicate an OK condition, a warning condition, or an error condition.

Status Log Status Log Message contains information to be logged to the subsystem log file. Typical Status Log

Message Messages include error messages such as memory allocation errors or data being logged from field equipment

associated with the subsystem.

Table19. Generate Crossing Delay Alarm Output Data Flows

5.2.3 Monitor Trains

Monitor Trains is the process which communicates directly with the sensor field equipment and
uses the sensor information to predict locations of trains and expected crossing delays within the monitored
railroad sections. This process periodically sends a heartbeat message containing the current status of the
process. Full details of this process can be found in Section 5.4.2.

5.24 Show Detalled Status

Show Detailed Status is the graphical user interface providing the TransGuide personnel with the
ability to view the current status and data for the railroad sensors and crossings being monitored by the
AWARD subsystem.

The data flow diagram for the Show Detailed Status data process is shown inFigure 9. The data
processes and associated data flows are described in the subsections that follow.

AWARD 39 System Design Document

Sensor Data

4.2

Update
- - > Detailed =
B Display Detailed ' Status GUIs =
Status)
Detailed
Status

Update Rate

4.1
Build
E . _ | Detailed F
Display Detailed A@y GUls
Status 5

Crossing Data

- Sensor Data

=g

4.3

Delete

™ Detailed
E User Commands -

Status

Figure9. Show Detailed Status Data Flow

5.2.4.1 Build Detailed Status

Build Detailed Status is responsible for generating the initial graphical user interface displaying the
AWARD subsystem detailed status. The detailed status includes the current status and readings of each of
the sensor field equipment and the current values associated with each of the railroad crossings being
monitored by the AWARD subsystem. The current Sensor Data and Crossing Data is used to fill in the
details displayed to the TransGuide Personnel.

The input data flows are described inTable 20 and the output data flows are described inTable
21.

AWARD 40 System Design Document

[DataFlow

| Description |

Crossing Data

Display Detailed
Status
Sensor Data

Crossing Data is the shared information between the AWARD subsystem and the Detailed Status GUI. This
information is maintained by the Dispatch Data Server Messages process and is used by the Detailed Status
GUI to provide the current information to the TransGuide Personnel.

Display Detailed Status is an event used to trigger the display of the subsystem's detailed status GUI.

Sensor Data is the shared information between the AWARD subsystem and the Detailed Status GUI. The
Dispatch Data Server Messages process maintains this information and the Detailed Status GUI uses the
information to display the current status to the TransGuide ATMS personnel.

Table20. Build Detailed Status Input Data Flows

[DataFlow

| Description

GUIs

GUIs are graphical user interfaces. These interfaces are used to communicate information from the
subsystem to the user and to allow the user to control certain aspects of the execution of the subsystem.

Table21. Build Detailed Status Output Data Flows

5.2.4.2 Update Detailed Status

Update Detailed Status is responsible for periodically updating the status information within the
detailed status GUI. The current Crossing Data and Sensor Data is read and used to display the status
within the GUI. The Detailed Status Update Rate is used to cause the periodic update of the GUI.

The input data flows are described inTable 22 and the output data flows are described inTable

23.

[DataFlow

| Description |

Crossing Data

Detailed Status
Update Rate
Display Detailed
Status

Sensor Data

Crossing Data is the shared information between the AWARD subsystem and the Detailed Status GUI. This
information is maintained by the Dispatch Data Server Messages process and is used by the Detailed Status
GUI to provide the current information to the TransGuide Personnel.

Detailed Status Update Rate is the configuration item that specifies how often the contents of the detailed
status GUI are updated. This update rate is specified in seconds.

Display Detailed Status is an event used to trigger the display of the subsystem's detailed status GUI.

Sensor Data is the shared information between the AWARD subsystem and the Detailed Status GUI. The
Dispatch Data Server Messages process maintains this information and the Detailed Status GUI uses the
information to display the current status to the TransGuide ATMS personnel.

Table22. Update Detailed Status Input Data Flows

[DataFlow

| Description

GUIs

GUIs are graphical user interfaces. These interfaces are used to communicate information from the
subsystem to the user and to allow the user to control certain aspects of the execution of the subsystem.

Table23. Update Detailed Status Output Data Flows

5.2.4.3 Delete Detailed Status

Delete Detailed Status deletes the detailed status GUI from the display. This process is invoked
when the TransGuide personnel issue the "close" command for the detailed status GUI.

AWARD

41 System Design Document

The input data flows are described inTable 24. Delete Detailed Status removes the detailed status
GUI from the display so there are no associated output data flows.

[DataFlow | Description
User Commands User Commands are the commands selected by the user from the graphical user interfaces. These
commands are generated through push buttons, radio buttons, text boxes, and other user interface
components.

Table24. Delete Detailed Status Input Data Flows

53 TransGuide Subsystem Softwar e Architecture
The AWARD subsystem is composed of four processes that interact in order to

monitor the sensors and railroad crossings,

disseminate the current sensor readings and railroad crossing data to the Data Server,

generate external alarms to warn TransGuide personnel of railroad crossing delays, and
provide the TransGuide personnel with the ability to easily view the sensor and crossing
information.

The four processes are shown in the data flow diagram inFigure 6 on page 31. The software
design for dispatch data server messages (award_dsif), dispatch crossing delays (award_tgif), and show
detailed status (awdsg) are presented in the following subsections. The software design for monitor trains
is presented in Section 5.4.

The award_dsif and award_tgif processes also have a related set of library routines to be used by
other processes to interact with the award dsif and the award tgif. These libraries will be discussed
following the discussions of each process.

5.3.1 Dispatch Data Server Messages (award_dsif)

The award_dsif process provides the single point of interface between the AWARD subsystem and
the Data Server. award_dsif isresponsible for receiving messages from the other processesin the
AWARD subsystem and directing these messages to the Data Server.

5.3.1.1 man

The structure chart for the main routine is shown inFigure 10. The main routine is responsible for
setting up the clean up routines, configuring the appropriate signals to catch and ignore, initializing the
status logging and configuration data, setting up the crossing and sensor shared memory segments,
connecting to the heartbeat process and the data server, sending periodic heartbeats to the project-level
heartbeat process, and responding to requests made by the other processes within the AWARD subsystem.
A description of the routines called by the main routine of award_dsif is provided iff able 25.

AWARD 42 System Design Document

atexit

v

award_dsif_cleanup

utl_signal_setup

sigset

initialize_award_dsif

process_status_config_with_logge

award_dsif_shmem_setup

ph_connect

Figurel0. award_dsif main structure chart

AWARD

award_dsif

main

sigalrm_handler

respond_to_read_sockets

select

send_heartbeat_pulse

process_status_get_status

ds_init

process_status_message

43

alarm

sock_listen_with_reuse

System Design Document

| Routine

Description |

alarm
atexit

award_dsif main

award_dsif_cleanup

award_dsif_shmem_setup

ds_init
initialize_award_dsif

ph_connect

process_status_config_with_logge

process_status_get_status

process_status_message

respond_to_read_sockets

select

send_heartbeat_pulse
sigalrm_handler

sigset
sock_listen_with_reuse

utl_signal_setup

System Call used to set the alarm clock of the calling process to send a SIGALRM
signal after the specified number of seconds have elapsed.

C Library Function used to register routines to be called on normal termination of a
program.

The award_dsif main routine is responsible for setting up configuration information,
opening the socket used for communication, and connecting to the status logger. This
routine enters a loop waiting for data server messages and periodically sending
heartbeat messages to the subsystem heartbeat process.

Called when award_dsif exits. This routine is responsible for performing the
housekeeping necessary for a graceful shutdown. This includes sending a last
heartbeat, disconnecting from the process-level heartbeat service, disconnecting from
the Data Server, and closing any sockets that are open for communicating with the
award_dsif process.

Responsible for setting up the shared memory segment for the AWARD field
equipment. There are two shared memory segments for the field equipment. One for
the railroad sensors and one for the railroad crossings.

MDI Data Server library routine used to initialize the connection to the Data Server.
The award_dsif configuration file specified on the command line is read to obtain the
values of the configurable items of the award_dsif process.

MDI Process Heartbeat routine used to connect to the specified process-level
heartbeat service. The host name and service name are used to make the connection.
process_status_config_with_logger is an MDI Process Status Common routine used
to configure the process status handling for the process. This routine is used to set
up the connection to the status logger used by the calling program.

MDI Process Status routine used to obtain the most severe process-level status. This
is an aggregation of the status for each of the status types defined for the process.
MDI Process Status routine used to log a status message for the specified status
type. If the process status library was configured to use a status logger then the
message is forwarded to the status logger. Otherwise the message is written to the
configured status log file.

Loops through the list of socket descriptors ready for reading and either accepts
connections, if the socket descriptor is for the listen socket, or receives messages
containing information to be sent to the Data Server.

C Library Function used to multiplex synchronous I/O. The list of file descriptors for
reading, writing, and receiving exceptions are examined and any file descriptors that
are ready for reading, writing, or have an exceptional condition pending are identified.
Sends the process-level heartbeat to the Subsystem Heartbeat process.

The signal handler for the SIGALRM signal. This signal is used to indicate when the
process-level heartbeat should be sent to the AWARD subsystem heartbeat process.
The alarm is reinitialized as part of this routine.

C Library Function used to modify the disposition of a signal. The signal can be
caught, ignored, or returned to the default disposition.

MDI Common Socket routine used to set up a socket to listen for connections and to
make the socket address reusable.

MDI Common Utility Library routine used to set up a default signal handler for all
catchable signals.

Table25. Routines called by award_dsif main

5.3.1.2 award_dsif_cleanup

The award_dsif_cleanup routine is called when the award dsif process performs a normal
termination. This routine performs the necessary housekeeping chores to cause a graceful exit of the
award_dsif process. The structure chart for the award_dsif_cleanup routine is shown inFigure 11. A
description of the routines called by award_dsif_cleanup is provided ifTable 26.

AWARD

44 System Design Document

award_dsif_cleanup

send_heartbeat_pulse

sock_close
ph_disconnect
ds_close
Figurell. award_dsif_cleanup structurechart
| Routine | Description |
award_dsif_cleanup Called when award_dsif exits. This routine is responsible for performing the housekeeping

necessary for a graceful shutdown. This includes sending a last heartbeat, disconnecting from the
process-level heartbeat service, disconnecting from the Data Server, and closing any sockets that
are open for communicating with the award_dsif process.

ds_close MDI Data Server routine used to close the connection to the Data Server.

ph_disconnect MDI Process Heartbeat routine used to disconnect from the process-level heartbeat service.
send_heartbeat_pulse | Sends the process-level heartbeat to the Subsystem Heartbeat process.

sock_close MDI Socket routine used to close the specified socket connection.

Table26. Routinescalled by award_dsif_cleanup

5.3.1.3 send_heartbest_pulse

The send_heartbeat_pulse routine is invoked periodicaly whenever the socket selection is
interrupted by an alarm signal. This routine is responsible for sending the process-level heartbeat message
to the project-level heartbeat process. The structure chart for send_heartbeat pulse is shown inFigure 12.
The descriptions of the routines called by send_heartbeat_pulse are contained ifT able 27.

AWARD 45 System Design Document

send_heartbeat_pulse

ph_send_heartbeat

ph_disconnect

process_status_message

ph_connect

Figurel2. send_heartbeat pulse structure chart

Routine

Description

ph_connect

ph_disconnect
ph_send_heartbeat

process_status_message

send_heartbeat_pulse

MDI Process Heartbeat routine used to connect to the specified process-level heartbeat service.

The host name and service name are used to make the connection.

MDI Process Heartbeat routine used to disconnect from the process-level heartbeat service.
MDI Process Heartbeat routine used to send the specified status value to the heartbeat service

configured by the ph_connect call.

MDI Process Status routine used to log a status message for the specified status type. If the
process status library was configured to use a status logger then the message is forwarded to
the status logger. Otherwise the message is written to the configured status log file.

Sends the process-level heartbeat to the Subsystem Heartbeat process.

5.3.1.4 initidlize_award_dsif

Table27. Routinescalled by send_heartbeat_pulse

The initialize_award_dsif routine is called to read the award_dsif configuration file and set up
configuration information for the entire process. The structure chart for initialize_award_dsif is shown in
Figure 5. Descriptions of the routines caled by initiaize_ award dsif are contained inTable 28.
Configurable items for the award_dsif process are described inTable 29.

AWARD

46

System Design Document

initialize_award_dsif

cfg_load_configuration_data
atoi
cfg_get_value
utl_get_shmem_base_value

Figurel3. initialize_award_dsif structure chart
| Routine | Description |
atoi C Library Function to convert an ASCI! string to an integer value.
cfg_get_value MDI Configuration File routine used to return the value of the specified configuration name.

cfg_load_configuration_data MDI Configuration File routine used to read the configuration name-value pairs from the
specified configuration file. These name-value pairs are loaded into memory so they can be
accessed on demand by the calling program.

initialize_award_dsif The award_dsif configuration file specified on the command line is read to obtain the values
of the configurable items of the award_dsif process.

utl_get_shmem_base_value MDI Utility routine used to convert a text string containing a shared memory base value name
to the actual base value used by the shared memory routines.

Table28. Routinescalled by initialize_award_dsif

AWARD 47 System Design Document

| Configuration Item | Description | optional |

SERVICE_NAME The name of the service providied by the N
award_dsif process.
HEARTBEAT_SERVICE_NAME The name of the service provided by the N
AWARD project-level heartbeat process.
HEARTBEAT_HOST_NAME The host name where the AWARD project- | Y
level heartbeat process resides.
STATUS_LOGGER_SERVICE_NAME The name of the service provided by the N
AWARD subsystem status logger process.
STATUS_LOGGER_HOST_NAME The host name where the AWARD Y
subsystem status logger process resides
HEARTBEAT_PULSE The periodic time value for sending the Y

heartbeat to the AWRAD project-level
heartbeat process. This is specified in

seconds.

DATASERVER_SERVICE_NAME The name of the service provided by the N
data server process.

DATASERVER_HOST_NAME The host name where the data server Y
process resides.

AWARD_SHM_BASE The name of the constant or an integer N

value indicating the starting base for the
AWARD shared memory segments.

SENSOR_SEGMENT_NUMBER The segment number of the sensor shared 'N
memory segment.
CROSSING_SEGMENT_NUMBER The segment number of the crossing N
shared memory segment.
NUM_SHMEM_SEGMENTS The total number of shared memory N
segments used by the AWARD
subsystem.
AWARD_RR_MASTER_CFG The name of the configuration file N

containing the information about the
sensors and crossings defined for the
AWARD subsystem.

Table29. award_dsif configuration items

5.3.1.5 award_dsif_shmem_setup

The award_dsif_shmem_setup routine is responsible for configuring the shared memory manager
library routines, setting up the sensor and crossing shared memory segments, and then loading and sorting
the sensor and crossing information within the segments. The structure chart for the
award_dsif_shmem_setup routine is shown inFigure 14. A description of the routines called by
award_dsif_shmem_setup is provided inTable 30.

AWARD 48 System Design Document

award_dsif_shmem_setup

award_dsif_config_shm_mgr

load_feq_shmem

award_dsif_setup_crossing_shmem award_dsif_setup_sensor_shmem

Figurel4. award_dsif_shmem_setup structure chart

| Routine

Description |

award_dsif_config_shm_mgr
award_dsif_setup_crossing_shmem
award_dsif_setup_sensor_shmem

award_dsif_shmem_setup

load_feq_shmem

Responsible for initializing and configuring the MDI Shared Memory Manager library
routines.

Responsible for reading the field equipment configuration files to determine the number
of crossings being monitored and to initialize the shared memory segment data.
Responsible for reading the field equipment configuration files to determine the number
of sensors being monitored and to initialize the shared memory segment data.
Responsible for setting up the shared memory segment for the AWARD field equipment.
There are two shared memory segments for the field equipment. One for the railroad
sensors and one for the railroad crossings.

Reads the contents of the sensor shared memory segment and the crossing shared
memory segment and sorts them in ascending order by address. This allows for easier
updates to and retrieval of the information stored within these shared memory segments.

Table30. Routinescalled by award_dsif_shmem_setup

5.3.1.6 award_dsif_config_shm_mgr

The award_dsif_config_shm_mgr routine is responsible for initializing the shared memory manager
library with the base value of the AWARD shared memory segments and the number of shared memory
segments to be maintained. The structure chart for award_dsif_config_shm_mgr is shown irFigure 15.
The descriptions of the routines called by award_dsif _config_shm_mgr are contained iTable 31. Any

AWARD

49 System Design Document

errors that occur during this routine are logged to the AWARD satus log using the
process_status message routine.

award_dsif_config_shm_mgr

cfg_get_value process_status_message

atoi config_shm_mgr

Figurel5. award_dsif_config_shm_mgr structure chart

| Routine | Description

atoi C Library Function to convert an ASCI! string to an integer value.

award_dsif_config_shm_mgr | Responsible for initializing and configuring the MDI Shared Memory Manager library
routines.

cfg_get_value MDI Configuration File routine used to return the value of the specified configuration name.

config_shm_mgr MDI Shared Memory Manager routine used to initialize and configure the shared memory
manager library routines for the calling program.

process_status_message MDI Process Status routine used to log a status message for the specified status type. If

the process status library was configured to use a status logger then the message is
forwarded to the status logger. Otherwise the message is written to the configured status log
file.

Table31. Routinescalled by award_dsif_config_shm_mgr

5.3.1.7 award_dsif_setup_crossing_shmem

The award dsif_setup crossing_shmem routine is responsible for creating, attaching, and
initializing the shared memory segment associated with the crossing data The crossing configuration fileis
read in order to determine the number of crossings and their associated ids. The structure chart for
award _dsif_setup _crossing_shmem is shown inFigure 16. The descriptions of the routines called by

AWARD 50 System Design Document

award _dsif_setup_crossing_shmem are contained inTable 32. Any errors that occur during this routine
are logged to the AWARD status log using the process_status_message routine.

award_dsif_setup_crossing_shmem

L

cfg_get_value process_status_message

award_dsif_read_crossing_file free

award_dsif_init_crossing_shmem

segment_exists

sizeof_segment attach_to_segment create_segment

Figurel6. award_dsif_setup_crossing_shmem structure chart

AWARD 51 System Design Document

| Routine | Description

attach_to_segment MDI Shared Memory Manager routine used to attach the calling process to the
specified shared memory segment.

award_dsif_init_crossing_shmem Responsible for initializing the crossing shared memory segment based on the
number of crossings specified and the list of crossing ids specified.

award_dsif_read_crossing_file Reads the specified crossing file and builds a comma-delimited list of the names of

the crossings currently configured. The memory allocated to the names list must be
freed by the calling routine.

award_dsif_setup_crossing_shmem Responsible for reading the field equipment configuration files to determine the
number of crossings being monitored and to initialize the shared memory segment

data.

cfg_get_value MDI Configuration File routine used to return the value of the specified configuration
name.

create_segment MDI Shared Memory Manager routine used to create a shared memory segment of

the specified size. The shared memory segment is automatically attached to the
calling process.

free C Library Function used to free previously allocated memory and make it available for
further allocation.
process_status_message MDI Process Status routine used to log a status message for the specified status

type. If the process status library was configured to use a status logger then the
message is forwarded to the status logger. Otherwise the message is written to the
configured status log file.

segment_exists MDI Shared Memory Manager routine to test for the existence of the specified shared
memory segment.
sizeof_segment MDI Shared Memory Manager routine used to obtain the size in bytes of the specified

shared memory segment.

Table32. Routinescalled by award_dsif_setup_crossing_shem

53171 award dsif read crossing file

The award_dsif_read crossing file routine opens the crossing configuration file and parses each
line looking for the crossing identifiers. A list of these identifiersis built and the number of crossings found
in the file is maintained. This information is used by the calling routine to create the shared memory
segments and perform the initialization of these areas. The award_dsif_read crossing_file routine is made
up of numerours C Library Functions. For that reason, no structure chart was produced for this routine.

53172 award dsif_init_crossing_shmem

The award_dsif_init_crossing_shmem routine is responsible for clearing the shared memory
segment and initializing each of the elements within the crossing shared memory. Each element in the
segment corresponds to one crossing configured in the crossing configuration file. The structure chart for
award _dsif_init_crossing_shmem is shown inFigure 17. The descriptions of the routines called by
award_dsif_init_crossing_shmem are contained inlrable 33.

AWARD 52 System Design Document

award_dsif_init_crossing_shmem

memset strtok strncpy write_segment_element

Figurel7. award_dsif_init_crossing_shmem structure chart

| Routine | Description |
award_dsif_init_crossing_shmem Responsible for initializing the crossing shared memory segment based on the number
of crossings specified and the list of crossing ids specified.

memset C Library Function used to set an area of memory to a specified value.

strncpy C Library Function used to copy a specified number of characters from a source string
to a destination string.

strtok C Library Function used to break the specified string into a sequence of tokens.

write_segment_element MDI Shared Memory Manager function to write information to a specific element in a

shared memory segment. In this case the shared memory segment is viewed as an
array of elements.

Table33. Routinescalled by award_dsif_init_crossing_shem

5.3.1.8 award_dsif_setup_sensor_shmem

The award_dsif_setup_sensor_shmem routine is responsible for creating, attaching, and initializing
the shared memory segment associated with the sensor data The sensor configuration fileisread in order to
determine the number of sensors and their associated ids. The structure chart for
award_dsif_setup_sensor_shmem is shown inFigure 18. The descriptions of the routines called by
award _dsif_setup_sensor_shmem are contained inTable 34. Any errors that occur during this routine are
logged to the AWARD status log using the process_status_message routine.

AWARD 53 System Design Document

cfg_get_value

award_dsif_setup_sensor_shmem

L

award_dsif_read_sensor_file

segment_exists

process_status_message

free

award_dsif_init_sensor_shmem

sizeof_segment

attach_to_segment

create_segment

Figurel8 - award_dsif_setup_sensor_shmem structure chart

AWARD

System Design Document

| Routine | Description |

attach_to_segment MDI Shared Memory Manager routine used to attach the calling process to the
specified shared memory segment.

award_dsif_init_sensor_shmem Responsible for initializing the sensor shared memory segment based on the number of
sensors specified and the list of sensor ids specified.

award_dsif_read_sensor_file Reads the specified sensor file and builds a comma-delimited list of the names of the

sensors currently configured. The memory allocated to the names list must be freed by
the calling routine.

award_dsif_setup_sensor_shmem Responsible for reading the field equipment configuration files to determine the number
of sensors being monitored and to initialize the shared memory segment data.

cfg_get_value MDI Configuration File routine used to return the value of the specified configuration
name.

create_segment MDI Shared Memory Manager routine used to create a shared memory segment of the
specified size. The shared memory segment is automatically attached to the calling
process.

free C Library Function used to free previously allocated memory and make it available for
further allocation.

process_status_message MDI Process Status routine used to log a status message for the specified status type.

If the process status library was configured to use a status logger then the message is
forwarded to the status logger. Otherwise the message is written to the configured
status log file.

segment_exists MDI Shared Memory Manager routine to test for the existence of the specified shared
memory segment.
sizeof_segment MDI Shared Memory Manager routine used to obtain the size in bytes of the specified

shared memory segment.

Table34 - Routines called by award_dsif_setup_sensor_shem

53181 award dsif read sensor_file

The award_dsif_read_sensor_file routine opens the sensor configuration file and parses each line
looking for the sensor identifiers. A list of these identifiersis built and the number of sensorss found in the
fileis maintained. This information is used by the calling routine to create the shared memory segments
and perform the initialization of these areas. The award _dsif_read_sensors file routine is made up of
numerous C Library Functions. For that reason, no structure chart was produced for this routine.

53182 award dsif_init_sensor_shmem

The award_dsif_init_sensor_shmem routine is responsible for clearing the shared memory segment
and initializing each of the elements within the sensor shared memory. Each element in the segment
corresponds to one sensor configured in the sensor configuration file. The structure chart for
award _dsif_init_sensor_shmem is shown inFigure 19. The descriptions of the routines called by
award_dsif_init_sensor_shmem are contained irTable 35.

AWARD 55 System Design Document

award_dsif_init_sensor_shmem

memset strtok strncpy write_segment_element

Figurel9. award_dsif_init_sensor_shmem structure chart

| Routine | Description |
award_dsif_init_sensor_shmem | Responsible for initializing the sensor shared memory segment based on the number of
sensors specified and the list of sensor ids specified.

memset C Library Function used to set an area of memory to a specified value.

strncpy C Library Function used to copy a specified number of characters from a source string to
a destination string.

strtok C Library Function used to break the specified string into a sequence of tokens.

write_segment_element MDI Shared Memory Manager function to write information to a specific element in a
shared memory segment. In this case the shared memory segment is viewed as an array
of elements.

Table35. Routines called by award_dsif_init_sensor_shmem

5.3.1.9 load_feq shmem

The load_feq_shmem routine is reads the crossing and sensor shared memory segments into loca
memory. These lists are then sorted and stored back into the shared memory segments. Thisis done as an
aid in updating the status information for a particular sensor or crossing. The structure chart for
load_feq _shmem is shown inFigure 20. The descriptions of the routines called by load feq shmem are
contained inTable 36. Any errors that occur during this routine are logged to the AWARD status log
using the process_status_message routine.

AWARD 56 System Design Document

calloc

AWARD

read_segment

lload_feq_shmem

crossing_sort_by_address

gsort

process_status_message

write_segment

sensor_sort_by address

Figure20. load_feq_shmem structure chart

57

System Design Document

| Routine | Description |

calloc C Library Function to allocate the specified amount of space and fill it with zeros.

crossing_sort_by_address | Comparison routine used in the gsort call to sort the crossing ids in ascending order and used
by the bsearch routine to find a match.

load_feq_shmem Reads the contents of the sensor shared memory segment and the crossing shared memory
segment and sorts them in ascending order by address. This allows for easier updates to and
retrieval of the information stored within these shared memory segments.

process_status_message MDI Process Status routine used to log a status message for the specified status type. If the
process status library was configured to use a status logger then the message is forwarded to
the status logger. Otherwise the message is written to the configured status log file.

gsort C Library Function that implements the quick-sort algorithm. The caller supplies the address of
the comparison function to be used to sort the data in place.

read_segment MDI Shared Memory Manager routine to read the contents of the specified shared memory
segment. The contents are stored in a memory area allocated by the caller.

sensor_sort_by address Comparison routine used in the gsort call to sort the sensor ids in ascending order and used by
the bsearch routine to find a match.

write_segment MDI Shared Memory Manager routine that writes data to the specified shared memory segment.

Table36. Routinescalled by award_dsif_setup_crossing_shem

5.3.1.9.1 crossing_sort_by address

The crossing_sort_by address routine that returns the result of a string comparison between two
crossing ids. Thisroutine is aso used during the search for a particular crossing. This routine is made up
of only asingle call to strcmp. For that reason, no structure chart was produced for this routine.

5.3.1.9.2 sensor_sort by address

The crossing_sort_by address routine that returns the result of a string comparison between two
crossing ids. Thisroutine is aso used during the search for a particular crossing. This routine is made up
of only asingle call to strcmp. For that reason, no structure chart was produced for this routine.

5.3.1.10 respond_to_read sockets

The respond_to _read sockets routine is heart of the award_dsif process. This routine is called
when there is data pending on any of the sockets that are connected to the process. This data could be a
connection request to the award_dsif process, a message being sent to the award_dsif process by another
process aready connected, or it could be an indication of a process that has disconnected from the
award dsif process. When a connection request is received the process immediately accepts the
connection. If a message is being sent then the message is read from the active socket and is then dispatch
to the data server according the type of message received. If a connected process disconnects from the
award_dsif process the socket connection from the award_dsif process to the disconnected process is closed
and removed from the list of active sockets. Errors that occur are logged to the AWARD subsystem status
log. The structure chart for the respond to read sockets is shown inFigure 21. A description of the
routines called by respond_to _read socketsis provided inTable 37.

AWARD 58 System Design Document

sock_accept

sock_set_nonblocking

respond_to_read_sockets

receive_dsif_message

process_status_message

process_status_set_status_type_v

send_data_server_message

disconnect_receive_socket

Figure2l. respond_to_read_socketsstructure chart

AWARD

59

System Design Document

| Routine | Description |

disconnect_receive_socket Removes the specified socket descriptor from the specified file descriptor set and
shuts down and closes the associated socket.
process_status_message MDI Process Status routine used to log a status message for the specified status

type. If the process status library was configured to use a status logger then the
message is forwarded to the status logger. Otherwise the message is written to the
configured status log file.

process_status_set_status_type_v process_status_set_status_type_value is used to set the value associated with the
specified process status status type.

receive_dsif_message Reads a message from the specified socket. There is no attempt to clear the socket
data or try to resynch the message data if any errors occur during reading.
respond_to_read_sockets Loops through the list of socket descriptors ready for reading and either accepts

connections, if the socket descriptor is for the listen socket, or receives messages
containing information to be sent to the Data Server.

send_data_server_message Extracts the contents of the message and sends the contents on to the Data Server.
This could be a sensor message, a crossing message, or a heartbeat message.

sock_accept MDI Socket routine that accepts connections on the specified listen socket.

sock_set_nonblocking MDI Socket routine that sets the specified socket to be a non-blocking socket.

Table37. Routinescalled by respond_to_read_sockets

53111 receive_dsif_message

The receive_dsif_message routine reads the message from the active socket and places in the
received message buffer.. The structure chart for receive_dsif_message is shown inFigure 22. The
descriptions of the routines called by award_dsif _config_shm_mgr are contained iTable 38.

receive_dsif_message

sock_readn

Figure22. recelve_dsif_message structure chart

AWARD 60 System Design Document

| Routine | Description |

receive_dsif_message |Reads a message from the specified socket. There is no attempt to clear the socket data or try to
resynch the message data if any errors occur during reading.

sock_readn MDI Socket routine that reads a specified number of bytes from the specified socket.

Table38. Routinescalled by receive_dsif_message

53112 disconnect_receive_socket

The disconnect_receive _socket routine shuts down the active socket and removes the socket from
the list of sockets the award_dsif process listens to for data The structure chart for
disconnect_receive _socket is shown inFigure 23. The descriptions of the routines called by
award_dsif_setup_crossing_shmem are contained inTable 39.

disconnect_receive_socket

sock_close

Figure23. disconnect_receive _socket structure chart

| Routine | Description |

disconnect_receive_socket Removes the specified socket descriptor from the specified file descriptor set and shuts down
and closes the associated socket.

sock_close MDI Socket routine used to close the specified socket connection.

Table39. Routines called by disconnect_receive_socket

5.3.1.13 send_data server_message

The send_data_server_message routine takes the message that has been read from the active socket
and breaks it apart for sending to the data server. The network to host byte-ordering of the data takes place
here. The components of the message are used in the different data server library calls depending on the
type of message that is received.. If the message is a sensor update then the sensor shared memory is

AWARD 61 System Design Document

modified and the contents sent to the data server. If the message is a crossing update then the sensor shared
memory is modified and the contents sent to the data server. If the message is the heartbeat message then
the status in the heartbeat message is passed to the data server. The structure chart for
send_data server_message is shown in Figure 24. The descriptions of the routines caled by
send_data server_message are contained inTable 40. Any errors that occur during this routine are logged
to the AWARD status log using the process_status_message routine.

send_data_server_message 1 process_status_message

ntohl

ds_send_heartbeat

get_sensor_shmem_info ds_write_rr_cross_data

update_sensor_shmem update_crossing_shmem

ds_write_rr_sens_data get_crossing_shmem_info

Figure24. send_data_server_message structure chart

AWARD 62 System Design Document

| Routine | Description |

ds_send_heartbeat MDI Data Server routine used to send the subsystem-level heartbeat message to the Data
Server. The heartbeat status is the overall status for the subsystem.

ds_write_rr_cross_data MDI Data Server routine used to send the railroad crossing data to the Data Server.

ds_write_rr_sens_data MDI Data Server routine used to send the railroad sensor data to the Data Server.

get_crossing_shmem_info Used to obtain the address of the current crossing information and the number of crossings
configured.

get_sensor_shmem_info Used to obtain the address of the current sensor information and the number of sensors
configured.

ntohl Network Function used to convert between network and host byte order.

process_status_message MDI Process Status routine used to log a status message for the specified status type. If the

process status library was configured to use a status logger then the message is forwarded to
the status logger. Otherwise the message is written to the configured status log file.

send_data_server_message | Extracts the contents of the message and sends the contents on to the Data Server. This
could be a sensor message, a crossing message, or a heartbeat message.

update_crossing_shmem Updates the information for the specified crossing in the shared memory segment. The
updated information is available to any process attached to the crossing shared memory
segment.

update_sensor_shmem Updates the information for the specified sensor in the shared memory segment. The
updated information is available to any process attached to the sensor shared memory
segment.

Table40. Routinescalled by send_data_server_message

5.3.1.13.1 get_sensor_shmem_info

The get_sensor_shmem_info routine returns the number of sensors currently configured and a
pointer to the sensors shared memory segment. This routine is considered an access function and has no
function calls. For that reason, no structure chart was produced for this routine.

5.3.1.13.2 update_sensor_shmem

The update_sensor_shmem routine takes the sensor message information and updates the shared
memory element for only the sensor specified in the message. Since the shared memory elements are
sorted, the bsearch routine is used to locate the sensor of interest The structure chart for
update_sensor_shmem is shown in Figure 25. The descriptions of the routines called by
update_sensor_shmem are contained inTable 41.

AWARD 63 System Design Document

update_sensor_shmem

bsearch write_segment process_status_message

sensor_sort_by address

Figure25. update sensor_shmem structure chart

| Routine | Description |

bsearch C Library Function implementing a binary search algorithm. A function is passed to this routine
specifying the comparison routine to be used during the binary search. A pointer to the element
found is returned or NULL if no element matching the search criteria is found.

process_status_message | MDI Process Status routine used to log a status message for the specified status type. If the
process status library was configured to use a status logger then the message is forwarded to
the status logger. Otherwise the message is written to the configured status log file.

sensor_sort_by address Comparison routine used in the gsort call to sort the sensor ids in ascending order and used by
the bsearch routine to find a match.

update_sensor_shmem Updates the information for the specified sensor in the shared memory segment. The updated
information is available to any process attached to the sensor shared memory segment.
write_segment MDI Shared Memory Manager routine that writes data to the specified shared memory segment.

Table4l. Routinescalled by update_sensor_shmem

5.3.1.13.3 get_crossing_shmem_info

AWARD 64 System Design Document

The get_crossing_shmem_info routine returns the number of crossings currently configured and a
pointer to the crossings shared memory segment. This routine is considered an access function and has no
function calls. For that reason, no structure chart was produced for this routine.

5.3.1.13.4 update_crossing_shmem

The update_crossing_shmem routine takes the crossing message information and updates the
shared memory element for only the crossing specified in the message. Since the shared memory elements
are sorted, the bsearch routine is used to locate the sensor of interest The structure chart for
update crossing_shmem is shown in Figure 26. The descriptions of the routines caled by
update_crossing_shmem are contained inTable 42.

update_crossing_shmem

bsearch write_segment process_status_message

crossing_sort_by address

Figure26. update crossing_shmem structure chart

AWARD 65 System Design Document

| Routine

Description

bsearch

crossing_sort_by_address

process_status_message

update_crossing_shmem

write_segment

C Library Function implementing a binary search algorithm. A function is passed to this routine
specifying the comparison routine to be used during the binary search. A pointer to the element
found is returned or NULL if no element matching the search criteria is found.

Comparison routine used in the gsort call to sort the crossing ids in ascending order and used
by the bsearch routine to find a match.

MDI Process Status routine used to log a status message for the specified status type. If the
process status library was configured to use a status logger then the message is forwarded to
the status logger. Otherwise the message is written to the configured status log file.

Updates the information for the specified crossing in the shared memory segment. The
updated information is available to any process attached to the crossing shared memory
segment.

MDI Shared Memory Manager routine that writes data to the specified shared memory segment.

Table42. Routines called by update _crossing_shmem

53.1.14 sigalrm_handler

The sigalrm_handler routine is invoked whenever the award_dsif process receives an alarm signal
from the process alarm clock. The routine sets aflag indicating a heartbeat message needs to be sent to the
data server and then sets the alarm clock again so the routine will be invoked. The structure chart for the
sigalrm_handler is shown inFigure 27. A description of the routines called by sigalrm_handler is provided

in Table 43.

sigalrm_handler

alarm

Figure27. sigalrm_handler structurechart

AWARD

66 System Design Document

[Routine | Description

alarm System Call used to set the alarm clock of the calling process to send a SIGALRM signal after the
specified number of seconds have elapsed.

sigalrm_handler | The signal handler for the SIGALRM signal. This signal is used to indicate when the process-level
heartbeat should be sent to the AWARD subsystem heartbeat process. The alarm is reinitialized as part
of this routine.

Table43. Routines called by sigalrm_handler

5.3.2 Dispatch Crossing Delays (award_tgif)

The award_tgif process provides the single point of interface between the AWARD subsystem and
the TransGuide ATMS. award_tgif is responsible for receiving messages from the other processes in the
AWARD subsystem and directing these messages to the TransGuide ATMS.

5.3.2.1 man

The structure chart for the main routine is shown inFigure 28. The main routine is responsible for
setting up the clean up routines, configuring the appropriate signals to catch and ignore, initializing the
status logging and configuration data, connecting to the heartbeat process and the external alarm handler on
the TransGuide ATMS, sending periodic heartbeats to the project-level heartbeat process, and responding
to requests made by the other processes within the AWARD subsystem. A description of the routines
called by the main routine of award_tgif is provided inTable 44.

AWARD 67 System Design Document

atexit

v

award_tgif_cleanup

utl_signal_setup

sigset

initialize _award_tgif

award_tgif
main

process_status_config_with_logge

eah_connect

ph_connect

Figure28. award_tgif main structure chart

AWARD

tgif
respond_to_read_sockets

select

send_heartbeat_pulse

process_status_get_status

process_status_message

68

sock_listen_with_reuse

System Design Document

| Routine

Description

atexit

award_tgif main

award_tgif_cleanup

eah_connect

initialize_award_tgif

ph_connect

process_status_config_with_logge

process_status_get_status

process_status_message

select

send_heartbeat_pulse
sigset

sock_listen_with_reuse

tgif respond_to_read_sockets

utl_signal_setup

C Library Function used to register routines to be called on normal
termination of a program.

The award_tgif main routine is responsible for setting up configuration
information, opening the socket used for communication, and connecting
to the status logger. This routine enters a loop waiting for TransGuide
messages and periodically sending heartbeat messages to the subsystem
heartbeat process.

Called when award_tgif exits. This routine is responsible for performing
the housekeeping necessary for a graceful shutdown. This includes
sending a last heartbeat, disconnecting from the process-level heartbeat
service, disconnecting from the TransGuide external alarm handler, and
closing any sockets that are open for communicating with the award_tgif
process.

MDI External Alarm Handler routine used to connect to the specified
ATMS external alarm handler service. The host name and service name
are used to make the connection.

The award_tgif configuration file specified on the command line is read to
obtain the values of the configurable items of the award_tgif process.

MDI Process Heartbeat routine used to connect to the specified process-
level heartbeat service. The host name and service name are used to
make the connection.

process_status_config_with_logger is an MDI Process Status Common
routine used to configure the process status handling for the process.
This routine is used to set up the connection to the status logger used by
the calling program.

MDI Process Status routine used to obtain the most severe process-level
status. This is an aggregation of the status for each of the status types
defined for the process.

MDI Process Status routine used to log a status message for the specified
status type. If the process status library was configured to use a status
logger then the message is forwarded to the status logger. Otherwise the
message is written to the configured status log file.

C Library Function used to multiplex synchronous I/O. The list of file
descriptors for reading, writing, and receiving exceptions are examined
and any file descriptors that are ready for reading, writing, or have an
exceptional condition pending are identified.

Sends the process-level heartbeat to the Subsystem Heartbeat process.
C Library Function used to modify the disposition of a signal. The signal
can be caught, ignored, or returned to the default disposition.

MDI Common Socket routine used to set up a socket to listen for
connections and to make the socket address reusable.

Loops through the list of socket descriptors ready for reading and either
accepts connections, if the socket descriptor is for the listen socket, or
receives messages containing information to be sent to the external alarm
handler.

MDI Common Utility Library routine used to set up a default signal handler
for all catchable signals.

Table44. Routines called by award_tgif main

5.3.2.2 award_tgif_cleanup

The award_tgif _cleanup routine is called when the award_tgif process performs a normal
termination. This routine performs the necessary housekeeping chores to cause a graceful exit of the
award_tgif process. The structure chart for the award_tgif_cleanup routine is shown inFigure 29. A
description of the routines called by award_tgif_cleanup is provided iTable 45.

AWARD 69 System Design Document

award_tgif_cleanup

send_heartbeat_pulse

sock_close

ph_disconnect

eah_disconnect

Figure29. award_tgif_cleanup structure chart

| Routine

| Description |

award_tgif_cleanup

eah_disconnect
ph_disconnect

send_heartbeat_pulse
sock_close

AWARD

Called when award_tgif exits. This routine is responsible for performing the housekeeping
necessary for a graceful shutdown. This includes sending a last heartbeat, disconnecting
from the process-level heartbeat service, disconnecting from the TransGuide external alarm
handler, and closing any sockets that are open for communicating with the award_tgif process.
MDI External Alarm Handler routine used to disconnect from the external alarm handler
service.

MDI Process Heartbeat routine used to disconnect from the process-level heartbeat service.
Sends the process-level heartbeat to the Subsystem Heartbeat process.

MDI Socket routine used to close the specified socket connection.

Table45. Routines called by award_tgif_cleanup

70 System Design Document

5.3.2.3 send_heartbeat_pulse

The send_heartbeat_pulse routine is invoked periodicaly whenever the socket selection is
interrupted by atimeout. Thisroutineis responsible for sending the process-level heartbeat message to the
project-level heartbeat process. The structure chart for send_heartbeat pulse is shown inFigure 30. The
descriptions of the routines called by send_heartbeat_pulse are contained ifTable 46.

send_heartbeat_pulse

ph_send_heartbeat ph_disconnect process_status_message ph_connect

Figure30. send_heartbeat_pulse structure chart

| Routine | Description

ph_connect MDI Process Heartbeat routine used to connect to the specified process-level heartbeat service.
The host name and service name are used to make the connection.

ph_disconnect MDI Process Heartbeat routine used to disconnect from the process-level heartbeat service.

ph_send_heartbeat MDI Process Heartbeat routine used to send the specified status value to the heartbeat service

configured by the ph_connect call.
process_status_message | MDI Process Status routine used to log a status message for the specified status type. If the
process status library was configured to use a status logger then the message is forwarded to
the status logger. Otherwise the message is written to the configured status log file.
send_heartbeat_pulse Sends the process-level heartbeat to the Subsystem Heartbeat process.

Table46. Routinescalled by send_heartbeat_pulse

5.3.24 initidize award_tgif

The initialize_award_tgif routine is called to read the award_tgif configuration file and set up
configuration information for the entire process. The structure chart for initialize_award_tgif is shown in
Figure 31. Descriptions of the routines called by initiadlize award tgif are contained inTable 47.
Configurable items for the award_tgif process are described inTable 48.

AWARD 71 System Design Document

initialize_award_tgif

cfg_load_configuration_data

atoi
cfg_get_value
Figure3l. initialize_award_tgif structurechart

| Routine | Description |
atoi C Library Function to convert an ASCI! string to an integer value.

cfg_get_value MDI Configuration File routine used to return the value of the specified configuration

name.
cfg_load_configuration_data MDI Configuration File routine used to read the configuration name-value pairs from

the specified configuration file. These name-value pairs are loaded into memory so
they can be accessed on demand by the calling program.

initialize_award_tgif The award_tgif configuration file specified on the command line is read to obtain the
values of the configurable items of the award_tgif process.

Table47. Routinescalled by initialize_award_tgif

AWARD 72 System Design Document

| Configuration ltem

Description

Optional

SERVICE_NAME
HEARTBEAT_SERVICE_NAME
HEARTBEAT_HOST_NAME
STATUS_LOGGER_SERVICE_NAME
STATUS_LOGGER_HOST_NAME

HEARTBEAT_PULSE

EAH_SERVICE_NAME

EAH_HOST_NAME

The name of the service providied by the
award_tgif process.

The name of the service provided by the AWARD
project-level heartbeat process.

The host name where the AWARD project-level
heartbeat process resides.

The name of the service provided by the AWARD
subsystem status logger process.

The host name where the AWARD subsystem
status logger process resides

The periodic time value for sending the heartbeat
to the AWRAD project-level heartbeat process.
This is specified in seconds.

The name of the service provided by the external
alarm handler process.

The host name where the external alarm handler
process resides.

Table48. award_tgif configuration items

5.3.2.5 respond_to read sockets

The respond_to_read sockets routine is heart of the award_tgif process. This routine is called
when there is data pending on any of the sockets that are connected to the process. This data could be a
connection request to the award_tgif process, a message being sent to the award_tgif process by another
process aready connected, or it could be an indication of a process that has disconnected from the
award_tgif process. When a connection request is received the process immediately accepts the connection.
If a message is being sent then the message is read from the active socket and is then dispatch to the
external alarm handler. If a connected process disconnects from the award tgif process the socket
connection from the award_tgif process to the disconnected process is closed and removed from the list of
active sockets. Errors that occur are logged to the AWARD subsystem status log. The structure chart for
the respond _to read sockets is shown in Figure 32.

respond_to_read socketsis provided inTable 49.

AWARD

73 System Design Document

A description of the routines called by

sock_accept

sock_set_nonblocking

tgif
respond_to_read_sockets

receive_tgif_message

process_status_message

process_status_set_status_type_v

retry_eah_message

send_eah_message

disconnect_receive_socket

Figure32. respond_to_read_sockets structure chart

AWARD

74

System Design Document

| Routine | Description |

disconnect_receive_socket Removes the specified socket descriptor from the specified file descriptor set
and shuts down and closes the associated socket.
process_status_message MDI Process Status routine used to log a status message for the specified

status type. If the process status library was configured to use a status logger
then the message is forwarded to the status logger. Otherwise the message is
written to the configured status log file.

process_status_set_status_type_v process_status_set_status_type_value is used to set the value associated
with the specified process status status type.

receive_tgif_message Reads a message from the specified socket. There is no attempt to clear the
socket data or try to resynch the message data if any errors occur during
reading.

retry_eah_message Attempts to reestablish communications with the external alarm handler

process running on the ATMS master computer. The specified message is
sent to the external alarm handler if communications are reestablished.

send_eah_message Extracts the contents of the message and sends the contents on to the
External Alarm Handler. The message contains the data needed to create the
crossing delay alarm.

sock_accept MDI Socket routine that accepts connections on the specified listen socket.
sock_set_nonblocking MDI Socket routine that sets the specified socket to be a non-blocking socket.
tgif respond_to_read_sockets Loops through the list of socket descriptors ready for reading and either

accepts connections, if the socket descriptor is for the listen socket, or
receives messages containing information to be sent to the external alarm
handler.

Table49. Routines called by respond_to_read_sockets

5.3.2.6 receive_tgif_message

The receive tgif_message routine reads the message from the active socket and places in the
received message buffer. The structure chart for receive tgif _message is shown inFigure 33. The
descriptions of the routines called by receive _tgif_message are contained ifTable 50.

receive_tgif_message

sock_readn

Figure33. receive _tgif_message structure chart

| Routine | Description |
receive_tgif_message Reads a message from the specified socket. There is no attempt to clear the socket data or
/ try to resynch the message data if any errors occur during reading. ment

sock_readn MDI Socket routine that reads a specified number of bytes from the specified socket.

5.3.2.7 disconnect_receive _socket

The disconnect_receive _socket routine shuts down the active socket and removes the socket from
the list of sockets the award tgif process listens to for data The structure chart for
disconnect_receive _socket is shown inFigure 34. The descriptions of the routines caled by
disconnect_receive socket are contained irilable 51.

disconnect_receive _socket

sock_close

Figure34. disconnect_receive _socket structure chart

| Routine | Description |

disconnect_receive_socket Removes the specified socket descriptor from the specified file descriptor set and shuts down
and closes the associated socket.

sock_close MDI Socket routine used to close the specified socket connection.

Table51. Routines called by disconnect_receive_socket

5.3.2.8 send_eah_message

The send_eah_message routine takes the message that has been read from the active socket and
breaks it apart for sending to the external alarm handler. The network to host byte-ordering of the data
takes place here. The components of the message are used in the external alarm handler library call The
structure chart for send_eah _message is shown inFigure 35. The descriptions of the routines called by
send_eah _message are contained inTable 52. Any errors that occur during this routine are logged to the
AWARD status log using the process_status_message routine.

AWARD 76 System Design Document

send_eah_message

ntohl

process_status_message

eah_send_crossing_blockage

Figure35. send_eah_message structure chart

| Routine

Description

eah_send_crossing_blockage

ntohl
process_status_message

send_eah_message

Table52.

AWARD

Packages the specified crossing delay data into the crossing delay alarm
message and sends it to the External Alarm Handler process.

Network Function used to convert between network and host byte order.

MDI Process Status routine used to log a status message for the specified status
type. If the process status library was configured to use a status logger then the
message is forwarded to the status logger. Otherwise the message is written to
the configured status log file.

Extracts the contents of the message and sends the contents on to the External
Alarm Handler. The message contains the data needed to create the crossing
delay alarm.

Routines called by send_eah_message

77 System Design Document

5.3.29 retry_eah message

The retry_eah _message routine is caled in the event an error occurs during the first send to the
external aarm handler. This routine disconnects from the external alarm handler in order to reset the
connection information, reconnects to the external alarm handler, and attempts to send the message again.
The structure chart for retry_eah_message is shown inFigure 36. The descriptions of the routines called
by retry_eah _message are contained inTable 53.

retry_eah_message

eah_disconnect eah_connect send_eah_message

Figure36. retry_eah message structure chart

| Routine | Description

eah_connect MDI External Alarm Handler routine used to connect to the specified ATMS external alarm
handler service. The host name and service name are used to make the connection.

eah_disconnect MDI External Alarm Handler routine used to disconnect from the external alarm handler
service.

retry_eah_message Attempts to reestablish communications with the external alarm handler process running on

the ATMS master computer. The specified message is sent to the external alarm handler if
communications are reestablished.

send_eah_message Extracts the contents of the message and sends the contents on to the External Alarm
Handler. The message contains the data needed to create the crossing delay alarm.

Table53. Routinescalled by retry_eah _message

AWARD 78 System Design Document

5.3.3 Show Detailed Status (awdsg)

The AWARD detailed status GUI (awdsg) process provides the ability to visually inspect the
current status and values associated with each of the sensors and crossings configured within AWARD.
awdsg runs as a separate process from the rest of the AWARD subsystem. When awdsg runs it attempts
to attach itself to the sensor and crossing shared memory segments. Then on a periodic basis it reads the
information from these shared memory segments and displays on the workstation for the user.

5.3.3.1 TeleUSE_main

The TeleUSE model requires a TeleUSE provided main routine to initially gain control of the
process. This main routine does numerous things that are not modeled here with the exception of invoking
the application main routine and then firing the INITIALLY rules that exist in the different D modules.
The structure chart for the TeleUSE main routine is shown inFigure 37. This is a theoretical
represenation of the actual source code since this routine was not developed by SwRI. A description of the
routines called by TeleUSE_main is provided inTable 54.

awdsg
teleuse_main

awdsg_main INITIALLY

Figure37. awdsg teleuse_main structure chart

AWARD 79 System Design Document

| Routine

Description |

awdsg teleuse_main

awdsg_main

INITIALLY

5.3.3.2 awdsg_main

This is the main routine of the AWARD Detailed Status GUI. This routine is supplied by the
TeleUSE UIMS tool and is used as the entry point into the process. This routine is responsible
for setting up any TeleUSE specific environment and then invoking the application main routine
followed by the INITIALLY events in the associated D modules.

This is the main routine of the AWARD Detailed Status GUI. This routine is responsible for
loading the configuration information, configuring the shared memory manager library, and
attaching to the field equipment shared memory segments.

This D event is the first event invoked by the TeleUSE runtime environment. This event creates
the top-level shell to contain the detailed status information, sets the update rate for the GUI, and
then starts the update process by triggering the periodic_update event. Any errors during this
event will cause tu_exit to be called to start a graceful shutdown of the process.

Table54. Routines called by awdsg teleuse_main

The awdsg_main routine is called prior to any GUI setup being done. This routine is used to
initialize the application prior to performing any user interface functions. This routine loads the
configuration data, configures the shared memory manager, and attaches to the shared memory segment..
The structure chart for the awdsg_main routine is shown inFigure 38. A description of the routines called
by awdsg_main is provided in Table 55. The only configuration item for this program is the
UPDATE_RATE. Thisitem isoptional, but if specified it indicates how often the details will be updated.

awdsg_main

cfg_load_configuration_data

attach_to_segment

AWARD

cfg_get_value config_shm_mgr

atoi

Figure38. awdsg_main structure chart

80 System Design Document

| Routine | Description |

atoi C Library Function to convert an ASCI! string to an integer value.

attach_to_segment MDI Shared Memory Manager routine used to attach the calling process to the
specified shared memory segment.

awdsg_main This is the main routine of the AWARD Detailed Status GUI. This routine is

responsible for loading the configuration information, configuring the shared
memory manager library, and attaching to the field equipment shared memory

segments.

cfg_get_value MDI Configuration File routine used to return the value of the specified configuration
name.

cfg_load_configuration_data MDI Configuration File routine used to read the configuration name-value pairs from

the specified configuration file. These name-value pairs are loaded into memory so
they can be accessed on demand by the calling program.

config_shm_mgr MDI Shared Memory Manager routine used to initialize and configure the shared
memory manager library routines for the calling program.

Table55. Routinescalled by awdsg_main

5.3.3.3 INITIALLY

INITIALLY isthefirst rule that gets triggered in any D module. For the detailed status GUI the
INITIALLY rule creates the top level shell widget, obtains the current update rate defined for the
application, and starts the periodic updates. The structure chart for INITIALLY in Figure 39.
Descriptions of the routines called by INITIALLY are contained inTable 56.

AWARD 81 System Design Document

INITIALLY

create

. GET_UPDATE_RATE send tu_exit
widget - — -

periodic_update

Figure39. INITIALLY structurechart

| Routine | Description |

create widget create widget is used to create a widget of a particular TeleUSE template allowing for the
specification of a widget name and a parent for the widget.

GET_UPDATE_RATE A bridge layer routine used to obtain the update rate value from the application layer.

INITIALLY This D event is the first event invoked by the TeleUSE runtime environment. This event
creates the top-level shell to contain the detailed status information, sets the update rate for
the GUI, and then starts the update process by triggering the periodic_update event. Any
errors during this event will cause tu_exit to be called to start a graceful shutdown of the
process.

periodic_update An GUI layer event used to perform the steps necesary to update the details of the GUl on a
periodic basis.

send A TeleUSE statement used to trigger events immediately or queue events for later dispatch.

tu_exit A TeleUSE library routine used to exit the application.

Table56. Routinescalled by INITIALLY

53331 GET_UPDATE_RATE

The GET_UPDATE_RATE routineis a bridge layer routine that calls the application layer routine
to obtain the configured update rate The structure chart for GET_UPDATE_RATE is shown inFigure 40.
The descriptions of the routines called by GET_UPDATE_RATE are contained iriT able 57.

AWARD 82 System Design Document

GET_UPDATE_RATE

awdsg_get_update_rate

Figure40. GET_UPDATE_RATE structurechart

| Routine | Description |
awdsg_get_update_rate The application layer routine responsible for returning the configured update rate for the
detailed status GUI.
GET_UPDATE_RATE A bridge layer routine used to obtain the update rate value from the application layer.

Table57. Routinescalled by GET_UPDATE_RATE

5.3.3.3.1.1 periodic_update
The periodic_update event is invoked to control the updates to the detailed status GUI and to cause

the next triggering of periodic_update to occurr.. The structure chart for periodic_update is shown in
Figure41. The descriptions of the routines and events called by periodic_update are contained ifT able 58.

AWARD 83 System Design Document

periodic_update

PERIODIC_UPDATE send %Zzt; tu_exit

Figure4l. periodic_update structure chart

| Routine | Description |

create widget create widget is used to create a widget of a particular TeleUSE template allowing for the
specification of a widget name and a parent for the widget.

PERIODIC_UPDATE The bridge layer routine that invokes the application layer routine responsible for handling the

periodic update requests.

periodic_update An GUI layer event used to perform the steps necesary to update the details of the GUl on a
periodic basis.

tu_exit A TeleUSE library routine used to exit the application.

Table58. Routines called by periodic_update

5333111 PERIODIC_UPDATE

The PERIODIC_UPDATE routine is the bridge layer routine responsible for invoking the
application layer routine which provides the update capability. The structure chart for the
PERIODIC_UPDATE is shown in Figure 42. A description of the routines caled by
PERIODIC_UPDATE is provided inTable 59.

AWARD 84 System Design Document

PERIODIC_UPDATE

awdsg_periodic_update

attach_to_segment

read_segment

UPDATE_STATUS

Figure42. PERIODIC_UPDATE structure chart

AWARD

85

System Design Document

| Routine | Description |

attach_to_segment MDI Shared Memory Manager routine used to attach the calling process to the specified
shared memory segment.
awdsg_periodic_update The application layer routine responsible for handling the periodic update requests. This

routine attaches to the sensor and crossing shared memory segments if not attached,
reads the data from these segments, and, using the bridge layer, causes the contents of
the GUI to be updated based on the contents of the shared memory segments.

PERIODIC_UPDATE The bridge layer routine that invokes the application layer routine responsible for handling
the periodic update requests.

read_segment MDI Shared Memory Manager routine to read the contents of the specified shared memory
segment. The contents are stored in a memory area allocated by the caller.

UPDATE_STATUS This is the bridge layer routine that receives the current status information for a particular

sensor or crossing and then generates the event to update the status information within
the detailed status GUI.

Table59. Routinescalled by PERIODIC_UPDATE

53331111 UPDATE _STATUS

The UPDATE_STATUS takes the detailed status information and creates the necessary event
structures in order to inform the GUI layer to update the appropriate GUI components. The structure chart
for UPDATE_STATUS is shown in Figure 43. The descriptions of the routines called by
UPDATE_STATUS are contained inTable 60.

AWARD 86 System Design Document

UPDATE_STATUS

tu_create_named_event

tu_dispatch_event

tu_free_event

tu_assign_event_field

update_status

Figure43. UPDATE_STATUS structurechart

AWARD 87 System Design Document

5.3.4 award dsif Library Routines

| Routine | Description |

send A TeleUSE statement used to trigger events immediately or queue events for later
dispatch.

tu_assign_event_field TeleUSE Library Function to associate the contents of a C variable with the contents of
an event attribute.

tu_create_named_event TeleUSE Library Function used to create the data structure necessary to interface the C
code with the D event code.

tu_dispatch_event TeleUSE Library Function used to dispatch the created event. This causes the event to
be executed.

tu_free_event TeleUSE Library Function used to free up any memory that was allocated to the event
data structure using tu_create_named_event.

update_indicator This GUI layer event is used to make the actual modifications to the appropriate GUI

components. The GUI component is specified as one of the calling attributes along with
the current status information to be displayed in the GUI.

update_status The D event that receives the status information and updates the appropriate GUI
components.
UPDATE_STATUS This is the bridge layer routine that receives the current status information for a particular

sensor or crossing and then generates the event to update the status information within
the detailed status GUI.

Table60. Routinescalled by UPDATE_STATUS

The award_dsif library contains four routines that are used to interact with the award_dsif process.
The routines needed to send a heartbeat to the award_dsif are described inMDI Common Code Software
Design Document. The four routines defined by thislibrary are:

award_dsif _connect

award dsif send sensor_data
award _dsif_send_crossing_delay
award_dsif disconnect

These routines are discussed in more detail in the following subsections.

5.34.1 award_dsif_connect

The structure chart for the award_dsif_connect routine is shown inFigure 44. This routine is
responsible for establishing the communications path to the data server from the calling process. Thisis
accomplished by obtaining the port number associated with the specified service and then connecting a
socket to the port on the specified host computer.. A description of the routines called by
award_dsif_connect is provided inTable 61.

AWARD 88 System Design Document

award_dsif _connect

sock_get_service_port sock_connect

Figure44. award_dsif_connect structure chart

| Routine | Description

award_dsif_connect Used to connect to the AWARD Data Server Interface process. The caller specifies the host name
and service name associated with the AWARD Data Server Interface.

sock_connect MDI Socket routine used to create a socket connection to the specified host and port.

sock_get_service_port | MDI Socket routine that returns the port number associated with the specified service name.

Table6l. Routinescalled by award_dsif_connect

5.3.4.2 award_dsif_send_sensor_data

The structure chart for award_dsif_send_sensor_data is shown inFigure 45. This routine is
responsible for filling in the message structure with the specified data parameters. A call to select is used
to make sure the award_dsif connection is till valid. All values in the message are converted to network
byte format using the htonl call, when required. @A description of the routines called by
award _dsif_send_sensor_datais provided inTable 62.

AWARD 89 System Design Document

award_dsif_send_sensor_data

memset

select

AWARD

htonl

sock_writen

strcpy

Figure4b. award_dsif_send_sensor _data structure chart

90

System Design Document

| Routine | Description
award_dsif_send_sensor_data | Packages the specified sensor data into the appropriate message and sends it to the
AWARD Data Server Interface process.

htonl Network function used to convert from host to network byte formats.
memset C Library Function used to set an area of memory to a specified value.
select C Library Function used to multiplex synchronous I/O. The list of file descriptors for

reading, writing, and receiving exceptions are examined and any file descriptors that are

ready for reading, writing, or have an exceptional condition pending are identified.
sock_writen MDI Socket routine used to write a specified number of bytes to a specified socket.
strcpy C Library Function used to copy a source string to a destination string.

Table62. Routinescalled by award_dsif_send_sensor_data

5.3.4.3 award_dsif_send_crossing_delay

The structure chart for award_dsif _send_crossing_delay is shown inFigure 46. This routine is
responsible for filling in the message structure with the specified data parameters. A call to select is used
to make sure the award_dsif connection is till valid. All values in the message are converted to network
byte format using the htonl call, when required. @A description of the routines called by
award _dsif_send_crossing_delay is provided inTable 63.

AWARD 91 System Design Document

award_dsif_send_crossing_delay

memset

select

AWARD

htonl

sock_writen

strcpy

Figure46. award_dsif_send_crossing_delay structure chart

92

System Design Document

| Routine

Description |

award_dsif_send_crossing_delay

htonl
memset
select

sock_writen
strcpy

Packages the specified crossing data into the appropriate message and sends it to the
AWARD Data Server Interface process.

Network function used to convert from host to network byte formats.

C Library Function used to set an area of memory to a specified value.

C Library Function used to multiplex synchronous I/O. The list of file descriptors for
reading, writing, and receiving exceptions are examined and any file descriptors that are
ready for reading, writing, or have an exceptional condition pending are identified.

MDI Socket routine used to write a specified number of bytes to a specified socket.

C Library Function used to copy a source string to a destination string.

Table63. Routinescalled by award_dsif_send_crossing_delay

5.3.4.4 award_dsif_disconnect

The structure chart for award_dsif_disconnect is shown inFigure 47. This routine is used to
disconnect the calling process from the award_dsif process. Once this routine is called no more messages
can be sent to the award_dsif process unless the award_dsif_connect routineiscalled. A description of the
routines called by award_dsif_disconnect is provided inrable 64.

award_dsif disconnect

sock_close

Figure47. award_dsif_disconnect structure chart

AWARD

93 System Design Document

| Routine | Description |

award_dsif_disconnect Disconnects the calling process from the AWARD Data Server Interface process. The socket
connection is closed and reset to indicate a connection to the AWARD Data Server Interface
process does not exist.

sock_close MDI Socket routine used to close the specified socket connection.

Table64. Routines called by award_dsif_disconnect

535 award tgif Library Routines

The award_tgif library contains three routines that are used to interact with the award_tgif process.
The three routines defined by thislibrary are:

award_tgif_connect
award_tgif_send_crossing_blockage
award_tgif_disconnect

These routines are discussed in more detail in the following subsections.

5.3.5.1 award_tgif _connect

The structure chart for the award_tgif_connect routine is shown inFigure 48. This routine is
responsible for establishing the communications path to the award_tgif process from the calling process.
This is accomplished by obtaining the port number associated with the specified service and then
connecting a socket to the port on the specified host computer. A description of the routines called by
award_tgif_connect is provided inTable 65.

AWARD 94 System Design Document

award_tgif _connect

sock _get service_port sock _connect

Figure48. award_tgif_connect structure chart

| Routine | Description |
award_tgif connect Used to connect to the AWARD TransGuide Interface process. The caller specifies the
host name and service name associated with the AWARD TransGuide Interface.
sock_connect MDI Socket routine used to create a socket connection to the specified host and port.
sock_get_service_port MDI Socket routine that returns the port number associated with the specified service
name.

Table65. Routines called by award_tgif_connect

5.3.5.2 award_tgif_send_crossing_blockage

The structure chart for award_tgif_send_crossing_blockage is shown inFigure 49. Thisroutineis
responsible for filling in the message structure with the specified data parameters. A call to select is used
to make sure the award_tgif connection is till valid. All values in the message are converted to network
byte format using the htonl call, when required. @A description of the routines called by
award_tgif_send_crossing_blockageis provided inTable 66.

AWARD 95 System Design Document

award_tgif send_crossing_blockag

memset

select

AWARD

htonl

sock_writen

strcpy

Figure49. award_tgif_send_crossing_blockage structure chart

96

System Design Document

| Routine

| Description |

award_tgif send_crossing_blockag
htonl

memset
select

sock_writen

strcpy

Packages the specified crossing delay data into the crossing blockage
message and sends it to the AWARD TransGuide Interface process.
Network function used to convert from host to network byte formats.

C Library Function used to set an area of memory to a specified value.
C Library Function used to multiplex synchronous I/O. The list of file
descriptors for reading, writing, and receiving exceptions are examined
and any file descriptors that are ready for reading, writing, or have an
exceptional condition pending are identified.

MDI Socket routine used to write a specified number of bytes to a
specified socket.

C Library Function used to copy a source string to a destination string.

Table66. Routinescalled by award_tgif_send_crossing_blockage

5.3.5.3 award_tgif_disconnect

The structure chart for award_tgif_disconnect is shown inFigure 50. This routine is used to
disconnect the calling process from the award_tgif process. Once this routine is called no more messages
can be sent to the award_tgif process unless the award_tgif _connect routine is called. A description of the
routines called by award_tgif_disconnect is provided infable 67.

award_tgif disconnect

sock_close

Figure50. award_tgif_disconnect structure chart

AWARD

97 System Design Document

| Routine | Description |

award_tgif_disconnect Disconnects the calling process from the AWARD TransGuide Interface process. The
socket connection is closed and reset to indicate a connection to the AWARD TransGuide
Interface process does not exist.

sock_close MDI Socket routine used to close the specified socket connection.

Table67. Routinescalled by award_tgif_disconnect

54 Railroad Subsystem Softwar e Ar chitecture

The Railroad Operational Software (ROS) subsystem transmits the railroad sensor data and the
railroad delay data to the MDI Data Server thus allowing access to this information by other programs
within the MDI. The railroad sensor data is transmitted to the MDI Data Server via socket
communications and consists of the following information for each physical sensor:

Sensor ID - A unique identifier assigned to each railroad sensor.

Communication Status - The current status of the communications between the FE Communication
Subsystem and the physical sensors.

M easurement - the speed value abtained from the sensor during the last polling cycle
Acceleration/Deceleration - the rate of acceleration or deceleration detected during the last polling

cycle.
Last Update Time - A timestamp indicating the last time the sensor was polled.

The railroad delay data is transmitted to the MDI Data Server using socket communications and
consists of the following information for each railroad crossing associated with physical railroad sensors:

Crossing ID - A unique identifier assigned to each railroad crossing.
Estimated ETA of the front of the train

Estimated ETA of the back of thetrain

Length of thetrain

Estimated duration of the railroad crossing blockage

The ROS subsystem transmits the railroad delay information to the TransGuide ATMS to alow
TransGuide operations personnel to properly handle each railroad crossing delay incident. The railroad
delay data is transmitted to the TransGuide ATMS as a RR Incident Event using socket communications.
The contents of the RR Incident Event are:

Crossing ID - A unique identifier assigned to each railroad crossing
The type of ATMS aarm (Mgjor, Minor, or Normal)

Estimated ETA of the front of the train

Estimated ETA of the back of thetrain

Length of thetrain

Estimated duration of the railroad crossing blockage

AWARD 98 System Design Document

54.1 RR Configuration Information

Configuration information, located in text files, enumerates sensors, virtual sensors, crossings, and
connections between the virtual sensors and crossings. Specifically, each actual sensor becomes two
virtual sensors; this approach was taken to reduce complexity of the configuration files. In this
arrangement, it is simple to get a downstream virtual sensor associated with an upstream element; it is aso
somewhat verbose in that many distances between sensors, etc. will be entered twice. The connection’s list
requires distances to be both positive and negative items, where sign is dependent on sensor pointing
direction, presenting an even greater challenge at entering the data correctly.

One additional configuration file is defined and because of the relationship to the determination of
acceleration, thefile definition is located in that section, below. Each of the definitionsin the boxes lists all

of the information that will appear on each line of datain the configuration file.

Information on Each Line of the Master
Configuration File

Actual sensors configuration file name

Virtual sensors configuration file name

Crossings configuration file name

Downstream connections configuration file name
AWARD ATMS events configuration file name
Acceleration modification configuration file name

Name of the DataServer interface process host machine
Name of the DataServer service

Name of the Heartbeat interface process host machine
Name of the Heartbeat service

Name of the ATMS interface process host machine
Name of the ATMS service

Name of the status logger interface process host machine
Name of the status logger service

Use the acceleration in calculations flag (yes or no)
System poll cycle time (minimum)

Information on Each Line of the Actual
Sensors List

Sensor ID (al..aN)

Telephone number

SUN port id to use

Angle of the sensor versus the tracks
Maximum velocity for this site

Sensor is operational (flag)

Alpha-numeric text descriptor (ATMS identifier)
Comment

Information on Each Line of the Virtual
Sensors List

(There must be 2 virtual sensors for
each actual sensor - one associated with
each direction of train movement)

Virtual sensor ID (s1..sM)

Actual sensor associated (al..aN)

Alpha-numeric text descriptor

Direction with respect to the sensor (i.e. says whether positive or negative
velocities from the actual sensor belong with this

virtual sensor)

Comment (like “at Dreamland heading towards downtown”)

Information on Each Line of the | Crossing ID (cl1..cP)

Crossings List Alpha-numeric text descriptor
Nominal time to train crossing sensing distance (0 if no crossing signals)
Comment

Information on Each Line of the | Crossing ID (cl1..cP)

AWARD ATMS Events List

Alpha-numeric text descriptor of the name of the crossing
Alpha-numeric text descriptor of the event ID

Time the event is to start

Time the event is to end

Comment

Information on Each Line of the
Connections List

(Just virtual sensors to downstream
crossings and

other downstream virtual sensors)

Virtual sensor (s1..sM)

Downstream item (s1..sM or c1..cP)
Distance (must be positive in miles)
Comment

AWARD

99

System Design Document

Information on Each Line of the Virtual sensor (s1..sM)

Acceleration Modification List Day of week (1..7)

(Associated with virtual sensors) Start and End time of affect
Interpretable code defining affect on acceleration
Comment

Table68. Railroad Configuration Infor mation

54.2 RR Software Design Details

To explain the diagram (and software design) below, theRR Software Object Relationship
Diagram, in some more detail, the diagram reveals that the actual sensor object (SensorlF), actualy
maintains a list of samples where each has the sensor reading and a timestamp (VaTime). These values
are processed, resulting in an interpretation of the activity on the tracks. Thisinformation is used to update
the virtual sensor (Vsensor) abjects, which creates or updates a train summary (TrainSumry) object. A
train summary object (which is associated with a particular virtual sensor) may also be the same train that
another sensor is detecting or has detected in the recent past. Therefore, train summaries are merged to
form a single unified interpretation of a train (Train) object, including length, speed, acceleration, etc.
There are two important pieces of information the ROS needs to know about a train: when is it going to
block a crossing and when should it be detected by some downstream sensor? Answering these two
guestions requires knowledge of where downstream sensors and crossings are located (Connection
Descriptions) and coming up with an estimate of how long before the train reaches them (Connection
ETA). When atrain is certain to block an intersection, some description of the blockage is communicated
to the Area Wide Database (and therefore to In-Vehicle Navigation, Kiosks, and the TransGuide Map) as
well asto the TransGuide ATMS.

AWARD 100 System Design Document

RRSystem 1 Managed by 1 p—
~accelMods ensor
- accelModsName -
pocoed_| | -entle
Connects ~constAccel
- connectionsName - connects directed constMult - conAttemptsMade
 crossi : - directet - ~ conTi
crossings currAcc - pediion conTimer
- crossingsName - currSpd) Gayofweek -id
- events - currTime - lastTime CeTime - lastRead
- eventsName - lastVel A - maxVel
- majors - name e - name
oo o1 creates and 1| “rues -mnA, : ol
- sensorsName - initTime updates - sensorld maintains reensord - operational o MDI Data
- trains -vid - state 1—- — - recent Server
- updateRate T TranSumry - sumry alistof + AccelMod - retryTimer
i ~ReadConfi + AccelMod;2
- useAcceleration + TrainSumry;2 g T AccalMods - runLevel
- vSensors + connections e + ReadConfig - sensorsStatusFlag
- + initialA +VSensor; b - simin
~LoadAccelMods +initialTime + VSensor;3 + WriteConfig - startTime
- LoadConnectionETAS + initialV’ - WriteConfig it - state
- LoadCrossings +isSameVid + connections : cpemm - sunPort
- LoadEvents + operator + direction + ol - takenOffLine
- LoadSensors + operator: - endTrain T vSansonD - telephoneNum
- LoadVSensors + recentA + identifier T aecolMod - toRadar 1
- MainLoop + recentl. - newTrain - i
+ RRSystem + recentTime + newValue 2 <Managedby 1| - useData
+ RRSystem;2 + recentV + operator -Vl
- ReadConfig + stillinView + operator: -v2
+ WriteConfig i + update + sensoridentifier Event - velocity
+ addCrossingToMajorList +vsensoriD *__ hasalistof + summary +1D
+ sendCancelMajorAlarm + ~TrainSumry - updateTrain ~atmsEvent + ReadConfig
+ ~RRSystem 1* +VName - cancelSent + SensorlF
T +~VSensor - crossingld + SensorlF;2
1 - endTime - WriteConfig
‘ 4 Managed by - eventld - checkSensorDataValidity
4 Managed by - lastDuration - estAccel 1
Managed by ¥ - lastLength + getSensorsStatusFlag
- lastTimeCheck
1.* has a list of ¥ - lastTrainETA - modemCmd
- majorAlarmSent - nextDatum
Crossing - name + operator==
i 1 - preceed - probeRadar
- majorAlarmiTime * Train * - pretermination + reactivate
e - StartTime + reactivate;2 maintains y
nommalTime ~acceleration ConnectionETA . + Event + resetSensorsStatusFlag alist of
O, - atTime & L + Event;2 +test
1 Crocding.y -eta EtaTime + Event;3 - tryPhone
M Cmssmg‘g - length TEA - ReadConfig + ~SensorlF
o 9 - speed e - WriteConfig 1
" ReadConfig - sumries b +atmsiD
! + Train oK +cID
WiteConfig + Train;2 - dstTime + cancelalarm
e Alar?ﬂims + Train;3 downstream , | + cancelSENT UsesV
§ majtamn + cancelAlarm events 1 ——< Managed by——— *{ + checkETTA
PPl + crossingExists o +endTIME
M cperat + currentAccl ~length + hasEvent 1
M Sg‘Ma.m e + currentLength . mangl + majAlarmSent
+ ZCrossin + currentSpeed - name + merge Stream232
g + currentTime nomTime +newETA
+ majorAlarmSent s + newLength +id
+ merge P + operator= - maxlen
+ operator= _vSensorld + operator== - sbuf
+ operator== . + preTime - sbuflen
+ pastAl +sName # tio
+ updateETA + ConnectionETA # sendData + Stream232
! + ConnectionETA:2
+ ~Train + ConnectionETA'3 + setCancelSent + close
h +D L Sarewie B o
- ReadConfig + ~Event + configure_input
- WriteConfig foare local
DateTime blockagel. + configure_local
Ty + checkETTA Inherits from + configure_output
-sec + currentA e
o has a set of +| + currentBlockage * road2
¥ DateTime and manages + currentDistance +wiite updates
+ DateTime:2 + currentETA + ~Stream232 and uses
+ DateTime.3 + currentETTA Blockage Lrosfeamess
+ DateTime;4 + currentV FETA
+ DateTime;5 + downstreamList # blockid
- ovt jday T oo TTA # cancelSent ValTime
-evtmo_da # destination “stam
+ double + isBlockage # ! p .
now +isOverlappingTimes 4 duration -val
+ ReadConfi
+ operator+ N 'V:SE‘;E;“’S“;‘ # eventFrontETA atime
+ operator+;2 - # eventRearETA + ValTime;2
+ operstor- + maxVelocity #id + WriteConfi
+ operator-2 +merge # lastBlock I 9
+ operator= + operator: + newValue
", = # length + operator=
tval + operator== e
name + operator==
+val;2 + origL. # op
: origSent +time
+ WDy + sendNormalAlarm
y # runLevel +value
+ ~DateTime + update + Blockage i
+vSensoriD 1 —— Managed by— 0.1| T 2008, +~ValTime
TA + Blockage;3
Al classes use the DateTime class with +alETA
the exception of the Stream232 class + blockiD
+ cancelBlockage senseStatus
conclude d 0.2
+ itemID - working h
+itemName +15Up
I(-) denotes Private # newBlockiD + operator=
|(+) denotes Public +newETA + operator==
|(#) denotes Protected + newlength + operator
+ operator: + senseStatus
+ operator: + senseStatus;2
===) denotes send data to MDI Da # sendData + senseStatus;3
Server #startUp + setUpDown
+ trainDuration + setUpDown;2
+ trainLength + setvid
+~Blockage +vid

Figure51. RR Software Object Relationship Diagram

Asthe diagram above illustrates, the ROS is a collection of objects that holds and manipul ates data
or manages and manipulates the objects (that hold data) to inform the TransGuide ATMS and the Area
Wide Database component of MDI of upcoming crossing blockages. The classes are described in more
detail below.

AWARD 101 System Design Document

5.4.2.1 Railroad System (RRSystem) Class

This class is the topmost of the AWARD system. The class, upon creation loads configuration
information about train sensors and begins the processing loop. The class a'so maintains the current list of
trains that are of interest. The class cannot be copied because the Stream232 class (which is part of
SensorlF) cannot be copied. The data maintained by (within) the class includes:

name of master configuration file

log handling pointers/references

alist of sensor interfaces (SensorlF class)
alist of crossings (Crossing class)

alist of trains (Train class)

The RRSystem class contains the following attributes:

PRIVATE:
accelMods List of all acceleration modifications.
accel ModsName Acceleration maodification configuration file name.
configName Master configuration file name.
connections List of all downstream connections.

connectionsName

Downstream connections configuration file name.

Ccrossings List of al crossings.
crossingsName Crossings configuration file name.
events List of all ATMS events.
eventsName ATMS events configuration file name.
majors List of all major aarms sent to ATM S that have NOT been
cancelled.
Sensors List of all actual sensors.
sensorsName Actual sensors configuration file name.
trains List of all activetrains.
updateRate Duration between normal polling of the sensors.
AWARD 102 System Design Document

useAcce eration

vSensors

vsensor sName

Flag indicating to use calculated acceleration in the estimates
for sending alarms. Thisflag is set viathe configuration file.

List of al virtua sensors

Virtual sensors configuration file name.

The RRSystem class contains the following operations:

PUBLIC:

addCr ossi ngToMaj or Li st

RRSyst em

RRSyst em 2

sendCancel Maj or Al arm

Adds acrossing to the magjor alarm's sent to ATMS list.

Default constructor.
Note: the default constructor generates aruntime error if it is
used without an initializer.

Constructor that takes a configuration file name as and the run
level indicator asinitializers.

Sends a cancel event for apreviously sent major alarm.
The sequence diagram for this member function isgivenin
Figure 52.

sendCancelMajorAlarm [RRSystem..

[Description

IF there are no crossings in the majoe alarms sent list
THEN

Exit this function now

ENDIF

Get the current time

FOR EACH crossing in the major alarms sent list DO
Get the time stamp when the major alarm was sent

Add five minutes to that time (the alarm cannot be
cancelled in the first five minutes)

Cast the current time to a double for comparison
Get the crossing name that received the major alarm

IF the five minutes has passed THEN
see if the alarms needs to be cancelled

Check if the crossing exist in the train's
downstream connection list

IF the crossing is in the downstream connection list
THEN

Attempt to cancel the major alarm sent
IF the alarm was cancelled THEN
Remove the crossing the major alarms sent list
ENDIF
ENDIF
ENDIF
ENDIF
Exit this function now

Train Crossing DateTime
no
majAlarmTime >
doubls ,u
doubls >
I >

rossingExists
ancelAlarm

Train Crossing DateTime

Figure52. RRSystem::sendCancelMajor Alarm Sequence Diagram

WiteConfig

~RRSyst em

AWARD

Write actual or example configuration datato afile.

Destructor.

103 System Design Document

PRIVATE:

LoadAccel Mbds

LoadConnecti onETAsS

LoadCr ossi ngs

LoadEvent s

LoadSensor s

LoadVSensors

AWARD

Create the acceleration modifications list and initialize it from
its configuration file.

Create the downstream connections list and initialize it from
its configuration file.

Create the crossing list and initialize it from its configuration
file.

Create the events list and initialize it from its configuration
file.

Create the actual sensorslist and initialize it from its
configuration file.

Create the virtua sensorslist and initialize it from its
configuration file.

104 System Design Document

Mai nLoop Executes the main processing loop. It polls the sensors,
updates existing trains, etc.
The sequence diagram for this member functionis givenin
Figure 53.

MainLoop [RRSystem.

[Descri) RRSystem SensorlF Train DateTime Crossing

WHILE program is executing (forever loop)
Connect to DataServer process
Connect to ATMS process
Connect to HeartBeat process

Get current time to compare to poll cycle time ny >
IF time to poll sensor THEN
Reset the sensor status flag to FE_ACTIVE Flag
FOR EACH sensor DO T
Attempt to get data from the sensor i >
IF the sensor is sensing a Train THEN
Create a new Train object Train;

Add new Train object to the trains list
ENDIF
ENDFOR
Get the sensor status flag to send to gl 1sFlag
Send data to the HeartBeat process
FOR EACH Train in the trains list DO

Check if a Train oblect in the list is equal to operator==
another (different) Train object in the list

IF a Train object in the list is EQUAL to another
(different) Train object in the list THEN

Merge the two trains merge

IF the merge was successful THEN

Remove the redundent Train from the
trains list

ENDIF
ENDIF
ENDFOR
FOR EACH Train in the trains list DO

Check if the Train is past all of its downstream pastAll
connections il

IF Train is past all of its downstream
connections THEN

Remove the Train from the trains list

ELSE
Update the Train's ETA and length updateETA ,LH
Check if the update sent a major alarm to majorAlarmSent
ATMS
IF a major alarm was sent to ATMS THEN
Add the crossing that received the major addCrossingToMajorList
alarm to the majors list
Check if crossing is already in the major D
alarm sent list
Get current time n >
Find crossing in the crossings list D
Set major alarm time for the crossing [detMajorAlarn|Time *:ﬁ
ENDIF w
If this is NOT the Train object that sent the sendCar jorAlari
major alarm to ATMS and the crossing is in

this object's downstream items, cancel the
alrrm.

Get current time n >
Get time stamp when major alarm was majAlarmTi
sent

g

Get major alarm crossing 1D D

Check if crossing exist in the train's \gExist
downstream connections ’u

Cancel major alarm lAlafm >

ENDIF

ENDFOR

Set the next poll cycle time n
ELSE

Sleep for 100,000 microseconds

Get current hour, minute, and second |

IF the time is EQUAL to or GREATER THAN 23
hours, 59 minutes, and 55 seconds THEN

Sleep for 10 seconds to allow for the julian day
to change

K 3

Set the next poll cycle time ny >
ENDIF
ENDIF
ENDWHILE (forever loop)

RRSystem SensorlF Train DateTime ~ Crossing

Figure53. RRSystem::MainL oop Sequence Diagram
ReadConfi g Reads the configuration information.

5.4.2.2 Sensor Interface (SensorlF) Class

This classisresponsible for interfacing and controlling the Stream232 class that communicates to
the remote radar units. The class implements afinite state machine (depicted in the figure below). When
the classis created, it must be provided configuration information. Then most later interactions are ssimply

AWARD 105 System Design Document

totell it to reactivate (leave some internal wait state and run) which causesit to attempt to get data from the
remote sensor, determineif it isvalid, and send it to the appropriate virtual sensor. This class cannot be
copied because the Stream232 object, which the class contains, cannot be copied. When the configuration
datafor the classisloaded, aflag is set which indicates that the remote sensor is operationdl. If it is not, the
class does not initialize and cannot be used.

AWARD 106 System Design Document

SensorlF

Start
o

TryPhone

Establish telephone
connection

Unsuccessful connection/
Inform error handler and
Reactivatey DataServer

Signal €] !

Connection
Established

‘ ProbeRadar

‘ Check for sensor
working or not working

Radar not working/
Inform error handler

Probe Radar for and DataServer

working/not working

Radar
Working

(NormalCycle/NormalCycleBadLast W

({Await reactivate P

Radar not working/

Inform error handler
. e and DataServer
Activate radar

and await result: S .
N\ Connection lost/

and DataServer

Data
Received

[Get time stamp; add it & results to history buffe]

Filter data to
detect validi

. Invalid data but had) ‘
Valid valid data last time Invalid data and had
data invalid data last time

(Perform acceleration algorithm]

Inform error handler ——

[Report error and set data values to O]

[Use most recent data values with a new time stamp]

Provide data to
both virtual sensors

v

AWARD

107

Figure54. Sensor Interface (Sensor|F) Class State Diagram

System Design Document

PRIVATE:

acceleration

angle

atTime

conAttemptsMade

conTimer

id

|astRead

maxVel

name

number Sensor Polls

operational

recent

retryTimer

runLevel

sensorsStatusFlag

AWARD

The SensorlF class contains the following attributes:

The current estimate of acceleration.

The angle of the sensor to the track in degrees (the sign of the
angleisignored).

The timestamp associated with the current values.

The number of consecutive connection attempts madeto a
Sensor.

Time when to attempt a reconnection to a sensor that was
removed from service due to aloss of communication.

The actual sensor identifier, al..aN.

Last entry read from file.
Note: Thisfield isrequired for simulation operations.

The maximum velocity this sensor should see.

The ATMS name of the sensor.

The number of sensor polls to keep the useData flag set to
TRUE because the data valid bit from the sensor was set to
TRUE.

Configuration parameter indicating the unit is known to be up
or down.

A list of recent recorded values and timestamps.

If TRUE, attempt reconnection, after the proper time has
elapsed, to a sensor that was removed from service due to a
loss of communication.

The program’s execution level. 0 is normal operations, -3 is
simulation mode.

Global status flag used to update the MDI heartbeat process.
This global variableisonly visibleto SensorlF objects. If one
sensors fails, the flag is used to inform ATMS of a possible
warning.

108 System Design Document

smin

startTime

state
sunPort

takenOffLine

telephoneNum
toRadar

useAccd eration

useData

vl

V2

velocity

The simulation file.
Note: Thisfield isrequired for simulation operations.

The beginning ssimulation time.
Note: Thisfield isrequired for simulation operations.

The current state with respect to the finite state machine.
SUN port id to use to communicate with the radar.

If TRUE, the sensor has been removed from service dueto a
|ost communication and unable to reconnect.

The telephone number of the radar unit.
The Stream232 interface to the Sensor.

Flag indicating to use calculated acceleration in the estimates
for sending alarms.

Flag indicating to use the data from the sensor because the
current or previous data valid bit (from the sensor) was set to
TRUE.

Virtual sensor #1.

Virtua sensor #2.

The current (radar) velocity.

The SensorlF class contains the following operations:

PUBLIC:

I D
ReadConfi g

Sensor | F

Sensorl F; 2

get Sensor sSt at usFl ag

maxV

AWARD

Returns the actual sensor id.
Reads original configuration information.

Default constructor. Note: the default constructor generates a
runtime error (on purpose) so it should never be used.

Constructor that loads in configuration data from a supplied
datafile.

Returns the global sensor status flag.

Returns the maximum velocity the sensor should see.

109 System Design Document

operat or == Overloaded equality operator used to detect that two instances
areidentical.

reactivate Get datafrom the radar unit and processit.
reactivate; 2 Get data from the radar unit and process it for data acquisition.

The sequence diagrams for this member function are given in
Figure 55 and Figure 56.

reactivate [SensorlF.

[Description’
Determine if in data aquistiion mode

SensorlF VSensor senseStals Stream232 DateTime

IF in data aquissition mode THEN
Set dataAcq flag to TRUE
ELse
Set dataAcd flag to FALSE
ENDIF
IF the sensor is operational THEN
Settake off ine flag to FALSE
Check the sensors off line list for this sensor
IF the sensor is in the off ine list THEN
Settake off line flag to TRUE
ENDIF
IF need to take the sensor off line THEN
Get the current time
Get another time stamp, set it equal to the current time minus one second P : >
IF notin data aquistition mode THEN
Send values 1o the first virtual sensor to set up closing out f itis seeing a train
Send values to the second virtual sensor to set up closing out i itis seeing a train
Send values to the first virtual sensor closing out the train

Send values 1o the second virtual sensor closing out the train

ERRE

For the first virtual sensor, set the flag in the sensor status list to indicate itis off ine 1UpDX
For the first virtual sensor, set the flag in the sensor status list to indicate itis off ine
ENDIF
Close the RS-232 port]
Set the operational flag to FALSE
Clear the recent values list
For the virtual state machine, st the state to Invalid
ENDIF
ELsE
Ifthe sensor is not suppossed to be offline then restore it
IF putting it back on line THEN
IF notin data aquistition mode THEN

setUpDown;2

3

For the first vintual sensor, set the flag in the sensor status list to indicate it is now on line tUpD

S
s
S

| set the state to
Coninue, fall through o the ProbeRadar state
CASE ProbeRadar state DO
Check that the sensor is transmitting

probeRadar
IF the sensor is in error THEN

Report the error to the error handler
Report the sensor in erfor to the DataServer
Set the sensor status flag to FE_ERROR
Setthe state to TryPhone
Exitthis function now
ELse
Report sensor communication established to the error handler
Setthe state to NormalCycle
Coninue, fall through to the NormalCycle state
ENDIF
CASE NomalCycle state DO
Coninue, fall through to the NormalCycleBadLast state
CASE NomalCycleBadLast state DO
Peffom the NornaCycleBad ast Uses Case leBadL] — e
NormalCycleBadLast Sequence Diagram)
DEFAULT
Report to the error handler that the state has an invalid value
Exit the program
ENDSWITCH
Exit this function now

SensorlF VSensor senseStals Stream232 DateTime

Figure55. SensorlF::reactivate Sequence Diagram

AWARD 110 System Design Document

reacty cleBadl sorlF.]

[Description SensorlF VSensor DateTime ValTime
Tells the radar to send a single sample nextDatum ,l‘

IF in data aquisition mode THEN
IF data collection was successful THEN

Get the data's time stamp
Place the time stamp into the proper format Lr
Get the velocity data (in fps) >

Dump the data to the correct file or place
Send the sensor data to the DataServer

ELSE IF a timeout occured trying to get data THEN
Report the error to the error handler
Set the sensor status flag to FE_ERROR
Report the sensor in error to the DataServer
Set state to ProbeRadar

ELSE an error occured getting the data
Report lost telephone connection to the error
handier

Set the sensor status flag to FE_ERROR
Report the sensor in error to the DataServer
Set state to TryPhone
ENDIF
Exit this function now
ENDIF
IF a timeout occured getting the data THEN
Set state to ProbeRadar
Report the error to the error handler
Report the sensor in error to the DataServer
Set the sensor status flag to FE_ERROR
Exit this function now
ENDIF
IF an error occured getting the data THEN
Set state to TryPhone
Report lost telephone connection to the error handler
Report the sensor in error to the DataServer
Set the sensor status flag to FE_ERROR
Exit this function now
ENDIF
Get the sensor's velocity from the data I

IF the absolute value of the velocity > the maximum
velocity THEN

Get the time stamp from the data

Reset the data using the time stamp and setting the newvalue
velocity t0 0.0

ENDIF

Add the data to list of recent values (if the list is at its
maximum size, then delete the oldest value)

Remove any data from the list that is older than four
minutes

Get the current time and the data’s time

Calgulate the time delta (dea) from the last sensor
reading to

Cast the time values to doubles and calculate the double
delta “1

= BVS BN I

IF the deltaT < 2 minutes THEN ‘

Caloulate estimate velocity (estvel) using double
acceleratior

ELSE

Set the estimated velocity (estVel) to the actual
velocity 71

ENDIF
IF:the difference between the estimated velocity and
the actual velocity > 0.6 AND there is more th
TS AIGNS T

Report the estimate off to the error handler

Set the data valid flag to FALSE
ELSE

Set the data valid flag to TRUE
ENDIF
IF the data is NOT valid AND the state = NormalCycle
THEN

Replace the current velocity value with the last newvalue
velocity valu

Reset the time stamp with the current time stamp
Reset the velocity to the last velocity
ELSE IF the data is NOT valid AND the state = Norm

REFE

Report consistently bad data from the sensor to the
error handler

Remove the last two data values from the values list
Reset the time stamp with the current time stamp
Reset the velocity to the last velocity
Set acceleration = 0

ELSE
Set the time stamp with the current time stamp
Set the velocity to the last velocity
Set the acceleration using the Least Squares Method >
IF acceleration is close to equalling 0 THEN

Set acceleration = 0
ENDIF
Get the sensor status to update the DataServer

Get the time for the data in UTC (seconds since Jan. uTc
T1970)

Update the DataServer with the sensor data
ENDIF

Prepare for the next cycle through the state machine
IF the data was NOT valid THEN

i S A

Set the state to NormalCycleBadLast

ELSE
Set the state to NormalCycle

ENDIF

Send new values to the first virtual sensor newvalue

Send new values to the second virtual sensor newvalue i

IF sending new values to both virtual sensors resulted
ST raRinng Yoats Sty pomars FHER

Report to the error handler that both virtual sensors
created trains.

Exit the program
ENDIF

IF sending new values to the first virtual sensor
resuited in retuning a Train Sumry pointer THEN

Return the Train Sumry pointer and exit this function
now

ENDIF

IF sendi

19 new values to the second virtual sensor
restited

retlining a Train Sumry pointer THEN
Return the Train Sumry pointer and exit this function
now

ENDIF

SensorfF VSensor DateTime ValTime

Figure56. SensorlF::reactivate:NormalCycleBadL ast (Use Case) Sequence Diagram

AWARD 111 System Design Document

reset SensorsSt at usFl ag Resets the global sensor status flag.

~Sensor | F Destructor.

PRIVATE:

checkSensor Dat aval i dity Pollsthe sensor for multiple data sets to check for the data
valid bits. Returns TRUE if any of the data sets hasa TRUE

setting of the datavalid bit.

est Accel Estimates accel eration from the current and previous

velocities.
The sequence diagram for this member functionisgivenin

Figure 57.

AWARD 112 System Design Document

estAccel [SensorlF.

[Description

Confirm there is enough data points to estimate the
acceleration

If there is not enough points for a calculation then
return a 0.0 acceleration and exit this function now

IF there are exactly two data points THEN
Just perform a linear estimate
Get the two points
{g Bh_?_ﬁig}\e‘ difference between the two points is close

Return a 0.0 acceleration and exit this function now
ENDIF

Compute the linear estimate ((pointl - point2) / the
time differnce)

Return the estimate and exit this function now
ENDIF

Since there are more than two data points, perform a
least squares estimate

The equation solved is: (y = m*x + b). Results are also
calculated for standard error of estimate, se. Notice
that the x values are slid close to O to avid overflow.

Initialize all variables to O

data point list minus 1 minute
FOREACH data point in the values list DO
X = the data point time stamp - xslide

Initialize the xslide variable to the oldest time in the
e

y = the data point value
IFy NOT EQUAL TO 0.0 THEN
Increment the count
xbar = xbar + x;
ybar = ybar +y;
sumxy = sumxy + (X*y);
sSuMx2 = sumx2 + (X*x);
sumy2 = sumy2 + (y*y);
ENDIF
ENDFOR
Xbar = xbar / count;
ybar = ybar / count;
IF (sumx2 - (count*xbar*xbar)) = 0.0 THEN
Return 0.0 acceleration
ENDIF
?SJJ%S#QBQ{* o gcg;);)nt*xbar*xbar)) / (sumx2 -
The following 2 statements are commented out but are
available if flrther acceleration smoothing is
necessary.
b = ybar - m * xbar
se = square root of
2) ((sumy2 - b * ybar + count - m * sumxy) / count -

Return m and exit this function now

ValTime DateTime

operator=

doubl

doubl

doubl

ValTime DateTime

Figure57. SensorlF:

:estAccel Sequence Diagram

WiteConfig Write actual or example configuration data to afile.

AWARD

113

System Design Document

modenCnd Sends the "AT" command to the modem.
The sequence diagram for this member functionis givenin

Figure 58.

modemCmd [SensorlF.

[Description
IF the timeout supplied is < 0.0 THEN

Inform the error handler of the invalid timeout and
exit the program

ENDIF
Flush out anything in the data buffer read

Stream232 DateTime

Send the command string to the sensor ("AT") writ

O

Initialize the time variables needed to measure the
timeout

Read the echo from the sensor

WHILE no data received AND the timeout has NOT
occured DO

Read data from the sensor read;2

now

IF data received from the sensor THEN
Set the flag to exit the WHILE DO loop
ELSE
Get a new time to measure the timeout

ENDIF
ENDWHILE
IF a timeout occured THEN
Return a FALSE and exit this function now
ENDIF
lFHtE?\{E is a need to check for the OK from the sensor
WHILE no OK received from the sensor AND the
timeout has NOT occured DO
Read data from the sensor read;2

now

IF data received from the sensor THEN
Set the flag to exit the WHILE DO loop
ELSE

Get a new time to measure the timeout
ENDIF
ENDWHILE
IF a timeout occured THEN
Return a FALSE and exit this function now
ENDIF
ENDIF

All data has been received, return TRUE and exit this
function now

now

Stream232 DateTime

Figure58. SensorlF::modemCmd Sequence Diagram

AWARD 114

System Design Document

Next Dat um Tells the radar to send a single sample.

The sequence diagrams for this member function are given in
Figure 59 and Figure 60.

nextDatum [SensorlF.

[Description Stream232 ValTime DateTime

Handle getting data from the file if in simulation mode
IF in simulation mode THEN
Get the current time

now

Get the time from the last simulation reading time

T ,[r
Cast the last simulation time, current time, and the double L

start simulation time to doubles for comparison

IF it is time to get a new simulated sensor reading
THEN

WHILE there is need for new simulation data DO
Convert the last read velocity from MPH to FPS
Set the atT to the current time

operator=
IF not end of file of the simulation file THEN

ﬁead new simulation data from the simulation ReadConfig
ile

ENDIF
ENDWHILE
ELSE

The sensor read the same value as the last time, operator=
just update the atT to the current time ’L

ENDIF

Set the state for the sensor to indicate a good read
occured

Create a new ValTime object and set its data values alTime

Return the new ValTime object and exit this function
now

ENDIF

Flush the data in the buffer maklng certain that
communications have not been lost

WHILE flushing the buffer DO

Read data from the RS-232 port d;2 >
IF the number of characters read = 0 THEN
Buffer has been flushed, set the state to continue
ELSE
:E Itlhe data read from the buffer contains "DONE"
Communications error occured, set the state to
communications lost
ENDIF
!:I::Atg%ﬂgt?a irSialdT;[I(I)ETllhe buffer contains "NO
Communications error occured, set the state to
communications lost
ENDIF
:E Itlhe data read from the buffer contains "ERROR"
ggr;nrwuunnlécaat}g)#sslggmr occured, set the state to
ENDIF
IF the data read from the buffer contains "BUSY" in
it THEN
Communications error occured, set the state to
communications lost
ENDIF
ENDIF
ENDWHILE
IF the state is in communications error THEN
Return a 0.0 and exit this function now
ENDIF
Have the radar send one data sample ('S ") write >

Initialize the data paramelers necessary to read the no
data from the RS-232 poil ’L

Perform the "While readind data from buffer do" Use

(ThIS is documented in th
ReadDataFromBuffer Sequence Diagram)

3

extDatum:ReadDataFromBuffer[$ensorlF] +——@

IF the state is in communications error THEN
Return a 0.0 and exit this function now
ENDIF

Adjust the veloclty to account for the angle versus the
track directiol

Convert the velocity from MPH to FPS

Create a new ValTime object and set its data values alTime

Return the new ValTime object and exit this function
now

Stream232 ValTime DateTime

Figure59. SensorlF::nextDatum Sequence Diagram

AWARD 115 System Design Document

nextDatum:ReadDataFromBuffer[SensorlF.]

b ription DateTime Stream232 SensorlF
WHILE reading data from the buffer DO ‘L“

Read data from the RS-232 port read;2 T

LIFHLEﬁ data read from the buffer contains "DONE" in it

Communications error occured, set the state to
communications lost

ENDIF

@&E%Féﬁi% Irﬁ?ld_ljmyz:rhthe buffer contains "NO

Communications error occured, set the state to
communications los

ENDIF

”:Ttlf_]‘e data read from the buffer contains "ERROR" in

Communications error occured, set the state to
communlcatlons lost

ENDIF
LIFHLEﬁ data read from the buffer contains "BUSY" in it
Communications error occured, set the state to
communications lost
ENDIF
Remove any leading spaces from the buffer
Parse the data from the buffer string
IF the buffer string is the correct size THEN
IF buffer string is in the proper format THEN
Confirm that the values are numeric
IF the values are numeric THEN
Set the time when data aquisition was aquired now]
Get the velocity from the data buffer
IF velocity > 0 THEN

h id bit f t i
EaPeaRs e BTN S
Check the sensor for the data valid bit [checkSensorDataValidity >7)
IF the return state < 0 THEN
Return a 0.0 velocity
ENDIF

LIFRLU% SIQ}—TEWS data valid bit returned
Set the original data valid bit to TRUE
ENDIF
ENDIF
IF the data valid bit is TRUE THEN
Set the useData flag to TRUE

Set the number of sensor polls equal to
NUM_SENSOR_|

ELSE
IF the useData flage is set THEN

Decrease vaI e of the number of
sensor pol‘ Pb actor ?E

ENDIF
ENDIF
ELSE
IF the useData flage is set THEN

Decreasei val e of the number of
sensor polls by "Y&ctor of 1

ENDIF

ENDIF

IF the useData flage is set THEN
IF the number of sensor polls is equal to 0
THEN

Set the useData flag to FALSE
Set velocity equal to 0.0
ENDIF
ENDIF

Adjust the velocity for MPH using the formula
su L[I)?I d?rr\alm thleysenso maﬁ 9 Y

Set the ap, mﬁ;latehmqn for. the velocng Th&s

|ﬂd|cates rain is moving ti
e sensor or away from the sensor
ENDIF
ELSE
eceived.the wron ?1 at fr m thehsensor
edaort this to the etror dlerand exit t
ENDIF
ENDIF
IF stil ing data from the sensor AND not the first
passI H-fﬁgﬂ" 9 !
lS”Iﬁeep for 25000 micro seconds and get the current now
ENDIF
ENDWHILE

DateTime Stream232 SensorlF

Figure60. SensorlF::nextDatum:ReadDataFromBuffer (Use Case) Sequence Diagram

AWARD 116 System Design Document

pr obeRadar

Attempts to determine if the radar unit is working.
The sequence diagram for this member function isgivenin

Figure 61.

probeRadar [SensorlF.

[Description

IF in simulation mode THEN
Exit htis function now
ENDIF
Make certain the transmitter is on ("D40 ")

(S‘I% 't'gansmirter to send at a continous rate of 250mS

Tell the radar not to send continuous samples ("BO ")
Set the time out for getting data to 10 seconds
Attemp to get data from the radar

Return the state of the communications received from
"nextDatum™ and exit this function now

SensorlF Stream232

writ

writ

write

nextDatum

SensorlF Stream232

Figure6l. SensorlF::probeRadar Sequence Diagram

AWARD

117

System Design Document

tryPhone Attempts to establish a communication channel using the
sunPort attribute value and then dialing the telephoneNum
attribute value to the remote radar unit.
The sequence diagrams for this member function are in given
Figure 62 and Figure 63.

tryPhone [SensorlF.]

[Description SensorlF Stream232 DateTime

Perform the "Make connection” Use Case ——try +—eo
(This is documented in th

MakeConnection Sequence Diagram)

Initialize the two monitoring time structures
Initialize t1

Initialize t2 i

Monitor the phone call

WHILE the state of the callis still receiving (rstate = 0)
AND the time difference is < 25.0 seconds DO

Get data from the connection and place it in the buffer d;2

IF the state is still receiving (rstate = 0) AND the buffer contains the string "NO
DIALTONE" THEN

Set the state to no dial tone (-1)
ENDIF

IF the state is still receiving (rstate = 0) AND the buffer contains the string "NO
CARRIER"” THEN

Set the state to no carrier tone (-2)
ENDIF
IF the state s still receiving (rstate = 0) AND the buffer contains the string "RING"

Set the state to phone rings (-3)
ENDIF
IF the state is still receiving (rstate = 0) AND the buffer contains the string "ERROR"

Set the state to error dialing the number (-4)
ENDIF
IF the state is siill receiving (rstate = 0) AND the buffer contains the string "BUSY"

Set the state to busy signal (-5)
ENDIF

IF the state is still receiving (rstate = 0) AND the buffer contains the string "NO
ANSWER" THEN

Set the state to phone rings but no answer (-6)
ENDIF
IF: the state is still receiving (rstate = 0) AND the buffer contains the string "CONNECT"

IF the buffer contains the string "2400" THEN
Set the state to connected (1)
ELSE
Set the state to connected (2)
ENDIF
ENDIF

Sleep for 100000 micro seconds to allow for more data to be transmitted

Update the second time structure
ENDWHILE
SWITCH on the data received state
CASE no dial tone DO

Set error string to no dial tone
CASE no carrier tone DO

Set error string to no carrier tone
CASE phone rings DO

Fall through to the phone rings but no answer CASE
CASE phone rings but no answer DO

Set error string to phone rings but no answer
CASE error dialing number DO

Set error string to error dialing sensor
CASE busy signal DO

Set error string to busy signal
CASE still in receive state DO

Set error string to unsuccessful connection attempt
CASE connected state #1 DO

Fall through to the connected state #2 CASE
CASE connected state #2 DO

Set error string to connected to sensor
ENDSWITCH
IF the connection was not successful THEN

Send the hangup command to the modem (“HO") d d
Report the error contained in the error string to the error handler
Exit this function now returning FALSE for unsuccessful

ENDIF

Exit this function now returning TRUE for successful

SensorlF Stream232 DateTime

Figure62. SensorlF::tryPhone Sequence Diagram

AWARD 118 System Design Document

tryPhone:MakeConnection[SensorlF.

[Description SensorlF Stream232

Close any open RS-232 ports lose |

IF in simulation mode THEN
Exit this function now
ENDIF

Marlt<)e a connection to the sensor (open the RS-232 open J
po

IF an error occured making the connection THEN
Report the error to the error handler
Exit this function now

ENDIF

Set the baud rate to 2400

Set the bits per character to

Set the flag for two stop blts to FALSE

Set enable receiving
Set parity off

Configure the port for unbuffered communication using onfigure_control ———————>
the above settings }

Set ignore the break command

Set ignore signal on break

Turn off the oIIDWln(t; input controls: parity errors, mark

pamy errors, strip bit #8, map newline to carriage
ignore camage relurn map carriage return to

newllne map uppercase to lowercase, enable

start/stop output control, enable Start/stop input control,

enable any character to'restart output, and echo BEL

on input line too long

Configure the port's input parameters using the above configure_input —
settings

Turn off post processing

Configure the port's outpout parameters using the configure_output——
above setting

Turn off the following settings: enable signals,
canonical |n?ut canonical upper/lower

;T)_represent ion, enable echo.

urn on disable flush after interrupt or quit

Configure the port's local parameters using the above onfigure_local —

settings

Turn off the port's special chaarcters and set the configure_chars —

timeouts

Get the modem's attention ("+++") write

Flush out anything on the line read E
Check on the modem (") modemCmd —>q

IF there is an error on the modem THEN

Report unable to communlcate to the local modem
port to the error handle

Exit this function now
ENDIF

Tell the modem to %ve up on the remote modem after modemCmd o
15 seconds ("S7=1

IF there is an error on the modem THEN

Report unable to configure the local modem port to
the error handler

Exit this function now
ENDIF

Tell the modem to set the maximum DCE speed to modemCmd o
2400 ("S37=6")

IF there is an error on the modem THEN

Report unable to configure the local modem port to
the error handler

Exit this function now
ENDIF

Dial and connect to the remote modem (DT??????7?,
where ?????7?? = the phone number)

IF there is an error on the modem THEN

Report unable to communicate to the local modem
port to the error handler

Exit this function now
ENDIF

SensorlF Stream232

Figure63. SensorlF::tryPhoneMakeConnection (Use Case) Sequence Diagram

5.4.2.3 RS-232 Port (Stream232) Class

Thisclassisused for dealing with RS232 1/O. This class allows for afile descriptor supporting
both reading and writing. This class cannot be copied.

AWARD 119 System Design Document

The Stream232 class contains the following attributes:

PUBLIC:

fd

PRIVATE:

maxlien

shuf

sbuflen

PROTECTED:

tio

File descriptor to the Sun port, non-negative means avalid
descriptor.

The maximum number of characters to read from the port.
The character read buffer.

The length of sbuf.

The structure for the Terminal |/O characteristics.

The Stream232 class contains the following operations:

PUBLIC:

Streank32
cl ose

configure_chars

configure_i nput
configure_I ocal
confi gur e_out put

open

r ead

AWARD

Default constructor.
Standard file closure.

Configure the character processing control parameters of the
RS 232 port.

Configure the input control parameters of the RS 232 port.
Configure the local control parameters of the RS 232 port.
Configure the output control parameters of the RS 232 port.
The routine opens the device for reading and writing, then
confirms that ioctl system calls can be made on the device using
the TCGETA flag.

Read from the RS 232 port using the current settings. The
system will read until some sort of end of line condition is

reached or timeout condition occurs (depending on the current
settings) or the maxlen isread.

120 System Design Document

read; 2 Overloaded read function that reads from the RS 232 port and
performs pseudo-line processing.

wite Writes to the RS 232 port using the current settings.

~Streank32 Class destructor.

5.4.2.4 Vaue Time Stamp (VaTime) Class

This classis responsible for containing a value and an associated timestamp. This class should be
ableto be used in an ordered list because it has an equality operator, a copy constructor, an assignment
operator, and a default constructor.

The VaTime class contains the following attributes:

PRIVATE:
stamp The timestamp associated with the value.
val Thevalue.

The VaTime class contains the following operations:

PUBLIC:

ReadConfi g Read original configuration information.

Val Ti me Default constructor.

Val Ti me; 2 Constructor that takes a Val Time instance as an initializer.

WiteConfig Writes actual or example configuration datato afile.

newval ue Updates the object with new values.

operator= Overloaded assignment operator to assign one Val Time object
to another.

operat or == Overloaded equality operator used to detect that two instances
areidentical.

tinme Returns the timestamp associated with the value.

val ue Returns the value.

~Val Ti me Destructor.

AWARD 121 System Design Document

5.4.2.5 Sensor Status (senseStatus) Class

This classis used to keep track if avirtual sensor isup or down.

The senseStatus class contains the following attributes:

PRIVATE:
id The virtual sensor id, s1..sM, it is associated with.
working Boolean flag that states whether the virtual sensor isworking.

The senseStatus class contains the following operations:

PUBLIC:

i sUp Returns the Boolean flag that states whether the virtual sensor
isworking or not working.

operator= Overloaded assignment operator to assign one senseStatus
object to another.

operat or == Overloaded equality operator used to detect that two instances
areidentical. This operator accepts a string to compare against
theid.

operat or ==; Overloaded equality operator used to detect that two instances
areidentical. This operator accepts another senseStatus
instance compare against.

senseSt at us The default constructor.

senseSt at us; 2 Constructor where the values must be passed in.

sensesSt at us; 3 Constructor that takes a senseStatus instance as an initializer.

set UpDown Accepts TRUE or FALSE to set the virtual sensor up or down.

set UpDown; 2 Accepts astring and a TRUE or FALSE to set the virtual
sensor up or down. Only setsthe value if string passed matches
theid. Then it returns TRUE, otherwise it returns FALSE.

setvld Setstheid for the object.

vid Returnstheid of the object.

AWARD 122 System Design Document

5.4.2.6 Virtual Sensor (VSensor) Class

This class is designed to make configuration of AWARD to be straightforward. Specifically, each
radar sensor provides data for 2 virtual sensors. One for trains receding from the sensor, the other for
approaching trains. This class maintains a downstream list of crossings and other sensors and a summary
of any train the sensor is perceiving. After being provided current information from the sensor, it creates or
updates the train summary. This class is like the SensorlF class in that it implements a finite state
machine.

AWARD 123 System Design Document

AWARD

VSensor

Start
°

Load configuartion data
for the virtual sensor

NoTrain

A

Await Data

Data received Velocity <= 0

Interpret
train data €

Velocity > 0

MaybeTrain
Await Data

Data received

Interpret
train data

Velocity > O; post new Train and
TrainSumry instance (maintain a
pointer to theTrainSumry
instance for updating)

SeeTrain

Await Data

Data received

Interpret
train data s

Velocity <=0

Velocity > 0

[Update TrainSumry Instance w

(S—Velocity <=0~

MaybeNoTrain

¢ Velocity > 0 s Interpret

Await Data

Data received

train data

Velocity <=0

4(Update TrainSumry Indicating Train Data Complete j

Figure64. Virtual Sensor (Vsensor) Class State Diagram

124

System Design Document

The V Sensor class contains the following attributes:

PRIVATE:

connects List of downstream connections from the virtual sensor.

directed Which direction, with respect to sensor, belongs to this virtua
Sensor.

id Virtua sensor identifier, sl1..sM.

lastTime Time of previous update.

lastVel Value of previous velocity.

name Name of this sensor.

rules List of acceleration modification rules.

sensorld Identifier of associate actual sensor, al..aN.

state Current state of the class, with respect to the finite state
machine.

sumry The train summary pointer.

The V Sensor class contains the following operations:

PUBLIC:
connections Access routine that returns the list of downstream connections
from the virtual sensor.
direction Access routine that returns the sensor direction.

identifier Access routine that returns the virtual sensor ID.

AWARD 125 System Design Document

newval ue Given current sensor values of velocity and acceleration, the
data applies to this virtual sensor, then update the train
summary.
The sequence diagram for this member functionis givenin
Figure 65.

newValue [VSensor.

[Description VSensor TrainSumry AccelMod

Update the velocity.
IF the direction of the virtual sensor is for negative velocity
THEN

IF velocity >= 0 THEN
Set velocity equal to 0.0

ELSE
Set velocity to positive, i.e. set it to its absolute value
ENDIF
ELSEIF the direction of the virtual sensor is for positive
velocity THEN

IF velocity < 0 THEN
Set velocity equal to 0.0
ENDIF
ELSE
Report an error and exit the program (This is highl
unlikely to occur because the direction must be sef in order
for the’program to start).
ENDIF
Update the acceleration
FOR EACH acceleration modification rule DO
Update the acceleration using the modification rule. thruRule >
ENDFOR
SWITCH on the current state of the finite state machine
CASE No train DO
IF velocity > 0.0 THEN
Change state to Maybe a train
ENDIF
CASE Maybe a train DO
IF velocity <= 0.0 THEN
Change state to No train
ELSE
Change state Sensor sees a train

Create a new TrainSumry object setting its velocity and newTrain
time stamp to its previous reading

Create Train Sumry object TralnSumry~>[
Set the new train sumry flag to TRUE

Update the new train sumry object with the current updateTrain
velocity and time stamp

Update Train Sumry object updaleﬁ'
ENDIF
CASE Sensor sees a train DO
IF velocity <= 0.0 THEN
Change state to Maybe there is no train

ELSE
Update the train sumry object with the current velocity updateTrain
and time stamp
Update Train Sumry object }7 updaleﬁ
ENDIF

CASE May be there is no train DO
IF velocity <= 0.0 THEN
Change state to No train

‘ngggale the train sumry object to indicate the end of the endTrain
Update Train Sumry object ’Hﬁ updaleﬁr
ELSE
Change state to Sensor sees a train
Update the train sumry object with the current velocity updateTrain
and time stamp
Update Train Sumry object }7 updale*)[r
ENDIF

CASE An invalid state DO
Coninue, fall through to the DEFAULT state
DEFAULT DO
Report an error and exit the program (This is highly.
unlikely to occur because the finite state machine will not
g{laol\g).unknown states and the Invalid state is the startup
ENDSWITCH
Set the last time stamp to the current time stamp
Set the last velocity to the current velocity
IF a new train sumry object was created THEN
Return a pointer to the new train sumry object
ELSE
Return NULL
ENDIF

VSensor TrainSumry AccelMod

Figure65. VSensor::newValue Sequence Diagram

AWARD 126 System Design Document

operator= Overloaded assignment operator to assign one virtual sensor

object to another.

operat or == Overloaded equality operator used to detect that two instances
areidentical.

sensorldentifier Access routine that returns the actual sensor 1D.

sunmmary Access routine that returns the TrainSumry pointer.

vNanme Access routine that returns the virtual sensor name.

VSensor Default constructor.

VSensor ; 2 Constructor that takes a configuration file name, alist of

downstream connections, and alist of acceleration
modifications asitsinitializers.

VSensor; 3 Constructor that takes a Virtual Sensor instance as an
initializer.
~VSensor Destructor.
PRIVATE:
endTrain Sets the end of the train through the variables.
newlrai n Creates a new TrainSumry object.
ReadConfi g Reads and |oads the object with data from its configuration file.
updat eTrain Updates the TrainSumry object associated with this virtual
Sensor.
WiteConfig Write actual or example configuration datato afile.

5.4.2.7 Acceleration Modification (AccelMaod) Class

This class contains acceleration modification rules. These rules are a way for known behavior to
be entered into the AWARD system, especially train behavior that occurs when trains are not being
observed by a sensor. Acceleration may be modified by setting the acceleration to some constant or
adjusting the measured acceleration. Adjustment may include adding and/or multiplying by some
constants. This class should be able to be used in an ordered list because it has an equality operator, a
copy constructor, an assignment operator, and a default constructor.

AWARD 127 System Design Document

The AccelMod class contains the following attributes:

PRIVATE:
constAccel
constMult
constOffset
dayOfWeek
endTime
maxA
minA
startTime

vSensorld

Constant value to set acceleration to (or infinity).

Constant multiplicand to apply to acceleration (after the offset).
The constant offset to apply.

The day of week, 1..7, rule to apply, Sunday is 1.

Thetime of day the rule stops applying.

The maximum (absolute) accel eration after calculations.

The minimum (absolute) acceleration after calculations.
Thetime of day the rule beginsto apply.

The associated virtual sensor ID, s1..sM.

The AccelMod class contains the following operations:

PUBLIC:

Accel Mbd

Accel Mod; 2

Accel Mod; 3
ReadConfi g
WiteConfig

conpare

operator=

operat or ==

AWARD

Default constructor.

Note: The default constructor values are not really meaningful.
So the default constructor just provides a placehol der.
Assigning data requires using the other constructors.

Constructor that loads in configuration data from a supplied
datafile.

Constructor that takes a AccelMod instance as an initializer.
Reads original configuration information.
Writes actual or example configuration datato afile.

Detects that another instance has overlapping conditions.
Returns TRUE if thisinstance and the other instance overlap.

Overloaded assignment operator to assign one AccelMod object
to another.

Overloaded equality operator used to detect that two instances
areidentical.

128 System Design Document

thruRul e Applies the accel eration modification rule to the provided value,
returning a (potentially) modified value.
The sequence diagram for this member functionis givenin
Figure 66.

thruRule [AccelMod.]

[Description | DateTime
Get the day seconds from the time stamp passed in val;2 ’L‘H
Get the day of the week from the time stamp passed wDay ’H

IF the day of the week from the time stamp is
EQ AL to the instance's day of the week AND
the day seconds from the time stamp >= the
instance's start time AND

the day seconds from the time stamp <= the
instance's end time THEN

IF the absolute value of the constAccel < 1000000
THEN

Set acceleration equal to constAccel
IF acceleration > the maximum acceleration AND
the absolute value of the maximum acceleration
< 1000000 THE|
Return the maximum acceleration
ENDIF
IF acceleration < the minimum acceleration AND
the absolute value of the minimum acceleration
< 1000000 THE|
Return the minimum acceleration
ENDIF
Return the current acceleration
ENDIF

IF the absolute value of the constant multiplyer <
1000000 THEN

Set acceleration equal to acceleratlon multiplied
by the constant multiplyer

ENDIF
IF acceleration > the maximum acceleration AND
the absolute value of the maximum acceleration <
1000000 THEN

Return the maximum acceleration
ENDIF
IF acceleration < the minimum acceleration AND
the absolute value of the minimum acceleration <
1000000 THEN

Return the minimum acceleration
ENDIF

ENDIF

Return the current acceleration

DateTime

Figure66. AccelMod::thruRule Sequence Diagram

vSensor| D Returns the associated virtual sensor ID.

~Accel Mbd Destructor.

AWARD 129 System Design Document

5.4.2.8 Crossing (Crossing) Class

This class is responsible for containing information about one railroad crossing. The data
contained in the class is simply a description of the distance between the crossing and where the signals
detect atrain (under normal circumstances). The class also has atextual name of the railroad crossing.

The Crossing class contains the following attributes:

PRIVATE:
id The crossing item identifier, c1..cP.
major AlarmTime Time when amajor alarm was sent to ATMS.
name The textual name of the crossing.
nominal Time The nominal time from thetrain crossing to where thetrainis

sensed (O if no signals at the crossing).

The Crossing class contains the following operations:

PUBLIC:

Crossing Default constructor.
Note: The default constructor isnot really useful. It isjust a
placeholder because assigning data requires using the other
constructors.

Crossing; 2 Constructor that loads in configuration data from a supplied
datafile.

Crossing; 3 Constructor that takes a Crossing instance as an initializer.

I D Returns the crossing ID.

crossi ngName Returns textual crossing name.

mej Al ar nili me Returns the time when amajor alarm was sent to ATMS.

nonmri ne Returns the nominal time from the train crossing to where the
train is sensed.

operator= Overloaded assignment operator to assign one crossing object
to another.

operat or == Overloaded equality operator used to detect that two instances
areidentical.

AWARD 130 System Design Document

set Maj or Al ar nili e Sets the time when amajor alarm was sent to ATMS,

~Crossing Destructor.

PRIVATE:
ReadConfi g Reads origina configuration information.
WiteConfig Writes actual or example configuration datato afile.

5.4.2.9 Train Class

This class is responsible for maintaining (a unified summary of) a train and a list of Estimated
Time of Arrival (ETA) and Estimated Time unTil Arrival (ETTA) for al downstream connections. There
may be more than one sensor that perceives a particular train, so there may be multiple train summaries
that a train instance includes. Part of interfacing to other classes includes the ability to manipulate train
summaries without ever copying them so that the Virtual Sensors may be able to update the summaries
irrespective of this classs activities.

The Train class contains the following attributes:

PRIVATE:

acceleration Thetrain's acceleration.

atTime The timestamp when speed, acceleration., and length last
updated.

eta List of train ETAsand ETTAs for al downstream
connections. Downstream connections maybe crossings or
virtual sensors.

length Thetrain’slength.

speed Thetrain's speed.

sunries List of train summary (TrainSumry object) pointers. The

train summary structure contains information regarding one
train that is seen by one (virtual) sensor.

The Train class contains the following operations:
PUBLIC:

cancel Al arm Cancel an darm sent to ATMS.

AWARD 131 System Design Document

crossi ngEXi sts Determinesif acrossingisin the train's connection list.

currentAccl Return the train's accel eration.

currentlLength Returnthetrain'slength.

current Speed Return the train's speed.

current Ti me Return the train's timestamp.

maj or Al ar mSent Determinesif atrain sent amajor alarm to ATMS.

nmerge Determining that two trains refer to the same actual train
and merge them (without interrupting train summary
memory locations) - the second train looses it's summaries,
but still needsto be discarded after return (only discard if
merge returns true).

The sequence diagram for this member function isgivenin
Figure 67.

AWARD 132 System Design Document

merge [Train.

[Description Train TrainSumry ConnectionETA DateTime

IF the train's time stamp is invalid THEN

Report the error to the error handler and exit the
program

ENDIF

Check to see if this train instance is the same as the operator==
instance passed in

IF the instances are the same THEN

Return a FALSE to indicate an error and exit this
function now

ENDIF

IF this instance's length < the length of the instance
passed in THEN

Reset the length using the value from the instance
passed in

ENDIF

IF this instance's time stamp < the time stamp of the
instance passed in THEN

Reset the time stamp, speed, and acceleration using
the values from the instance passed in

ENDIF

Get the number of entries in both instances
TrainSumry object list

IF this instance's number of entries is 1 AND the other
instance’s number of entries is NOT 1 TH

Set the use this instance flag to FALSE

ELSE IF this instance's number of entries is NOT 1
AND the other instance's number of entries is 1 THEN

Set the use this instance flag to TRUE
ELSE

Get lhe |n|l|a| sensor reading time from both nitialTime
instal

Cast both initial time to doubles for comparison dpubl

IF this instance's time stamp > the other instance's
time stamp THEN

Set the use this instance flag to FALSE
ELSE
Set the use this instance flag to TRUE
ENDIF
ENDIF
Remove the TrainSumry objects from the othe
instance's TrainSumry object list and insert it al the
end of this TrainSumry object list

Go through both ConnectionETA list, if any are alike
then merge the ConnectionETA

FOR EACH of the ConnectionETAs in the passed in
instance'’s list DO

Set the match found flag to FALSE

F?B EACH of the ConnectionETAs in this instance's
is

Check if the first ConnetionETA is the same as this operator=f-
one

IF the ConnectionETAs are the same THEN
Merge the two ConnectionETAs into one merge
Set the match found flag to TRUE and exit this

op

S

inner FOR lo
ENDIF
ENDFOR
IF a match was NOT found THEN

Add the Connection ETA into the end of the
ConnectionETA object list

ENDIF
ENDFOR

Remove all the ConnetionETAs from the passed in
instance'’s list

Return TRUE for a successful merge and exit this
function now

Train TrainSumry ConnectionETA DateTime

Figure67. Train::merge Sequence Diagram

operator= Overloaded assignment operator to assign one train equal to
another.

operat or == Overloaded equality operator to determine that two train
instances are identical.

past Al | Determine that atrain has |eft all areas of interest.
Train Default constructor.

Note: the default constructor generates aruntime error if itis
used without an initializer.

AWARD 133 System Design Document

Train; 2 Constructor that takes a Train summary pointer as an

initializer.
Train;3 Constructor that takes a Train object as an initializer.
updat eETA Update internal data, list of ConnectionETA objects for all

downstream connections and generate appropriate events.
The sequence diagram for this member function isgivenin
Figure 68.

AWARD 134 System Design Document

updateETA [Train

[Description ConnectionETA TrainSumry DateTime senseStatus

IF the current time stamp is invalid THEN

Report the error to the error handler and exit the
program

ENDIF
EQR EACH TrainSumry object in the TrainSumry list

Get the train length from the TrainSumry object entL

IF the retrieved length > the current length THEN ,Lr
Update the train's length ecentL

ENDIF Lr

Check to see if the TrainSumry's sensor is still stillinVi

sensing the train gl

IF the sensor still sees the train THEN ‘
Get the TraimSumry object's virtual sensor ID 1sorlD >

Find the sensor in the sensor status list and find
out if it is operational

IF the sensor is operating THEN

Get the time stamp when the TrainSumry object ntTime
was last updated T
Cast the time stamps to doubles for comparison doubl

Check to see if the train's speed, acceleration,
and time stamp need updating

IF the time from the TramSumEy(\‘obJec(is later
than the trains time stam

Update the train's time stamp with the ecentTime
TrainSumry object's time stamp ’u
Update the train's speed with the TrainSumry recent’
object's velocity ’u
Update the train's acceleration with the recen
TrainSumry object's acceleration 1

Set the train still in view flag to TRUE
ENDIF
ENDIF
ENDIF
ENDFOR
IF the train is NOT in view THEN

Update the train's time stamp to the current time noy
ENDIF

FOR EACH ConnectionETA object in the train's
connection list DO

Update the ConnectionETAS with the current speed, upd
acceleration; length, and time stamp 71
ENDFOR
Set the downstream time flag to -1.0 for iteration
purposes
WHILE the downstream time < 0 THEN
dSe(the downstream time to the current time plus one no\ ’[
2

FOR EACH ConnectionETA object in the train's
connection list DO

Get the ConnectionETA object's ID D >1
IF the ConnectionETA is a sensor THEN
Find the sensor in the sensor status list and find Up

out if it is operational
IF the sensor is operating THEN
Get the current ETA from the ConnectionETA urrentETA —————»

IF the current ETA < the downstream time
THEN

Set the upstream flag to FALSE

OR EACH TrainSumry object in the
TRmSOGN 12153

Check to see if the TrainSumry's sensor is i id
the same as the ConnectionETA's sensor 1

IF the sensors are the same THEN
Set the upstream flag to TRUE
Exit from this FOR loop
ENDIF
ENDFOR
I the ConnectionETA is NOT upstream

IF the ConnectionETA is NOT in the
already done list THEN

Set the downstream time to the currentETTA———>
Con arﬁ‘l/%ll'ﬂ(zg_lﬁri)currenl estimated time
ENDIF
ENDIF
ENDIF
ENDIF
ENDIF
ENDFOR

IF the downstream time < 0 THEN
increment the downstream items ETA and ETTA

Set the increment factor

FOR EACH ConnectionETA in the current
ConnectionETA’'s downstream items list DO

If the downstream item has created a Blockage
object THEN

Resel the alarm sent to ATMS flag so ATMS
n be updated with the new ETA

ENDIF

Get the current ETTA from the train's currentETTA.
ConnectionETA

Increment the ConnectionETA, in the train's list, ——————|ncrementETTA:

ENDFOR
Add the ConnectionETA to the already done list
ENDIF
ENDWHILE

FOR EACH ConnectionETA object in the train's
connection list DO

Check the ConnectionETA's estimated time until checkETTA.
arrival

ENDFOR
Exit this function now

ConnectionETA TrainSumry DateTime senseStatus

Figure68. Train::updateETA Sequence Diagram

AWARD 135 System Design Document

~Train

5.4.2.10 Train Summary (TrainSumry) Class

This classisresponsible for containing information regarding one train that is seen by one (virtual)
sensor. Only the virtual sensor is expected to update the data contained herein, however the data is
expected to be used by the Train class and is expected to handle deleting instances of TrainSumry objects.

The TrainSumry class contains the following attributes:

PRIVATE:
connects
currAcc
currSpd
currTime
estLngth
initSpd
initTime

inView

vid

List of downstream connections from the virtual sensor.
Current train acceleration.

Current train speed.

Time of current values.

Current estimate of the length.

Initial train speed.

Time of initial train speed.

If true, sensor is still perceiving the train, otherwiseit has
completed itspassing. This also indicates that the virtual
sensor, which created this summary, is no longer referencing

this instance.

Virtual sensor ID that created this train summary.

The TrainSumry class contains the following operations:

PUBLIC:

connecti ons

initial A

initial Ti me

initialV

AWARD

Access routine to the list of downstream connections from the
virtual sensor.

Access routine that returnsthe initial acceleration. Always
just returns 0.

Access routine that returns the initial time stamp.

Access routine that returns the initial speed.

136 System Design Document

i sSaneVid Returns TRUE if the vid passed in is the same as the instance

vid.

operator= Overloaded assignment operator to assign one TrainSumry
object to another.

operat or == Overloaded equality operator used to detect that two instances
are identical.

recent A Access routine to the most recent acceleration.

recentL Access routine to the most recent length.

recent Ti me Access routine to the most recent time stamp.

recentV Access routine to the most recent speed.

stilllnView Returns TRUE if the virtual sensor still detects atrain.

Trai nSunry Default constructor. Note: the default constructor generates a
runtime error if it isused without avel (must be O or greater)
and atTime set.

Trai nSunry; 2 Constructor that takes a TrainSumry instance as an initializer.

updat e Update internal data using new sensor information if
stillinView isfalse, then vel and acc are ignored. vel must be
greater than 0.

vsensor | D Access routine to the virtual sensor ID that created the
instance.

~Trai nSunry Destructor.

54.2.11 Connection Description (ConnectionETA) Class

This class, part of the AWARD system, is responsible for containing information relating one
virtual sensor to al of its downstream components (include virtual sensors and crossings). Part of the data
contained in the class is simply a description of the distance between the sensor and the downstream item
and the maximum velocity the train will ever travel between the two locations. The remaining information
includes ETA and ETTA for a particular train. Creation and update of this data is the responsibility of
class Train. This class generates crossing blockages (information passed to MDI DataServer) and ATMS
alarm/incidents based on event scenarios for the crossing. This class assumes that whenever two different
lists of ConnectionETA are merged, that the merge function is called prior to any attempts to update
information. Otherwise, some data may become corrupted because some update functions and crossing
Blockage logic requires that only one crossing Blockage may be associated with a particular downstream
item.

AWARD 137 System Design Document

The ConnectionETA class contains the following attributes:

PRIVATE:
ETA
ETATime
ETTA
acc

blkg

distTime

distance

downstream

events

length

maxVel

name
nomTime
origDist

runLevel

vSensorld

Vel

AWARD

Estimated Time of Arriva (ETA).
Time vel and acc acquired.

Estimated Time unTil Arrival (ETTA).
Acceleration used in ETA calculation.

Crossing Blockage (event) associated with this downstream
item.

Time distance last calculated (a O indicates distance not set).
Current distance to item (virtual sensor or crossing).

If this ConnectionETA isacrossing, then thislist isempty. If
itisavirtua sensor (and it is not a part of some other
ConnectionETA's downstream list), then thisisalist of all the

downstream items.

Conditions that cause creation of ATMS alarms and
associated alarm descriptors.

Item identifier, s1..sM for virtual sensorsor cl..cP for
crossings.

Length of the train.

Either max velocity for this downstream sensor or max
velocity when 'near’ crossing.

Name of the downstream item by crossing guard.
Nominal time from the train crossing where train is sensed.
Origina distance to downstream item.

The program'’s execution level. 0 is normal operations, -3 is
simulation mode.

The associated virtual sensor ID.

Velocity used in the ETA calculation.

138 System Design Document

The ConnectionETA class contains the following operations:

PUBLIC:

Connecti onETA

Connecti onETA; 2

Connecti onETA; 3
I D

Bl ockagelL

AWARD

Default constructor. Not really useful — just a placeholder because
assigning data requires using the other constructors.

This constructor should be used to first load in ALL downstream
crossings and put them in alist. Then, make a copy of thelist and
pass that copy to each item in the original using the finishCreate()
function.

Constructor that takes a ConnectionETA instance as an initializer.

Returnsthe item identifier.

Length used/reported in Blockage.

139 System Design Document

checkETTA Check ETTA and scenarios and generate any appropriate crossing
Blockages and ATMS events.
The sequence diagram for this member function is given ifFigure
69.

checkETTA [ConnectionETA.]

[Description Blockage Event

IF this connection is a sensor THEN
Exit this function now
ENDIF
Calculate the distance to the rear of the train

IF the connection's ETTA is set so that the train will
make it to the crossing THEN

Calculate the ETTA for the rear of the train

Calculate the duration the train will block the
crossing

ELSE (the train will NOT make it to the crossing)

Set duration to infinity (means the train will not make
it to the crossing)

ENDIF

IF a Blockage object exist for this crossing THEN
IF the rear of the train has passed the crossing
THEN

Cancel the blockage for this crossing cancelBIockage—)E
ENDIF
ENDIF
IF a Blockage object does NOT exist for this crossing Blockage;2 —>»

e ETTRS DS TN oskear FTTA NG
IF the duration > 0.0 and the length > 0 THEN
Create a new Blockage object for this crossing
ENDIF
ENDIF
ELSE

IF the rear of the train has passed the crossin AND
the ETTA > the minimum blockage ETTA THI

Delete the Blockage object for this crossing ~Blockage —)[
Set the Blockage object pointer equal to NULL
ENDIF
ENDIF
FOR EACH Event object in the Event object list DO
Check the ETTA for the Event object
ENDFOR
Exit this function now

checkETTA

|

Blockage Event

Figure69. ConnectionETA::checkETTA Sequence Diagram

currentA Returns the acceleration used in ETA calculation.

current Bl ockage Crossing Blockage (empty/real).
NOTE: May return an empty/invalid blockage. Use isBlockage()
to determineif valid.

current Di stance Returns the current distance to the downstream item.

current ETA Returns the Estimated Time of Arrival (ETA).

current ETTA Returns the Estimated Time unTil Arrival (ETTA).

currentV Returns the velocity used in ETA calculation.

downst r eanli st Returns alist of the downstream connections (noneiif itisa
crossing).

AWARD 140 System Design Document

event sLi st Returns alist of Scenarios and ATMS events.

finishCreate This function is called after all the ConnectionETAS have been
loaded from the configuration file and madeinto alist. Makea
copy of the list and passit to each of theitemsin the original list
using this function. The maximum velocity for this sensor or
connection must be provided (and be greater than 0).

i ncrement ETTA Increases ETTA/ETA if greater than some length of time
(threshold) by afixed amount (increment). Performs additional
logic on these items which have a crossing Blockage or ATMS
event (returns TRUE if the ETTA was

increased).
The sequence diagram for this member function is given ifFigure
incrementETTA [ConnectionETA.
[Description Blockage Event DateTime
Cast the estimated time until arrival (ETTA) and the doubl ‘
increment threshold to doubles for comparison
IF the ETTA is larger than the_threshold THEN
increment the ETTAs and ETAs
Add the increment value to the ETTA doybl
Add the increment value to the ETA doybl :E

IF this ConnectionETA has a Blockage object
associated with it THEN

Update the Blockage object's ETA neWETA*)D
ENDIF
FOR EACH Eyvent object in the ConnectionETA's
Event object list DO
Update the Event object's ETA newETA >

ENDFOR

Return a TRUE for a successful increment and exit
this function now

ENDIF

Return a FALSE for no increment performed (not
necessary) and exit this function now

Blockage Event DateTime

Figure70. ConnectionETA::incrementETTA Sequence Diagram

i sBl ockage Returns TRUE if Blockageis real. Must be used to know if
currentBlockage returned an actual blockage or an empty one.

i sOver | appi ngTi "es Determinesif the two connections have the same overlapping

times.
| ast ETATi me Returns the time vel and acc were acquired.
mej Al ar mSent Returns TRUE if amajor alarm was sent to ATMS.
maxVel ocity Returns the maximum velocity used in ETA calculation.
nmerge Determines that two connections refer to the same downstream

item and merge them together. Maintain any crossing Blockage
(complain if ther are two). May require Blockage updating as well.

AWARD 141 System Design Document

operator=

oper at or ==

origL
sendNor mal Al ar m

updat e

AWARD

Use the maximum velocity from instance with shortest original
distance to downstream abject.

Overloaded assignment operator to assign one ConnectionETA
object to another.

Overloaded equality operator used to detect that two instances are
identical.

Returns the configuration distance.
Sends anormal (cancel) darmto ATMS.
Updates the internal data using new train information.

The sequence diagram for this member function is given irFigure
71

142 System Design Document

update [ConnectionETA.

[Description

IF this is the first pass into the update THEN initialize
all the objects variables

Calculate the estimated time until arrival (ETTA)
Calculate the estimated time of arrival (ETA)

Set the distance from the front of the train to this
connection to the original configuration distance

Set the train length, velocity, acceleration
Exit this function now

ENDIF

Calculate the delta time from the last update

Calculate the distance the train traveled since the last

update

Update the distance from the front of the train to the

connection

Next, update the ETTA and ETA (if necessary)

IF the train speed is constant (no acceleration) THEN
Update the ETTA for the connection. This is the
simple calculation of subtracting the delta time from
the current ETTA

ELSE (there is acceleration)

Calculate a new ETTA for the connection
Update the ETA using the new ETTA

IF this connection had created a Blockage object
THEN

Update the Blockage object's ETA
ENDIF
FOR EACH Event object in the Event object list DO
Update the Event object's ETA
ENDFOR
ENDIF

Calculate the distance from the connection to the rear
of the train

IF the ETTA is NOT infinity, S_r}neaning the train will
make it to the connection) THEN

Calculate the ETTA for the rear of the train
Calculate the duration of the train at the connection

ELSE (the train will NOT make it to the connection)
Set the duration of the train to be infinity

ENDIF

Update the velocity

Update the acceleration

IF the Iep‘%th passed in is NOT equal to the current
length THEN

Update the length
ENDIF
IF this connection had created a Blockage object
THEN

Update the Blockage object's length and duration
ENDIF
FOR EACH Event object in the Event object list DO
Update the Event object's length and duration
ENDFOR
Update the time stamps for the update
Exit this function now

Event Blockage DateTime
double T
double >
double T
newETA >
newETA >T
newLength >
newLength >T
Event Blockage DateTime

Figure71. ConnectionETA::update

vSensor| D

~Connect i onETA

PRIVATE:

ReadConfi g

WiteConfig Write configuration information.

AWARD

143

Returns the associated virtual sensor ID.

Destructor - Deletes any blockages created.

Reads the original configuration information.

System Design Document

5.4.2.12 Event (Event) Class

This class holds information about when crossing blockage information should be provided to the
ATMS as an incident/alarm. It also maintains the blockage details. The classis responsible for
communicating to the ATMS (not the Data Server). This class inherits from the Blockage class, i.e. this

classisachild of the Blockage class.

The Event class contains the following attributes:

PRIVATE:
atmsEvent
cancel Sent
crossingld
endTime
eventld

|astDuration

lastLength

|astTimeCheck

lastTrainETA

maj or AlarmSent

name

preceed

AWARD

Set to TRUE if an ATM S incident.

Trueif anormal alarm has been sent

Crossing identifier, cl1..cP, associated with this event.

The time before the end of the train to end the event.

Event or other ATM S identifier.

The duration of the train at the last sensor polling (thisis used
due to aloss of communication with the sensor and the time to
reconnect could cause the event not to start or end).

The length of the train at the last sensor polling (thisis used
due to aloss of communication with the sensor and the time to
reconnect could cause the event not to start or end).

Thetime of the last sensor polling (thisis used dueto aloss of
communication with the sensor and the time to reconnect
could cause the event not to start or end).

The ETA of thetrain at the last sensor polling (thisis used
due to aloss of communication with the sensor and the time to
reconnect could cause the event not to start or end).

Set to TRUE if ATMS major alarm has been sent.

The event name.

Set to TRUE if pretermination time means for the time to be

before the train begins the blockage, set to FALSE to indicate
time before train leaves the blockage.

144 System Design Document

preter mination

startTime

PUBLIC:

Event
Event ; 2
Event ; 3
atnsl D
clD

cancel Al arm

cancel SENT

checkETTA

Time before crossing blockage starts or ends to initiate the
ATMS event or less than O to ignore.

The time before the beginning of the train to start the event.

The Event class contains the following operations:

Default constructor. Not really useful, just a placeholder
because assigning data requires using the other constructors.

Constructor that loads in configuration data from a supplied
datafile.

Constructor that takes an Event instance as an initializer.
Returns the event or other ATM S identifier.

Returns the crossing ID.

Cancelsan alarm sent to ATMS.

Returns TRUE if anormal aarm for the event has been sent to

ATMS.

Check event and generate any appropriate events.
The sequence diagram for this member function isgivenin
Figure 72.

checkETTA [Event.

[Description

Get the current time

IF the event is to occur before the train gets to the
crossing THEN

[Cajculate the time difference from the front of the
rain

ELSE (the event occurs at the end of the train)
[Cajculate the time difference from the rear of the
rain

ENDIF

IF an ATMS event has not been sent for this crossing
AND the duration AND length > 0.0 THEN

IF it is time for the event to occur THEN
Set the ATMS event sent flag to TRUE

Call the parent class's startup member function to
set the crossing data

Send the data to ATMS
ENDIF
ELSE
IF the train has passed the crossing THEN
Set the ATMS sent flag to FALSE

Call the parent class's conclude member function
to cancel the alarm

ENDIF
ENDIF
Exit this function now

Event Blockage DateTime
nowv |

double %
double ’L
tartUp ’[
sendData >
conclude ,[
Event Blockage DateTime

Figure72. Event::checkETTA Sequence Diagram

AWARD

145 System Design Document

endTIl ME
hasEvent
maj Al ar nSent

mer ge

newkETA
newlLengt h

operator=

operat or ==

preTi me

set Cancel Sent

sName
start Tl ME

~EBvent

PRIVATE:

ReadConfi g

WiteConfig

AWARD

Returns the end time of the event.

Returns TRUE if information has been sent to the ATMS.
Returns TRUE if amajor alarm has been sent to ATMS.
Determines that two events refer to the same downstream event
and merge them. Uses maximum velocity from instance with
the shortest original distance to the downstream object.
Updates the object with anew ETA.

Updates the object with a new length and estimated duration.

Overloaded assignment operator to assign one Event object to
another.

Overloaded equality operator used to detect that two instances
areidentical.

Returns the pretermination time.

Sets the cancel Sent flag to TRUE indicating the normal alarm
has been sent to ATMS.

Returns the event name.
Returns the start time of the event.

Destructor. Will cancel any events sent to ATM S except
Magor Alarms.

Reads the original configuration information.

Write configuration information.

146 System Design Document

PROTECTED:

sendDat a Sends/updates data to the destination.
Note: This member function is overloaded from its parent. The
overloaded function callsits parent’s function as well.
The sequence diagram for this member functionis givenin
Figure 73.

sendData [Event.

[Description Blockage DateTime

IF the send data destination is invalid THEN
Report this to the error handler and exit the program
now

ENDIF

Invoke the parent class" s sendData member function to sendData
set all the necessary dat ’L

IF the destination is the DataServer THEN

Report this error to the error handler and exit this
function now

ELSE (destination is ATMS)

Con\iertéhg front ETA into seconds since 0:0:0 UTC, uTC u
an

Convert the rear ETA into seconds since 0:0:0 UTC, uTC

Jan 1, 1970 ’L

IF this event is to occur before the train get to the
crossing THEN

IF the train will pass through the crossing THEN
Set the ATMS delay condition to a MINOR alarm
ELSE (the train will stop in the crossing)
Set the ATMS delay condition to a MAJOR alarm
ENDIF
ELSE
Set the ATMS delay condition to a NORMAL alarm
ENDIF
IF the process is not connected to ATMS THEN
Connect to the ATMS
ENDIF
IF connected to ATMS OR in simulation mode THEN

IF the delay condition is a MAJOR OR MINOR
alarm THE!

Send the crossm]g name, delay condition, train
I%ngtq, duration, front ETA, and rear ETA data to

Set the success flag on whether the message
was sent

ELSE (a NORMAL alarm)
Send the NORMAL alarm condition to the ATMS

Set the success flag on whether the message
was sent

ENDIF
ENDIF
ENDIF

IF the original messaE‘e had NOT been sent AND the
message was sent T

Set the original message sent flag to TRUE
ENDIF

IF the delay condition is a MAJOR alarm AND the
message was sent THEN

Set the major alarm sent flag to TRUE
ENDIF
Return the success flag and exit this function now

Blockage DateTime

Figure73. Event::sendData Sequence Diagram

54.2.13 Blockage (Blockage) Class

This class is responsible for containing information summarizing the blockage of a railroad
crossing and communicating the information to either the DataServer or the ATMS. The datais primarily

AWARD 147 System Design Document

asummary of when atrain is expected to be at a crossing and the length and duration of the blockage. This
classis the parent class of the Event class. Notice that this class should be able to be used in an ordered
list because it has an equality operator, a copy constructor, an assignment operator, and a default

constructor.

The Blockage class contains the following attributes:

PROTECTED:
ETA
blockld

blocks

cancel Sent

destination
detail
duration

eventFrontETA

eventRearETA

id

|astBlock

length
name

origSent

runLevel

AWARD

Estimated Time of Arriva (ETA).

The unique blockage id.

A global list of active blockages.

Note: Thisglobal list isonly visible to the Blockage objects

and its children.

Flag indicating that this blockage cancel notification has been
sent successfully (at least once) to the destination.

Destination for the data and updates provided to this class.
Communication details for talking to the ATMS.
Estimated duration of the crossing blockage.

The calculated Estimated Time of Arrival (ETA) of the front
of thetrain.

The calculated Estimated Time of Arrival (ETA) of the rear of
thetrain.

Crossing item identifier, c1..cP.

Global value of thelast block ID generated.

Note: Thisglobal ID isonly visible to the Blockage objects
and its children.

Length of the train.

The name of the downstream item.

Flag indicating that this blockage notification has been sent
successfully (at least once) to the destination.

The program'’s execution level. 0 is normal operations, -3 is
simulation mode.

148 System Design Document

The Blockage class contains the following operations:

PUBLIC:

Bl ockage

Bl ockage; 2

Bl ockage; 3
at ETA
bl ockl D

cancel Bl ockage

item D

i t emName
newkETA
newlLengt h

operator=

oper at or ==

trai nDuration
trai nLength

~Bl ockage

PROTECTED:

concl ude

NewBl ockl D

AWARD

Default constructor. Note: the default constructor does
nothing useful, but allows for having the class as part of an
ordered list. Additionaly initialization data may only be
entered into the class by utilizing a non-default constructor.

Constructor where all values passed must be non-NULL and
have avalid function.

Constructor that takes a Blockage instance as an initializer.
Returnsthe ETA of the blockage.
Returns the unique block 1D.

Train has disappeared or whatever, handle the situation
appropriately (based on the destination).

Returns the item identifier.

Returns the name of the downstream item.
Updates the object with anew ETA.

Updates the object with a new length and duration.

Overloaded assignment operator to assign one Event object
to another.

Overloaded equality operator used to detect that two
instances are identical.

Returns the train duration of the item.
Returns the train length of the item.

Destructor.

Performs all the destructor operations.

Return anew valid block ID.

149 System Design Document

sendDat a Sends and updates data to the destination.
The sequence diagram for this member functionis givenin
Figure 74.

sendData [Blockage.

[Description Blockage DateTime

IF the destination for the send data is invalid THEN

Report the error to the error handler and exit the
program
ENDIF

Find the start and end for the the blockages for the
same crossing

Initialize the front ETA operator= il
Initialize (calculate) the rear ETA doubl ’L‘
FOR EACH blockage in the global list of blockages DO

Check to see if "this" blockage is the same as the operator==

blockage in the list ’H

IF the blockages are the same THEN

Calculate the rear ETA for the blockage in the list doubl >
IF the ETA for the blockage in the list arrives first
THEN

Reset the front ETA (for the send data) for the operator=
blockage ’L

ENDIF

IF the rear ETA for the blockage in the list arrives
last THEN

Reset the rear ETA (for the send data) for the operator=
blockage ’[

ENDIF
ENDIF
ENDFOR

IF the send destination is DataServer THEN
(prepare and send data to the DataServer)

Prepare the front ETA in seconds since 0:0:0 UTC, uUTC
Jan'1, 1970 ’u
Prepare the rear ETA in seconds since 0:0:0 UTC, uUTC
Jan'1, 1970 1

IF the program is NOT connected to the DataServer
THEN

Connect to the DataServer
ENDIF
IF a cancel has NOT been sent to the DataServer
THEN

IF connected to DataServer OR in simulation mode
THEN
Send the crossing address, train length, duration,
front ETA, and rear ETA to the DataServer

Set the success flag on whether the the data was
successfully sent

ENDIF
ELSE
Set the success flag to TRUE to continue on
ENDIF
ELSE (prepare the data to send to ATMS)
Save the front and rear ETA for sending the data to operator=
ATMS 1

ENDIF

IF the is the first time sending the data AND a
successful transmission occured THEN

Set the flag for the original sent to TRUE
ENDIF
Return the success flag and exit this function now

Blockage DateTime

Figure74. Blockage::sendData Sequence Diagram

startUp Performs all the constructor operations.

AWARD 150 System Design Document

54.2.14 Date and Time (DateTime) Class

This classis used to manipulate and store time and to time short events.

The DateTime class contains the following attributes:

PRIVATE:

jday

sec

yr

Julian day (i.e. days since) since the start of year 0..364 (365
in aleap year).

The seconds into the jday 0..86399 (may be fractional).

Theyear A. D. O...

The DateTime class contains the following operations:

PUBLIC:

Dat eTi ne
Dat eTi ne; 2
Dat eTi ne; 3

Dat eTi ne; 4

Dat eTi ne; 5
utcC

doubl e

now

operator +

operator+; 2

oper at or -

AWARD

The default constructor.
The constructor function given normal date and time data.
The constructor function given Julian date and time data.

The constructor function given time data (seconds since time
0).

Constructor that takes a DateTime instance as an initiaizer.
Returns seconds since 0:0:0 UTC, Jan 1, 1970.

Convert to seconds since 0. Thisis most appropriate for a
deltatime.

Sets the current DateTime instance to be the local date and
time on the computer.

Overloaded addition operator that uses another DateTime
instance to add to this DateTime instance.

Overloaded addition operator that uses a double to add to this
DateTime instance.

Overloaded subtractor operator that uses another DateTime
instance to subtract from this DateTime instance.

151 System Design Document

operator-;2 Overloaded subtractor operator that uses a double to subtract
from this DateTime instance.

operator= Overloaded assignment operator to assign one DateTime
object to another.

val Provides the date and time in the current instance in standard
format.

val ; 2 Overloaded function that provides the date and time in the
current instance in Julian date format.

whDay Returns the day of the week (1..7 - Sunday..Saturday) as long
asthe year is greater than 1900.

~Dat eTi e Destructor.

PRIVATE:

cvt _j day Returns the Julian day for the provided month and day and

year.

Note: Thisincludes the affects of leap years.

cvt _no_da Returns the month and day of the month for the current
instance.
Note: Thisincludes the affects of leap years.

5.4.2.15 Utility Functions

The following functions areutility routines that are used by many different classes in the AWARD
system. These routines were made generic so that any class can use them and it won't be necessary to
remake these as member functionsin the classes.

cal cDi stance Calculate the distance traveled by an object given the velocity,
acceleration, and atime (the delta time from the start and end
times).
The sequence diagram for this member function isgivenin
Figure 75.

AWARD 152 System Design Document

calcDistance [util.]

[Description

Calculate the distance . .
(distance = (the delta time * velocity) +
0.5 * acceleration * i
the delta time * the delta time)))

Return the calculated distance and exit this function
now

Figure75. calcDistance Sequence Diagram

cal ceTTA Calculate the Estimated Time unTil Arrival (ETTA) by an
object given the velocity, acceleration, and distance the object
has traveled.

The sequence diagram for this member function isgivenin
Figure 76.

AWARD 153 System Design Document

calcETTA [util.

[Description | util
Initialize the return ETTA to (representation of) infinity

Initialize the minimum velocity to 0.0
Get the absolute value of the acceleration
IF the velocity is close to 0.0 THEN

Return the (representation of) infinity and exit this
function now

ELSE
Calculate the approximate time (distance / velocity)
Calculate the approximate velocity ivelocny +
(acceleration * time
approximate))
ENDIF
IF the llme approximate is less than zero THEN
e object will never cover the distance will
never be
traversed

Return the (representation of) infinity and exit this
function now

ELSE IF the accelleration is or near zero THEN
the ETTA will be distance / velocity

Return the calculated time approximate

ELSE IF the (velocny + accelleration * time
approxlmale)
reen the minimum velocity and maximum
veloclty THEN
calculate ETTA uslnfq the quadrallc formula: t =
(v t square root of (v squared
4(1/2acc*d|s) /
2(1/2a).
Other checks are necessary before the square
root is
taken
Calculate the value the square root will be performed
on
square_root_of
‘velocity ™ veloclty) + (2 * acceleration *
distance;
IF acceleration > 0.0 THEN

Set the return ETTA = -velocity +
sqare root of (square_root_of)

IF the return ETTA < 0.0 THEN

Set the return ETTA = -velocity -
sqare root of (square_root_of)

ENDIF

Set the return ETTA = the return ETTA /
acceleration

ELSE (the train is decelerating)
IF the square_root_of < 0.0 THEN

Return the (representation of) infinity and exit this
function now

ELSE

Calculate the flrst time (t1) =
)/ = city + square root of (square_root__
of

acceleration

Calculate the first time (t2) =
) / (-velocity - square root of (square_root__
of

acceleration
IF the first time (t1) < 0.0 THEN
(Sl% return ETTA to the second calculated time
ELSE IF the second time (t2) < 0.0 THEN
Set return ETTA to the first calculated time (t1)
ELSE

IF the first calculated time (t1) < the second
calculated time (t2) THEN

(Sl% return ETTA to the first calculated time

ELSE

Set return ETTA to the second calculated
time (t2)

ENDIF
ENDIF
ENDIF
ENDIF

ELISE IF lhe aproximate velocity < the minimum
veloci
v he objecl will never traverse the distance given

Return the (representation of) infinity and exit this
function now

EbSE (the object's current accelleration will cause the
obje
4 to exceed its maximum velocity. Calculate the
ime

and place when the train will reach its
maximum 3

velocity and assume constant velocity from
there to N

the destination)

Calculate the time the object will reach its maximum
velocity

(t_maxv = (maxvel - vel) / acceleration)
Calculale lhe dislance the object will traveled at its calcDistance ——— >
maximu

(d t = dlslanc
cachlslance(t maxvel, vel,

acceleration))
Calculale lhe time the object will travel at its
loC
(llme prlme = dist / maxvel)

Set the return ETTA to lhe calculated value
(return ETTA = t_maxv + time_prime)

ENDIF

Return the calculated value of the return ETTA and exit
this function now

util

Figure76. calcETTA SequenceDiagram

AWARD 154 System Design Document

Connect TOATMS

Connect ToDat aSer ver

Connect ToHear t Beat

Connect ToSt at usLogger

SendCr Dat aToATMS

SendCr Dat aToDS

SendHear t Beat
SendMessageToSt at usLogger

SendSensor Dat aToDS

AWARD

This connects to the ATM S process for sending crossing
delay data.

This connects to the DataServer process for sending
sensor and crossing data.

This connects to the HeartBeat process for sending
heartbeats informing it that AWARD is still running.

This connects to the status logger process for sending
status messages about AWARD.

This sends crossing delay information to ATMS.

This sends crossing delay information to the DataServer.
This sends a heartbeat to the HeartBeat process.

This sends message information to the status logger.

This sends sensor information to the DataServer.

155 System Design Document

6. Traceability Matrix

The traceability matrix for the Railroad Delay Advance Warning System (AWARD) is presented
in this section. It lists the requirements of the system that were presented in Section 3.0 of this document.
Along with each requirement is the source of the requirement, the design element it was assigned to, the
level at which it will be tested, and the method that will be used to verify the requirement.

Table 69, shown on the following pages, will be used throughout the design, development, and test
of the system to ensure that the requirements have been met. It will continually be updated as requirements
and design elements are refined. During development of the Acceptance Test Plan (ATP), sections of the
test plan will be referenced in the TEST LEVEL column of this table to cross-reference to the ATP.

The requirements in the traceability matrix are organized by requirement number. Each
requirement in the matrix has a unique requirements identification (ID) label which maps the particular
requirement to a subsystem with the AWARD System. The ID labels are defined as:

RR-GEN-XX AWARD General (Programmatic) Requirements

RR-SYS-XX AWARD System Reguirements

RR-SNS-XX AWARD Sensor Subsystem Requirement

RR-COM-XX AWARD Communications Subsystem Requirement

RR-MEC-XX AWARD Mechanical Subsystem Requirement

RR-RRS-XX AWARD-Railroad Software Subsystem Requirement

RR-TGS-XX AWARD-TransGuide Operational Software Subsystem Requirement

AWARD 156 System Design Document

Table69. AWARD System Traceability Matrix

REQUIREMENT

REQUIREMENT REQUIREMENT DESCRIPTION SOURCE DESIGN DOCUMENT
ID P - PROPOSAL PARAGRAPH
T - TXDOT RFO

RR-GEN-01 An 80% System design document shall be P-2.1.2.8.3
delivered on February 14, 1997.

RR-GEN-02 A 100% design document shall be delivered on | P-2.1.2.8.3
December 31, 1997

RR-GEN-03 A Software Acceptance Test Plan shall be P-2.1.2.83
delivered

RR-GEN-04 A Version Description Document shall be P-2.1.2.83
delivered.

RR-GEN-05 Monthly status reports shall be provided viaa P-2.1.2.83
presentation with the customer. (revised)

RR-GEN-06 A training program shall be presented P-2.1.2.8.3

RR-GEN-07 A videotape of the training program shall P-2.1.2.83
be delivered.

RR-GEN-08 A final report shall be delivered. P-2.1.2.8.3

RR-SYS-01 The system shall deliver advance warning to T-28 41,4722
motorists of expected delays at railroad crossings

RR-SY S-02 The system shall determine the speed and length | T-28 4713,47.21
of atrain engine and attached railroad cars.

RR-SY S-03 The system shall determine expected delay times| T-28 4713,47.21
at selected grade crossings.

RR-SY S-04 The system shall transmit an expected delay to | T-28 4722

TransGuide Operators as an alarm through a
software interface with the existing TransGuide
ITS system.

AWARD

157

REQUIREMENT
ID

REQUIREMENT DESCRIPTION

REQUIREMENT
SOURCE

P - PROPOSAL

T - TXDOT RFO

DESIGN DOCUMENT
PARAGRAPH

RR-SY S-05

Expected railroad delays shall be transmitted to
the traveling public by use of existing variable
message signs and also to the MDI Data Server.

T-28

4.7.2.3

RR-SY S-06

The system shall provide warnings for grade
crossings at IH 10 and Fredricksburg Road, IH
10 and Hildebrand Road, and IH 410 and Vance
Jackson Road.

T-29.1.3

4.2

RR-SY S-07

The field equipment shall be mounted on a
suitable structure at some location along the
railroad line in advance of the crossing for which
warnings are to be given.

T-29.2.1

4.2

RR-SY S-08

Field equipment shall be located in TXDOT or
the City of San Antonio right-of-way.

T-29.2.1

42,433

RR-SY S-09

The field equipment shall determine length and
speed of trains through observation only. No
connection to the railroad tracks or controlling
equipment will be used.

T-29.2.2

432

RR-SNS-01

Thetrain speed sensor shall have arange to
allow measurement of the train speed from a
location outside the railroad right-of-way. This
distance is normally 50 feet on either side of the
track center line but may vary in some locations

RR-SY S-04

432

RR-SNS-02

The detector unit shall measure locomotive speed
within 2 miles per hour (+/-) at the maximum
train speeds allowed for the section of track
where sensors are install ed.

T-29.24

432

RR-COM-01

Thefield unit shall communicate to the
TransGuide equipment using a non-proprietary

protocol.

T-29.1.2

21,2411

AWARD

158

REQUIREMENT

REQUIREMENT REQUIREMENT DESCRIPTION SOURCE DESIGN DOCUMENT
ID P - PROPOSAL PARAGRAPH
T - TXDOT RFO

RR-ELC-01 The field unit shall operate on standard line RR-545-07 45
power. (nominal 120 VAC)

RR-MEC-01 The equipment will be designed to operate within RR-SY S-07 46.1.1
an ambient temperature range of -12°C to 49°C
(10°F to 120°F) and will not alow condensation
accumulations which would interfere with its
operation.

RR-MEC-02 The system enclosure will be able to be mounted | RR-SYS-07 and | 4.6.1.3
to a pole or other suitable structure. RR-SY S-08

RR-MEC-03 The system will provide an internal mechanism | RR-SNS-01 46.1.2.1
for accurate pointing of the sensor.

RR-RRS-01 The RR-Delay Master Computer shall calculate | P-2.4.1 47.13
the length of the train from measured train speed
integrated over time.

RR-RRS-02 The RR-Delay Master Computer shall calculate | P-2.4.1 47.13
the expected time of arrival of the first element
of the train and the last element of the train at
selected downrail crossings.

RR-RRS-03 The RR-Delay Master Computer shall determine | T-29.3.3 47.13
expected delay times at railroad crossings. The
RR-Delay Master Computer shall estimate delay
time within+30 seconds.

RR-RRS-04 The RR-Delay Master Computer shall transmit | T-29.3.3 47.15
the railroad delay datato the existing
TransGuide ITS system.

RR-TGS-01 The TransGuide Operational Software shall RR-RRS-04 47.2

interface with and receive railroad delay data
from the Railroad Operational Software.

AWARD

159

REQUIREMENT
ID

REQUIREMENT DESCRIPTION

REQUIREMENT
SOURCE

P - PROPOSAL

T - TXDOT RFO

DESIGN DOCUMENT
PARAGRAPH

RR-TGS-02

The TransGuide Operational Software shall
transmit expected delay information to
TransGuide operators as an alarm.

T-28

4.7.2.2

RR-TGS-03

The TransGuide Operationa Software shall be
capable of performing a scenario search for a
RR delay incident.

P-24.1

4.7.2.3

RR-TGS-02.01

The AIH shall accept a RR delay alarm from the
RSS.

RR-TGS-02

4.7.2.2

RR-TGS-02.02

The AIH shall indicate the RR delay alarm as an
update alarm if the RR delay alarm is related to
acurrent RR delay incident.

RR-TGS-02

4.7.2.2

RR-TGS-02.03

The AlIH shall create anew AIH RR incident if
the RR delay alarm is not related to a current RR
delay incident.

RR-TGS-02

4.7.2.2

RR-TGS-02.04

The AIH RR incident shall contain data from the
railroad delay information contained in the RR
delay alarm.

RR-TGS-02

4.7.2.2

RR-TGS-02.05

The AIH shall build the AIH RR incident screen
for new RR delay alarms.

RR-TGS-92

4.7.2.2

RR-TGS-02.06

The AIH shall display the AIH RR incident
screen, as an icon, on the workstation of the
manager responsible for the sector containing the
RR incident.

RR-TGS-02

4.7.2.2

RR-TGS-02.07

The AIH shall generate an audio notification of
new RR incident alarms at the workstation of the
manager responsible for the sector containing the
RR incident.

RR-TGS-02

4.7.2.2

AWARD

160

REQUIREMENT

REQUIREMENT REQUIREMENT DESCRIPTION SOURCE DESIGN DOCUMENT
ID P - PROPOSAL PARAGRAPH
T - TXDOT RFO
RR-TGS-02.08 The AlIH shall update the railroad delay RR-TGS-02 4.7.2.2
information for an existing incident using the
railroad delay information contained in the
associated RR delay update alarm.
RR-TGS-02.09 The AIH RR incident screen shall provide the RR-TGS-02 4.7.2.2
same actions currently provided by the AlH-
NewIncidentScreen.
RR-TGS-03.01 The SCM-ScenarioSearchScreen shall contain RR-TGS-03 4.7.2.3

the RR incident type for selection by a
TransGuide operator.

AWARD

161

AWARD 162

