
Railroad Delay Advance Warning System

(Advance Warning to Avoid Railroad Delays)
(AWARD)

Model Deployment Initiative

System Design Document
Version 1.0

March 25, 1998

SwRI Project No. 10-8684

P.O. No. 7-70030
Req. No. 50115-7-700-30

Prepared For:

Texas Department of Transportation
TransGuide

3500 NW Loop 410
San Antonio, Texas 78229

Prepared by:

Southwest Research Institute
P.O. Drawer 28510

San Antonio, Texas 78228

Approval Page

________________________________ ______________________
AWARD Project Manager Date

________________________________ ______________________
SwRI MDI Project Manager Date

________________________________ ______________________
Automation Engineering Director Date

AWARD i System Design Document

Acronym List

ATMS Advanced Traffic Management System
AWARD Advance Warning to Avoid Railroad Delays
ETA Estimated Time of Arrival
ETTA Estimated Time Until Arrival
ITS Intelligent Transportation Systems
MDI Model Deployment Initiative
RRS Railroad Road Software Subsystem
SwRI Southwest Research Institute
TBD To be Determined
TOS TransGuide Operational Software
TxDOT Texas Department of Transportation
VMS Variable Message Sign

AWARD ii System Design Document

Table of Contents

Page

1. Introduction ...1
1.1 Purpose of System..1
1.2 Operational Concept...3
1.3 Goals and Objectives..5
1.4 Referenced Documents ...5

2. External Interfaces ..6
2.1 Remote Sensor Site ..6
2.2 TransGuide Location..6
2.3 Software Interfaces ..7

3. Requirements ...8
3.1 General Requirements ..8
3.2 System Level Requirements..9
3.3 Sensor Subsystem Requirements... 10
3.4 Communications Subsystem Requirements ... 10
3.5 Electrical Subsystems Requirements ... 10
3.6 Mechanical Subsystem Requirements ... 10
3.7 Railroad Software Subsystem Requirements ... 10
3.8 TransGuide Operational Software Subsystem Requirements ... 11

3.8.1 3.8.1 TransGuide Alarm/Incident Handler Requirements.. 11
3.8.2 TransGuide Scenario Manager Requirements... 12

4. Sensor System Design ..13
4.1 System Architecture ... 13
4.2 System Geographic Layout... 15
4.3 Sensor Subsystem Design... 18

4.3.1 Specifications for Selected Sensors .. 18
4.3.2 System Placement ... 23
4.3.3 Power Requirements.. 23
4.3.4 Environmental Design Requirements.. 23

4.4 Communications Subsystem Design.. 23
4.4.1 Modem at Remote Site .. 24

4.4.1.1 Specifications .. 24
4.4.1.2 Power.. 24
4.4.1.3 Environmental ... 24

4.5 Electrical Subsystems Design ... 25
4.6 Mechanical Subsystem Design.. 25

4.6.1 Enclosure for Sensors.. 25
4.6.1.1 Design Assumptions .. 25
4.6.1.2 Mechanical Layout .. 26
4.6.1.3 External Mounting... 26

4.6.2 Electrical Connections... 26

AWARD iii System Design Document

5. Software System Design ..27
5.1 External Interfaces ... 27

5.1.1 TransGuide Personnel ... 28
5.1.2 Process Status GUI ... 28
5.1.3 Data Server... 29
5.1.4 Subsystem Status Logger .. 29
5.1.5 TransGuide ATMS ... 29
5.1.6 RR Sensors ... 29
5.1.7 Subsystem Heartbeat Management .. 29
5.1.8 Subsystem Process Control.. 29
5.1.9 External Data Flows.. 29

5.2 Subsystem Design .. 30
5.2.1 Dispatch Data Server Messages... 31

5.2.1.1 Dispatch RR Crossing Data ... 34
5.2.1.2 Dispatch RR Sensor Data .. 34
5.2.1.3 Dispatch Subsystem Heartbeat... 35
5.2.1.4 Generate Process Heartbeat.. 35

5.2.2 Dispatch Crossing Delays.. 36
5.2.2.1 Generate Process Heartbeat.. 38
5.2.2.2 Generate Crossing Delay Alarm... 38

5.2.3 Monitor Trains.. 39
5.2.4 Show Detailed Status .. 39

5.2.4.1 Build Detailed Status ... 40
5.2.4.2 Update Detailed Status... 41
5.2.4.3 Delete Detailed Status.. 41

5.3 TransGuide Subsystem Software Architecture .. 42
5.3.1 Dispatch Data Server Messages (award_dsif) .. 42

5.3.1.1 main .. 42
5.3.1.2 award_dsif_cleanup ... 44
5.3.1.3 send_heartbeat_pulse ... 45
5.3.1.4 initialize_award_dsif.. 46
5.3.1.5 award_dsif_shmem_setup .. 48
5.3.1.6 award_dsif_config_shm_mgr ... 49
5.3.1.7 award_dsif_setup_crossing_shmem.. 50
5.3.1.8 award_dsif_setup_sensor_shmem... 53
5.3.1.9 load_feq_shmem.. 56
5.3.1.10 respond_to_read_sockets .. 58
5.3.1.11 receive_dsif_message ... 60
5.3.1.12 disconnect_receive_socket .. 61
5.3.1.13 send_data_server_message ... 61
5.3.1.14 sigalrm_handler.. 66

5.3.2 Dispatch Crossing Delays (award_tgif).. 67
5.3.2.1 main .. 67
5.3.2.2 award_tgif_cleanup ... 69
5.3.2.3 send_heartbeat_pulse ... 71
5.3.2.4 initialize_award_tgif .. 71
5.3.2.5 respond_to_read_sockets ... 73
5.3.2.6 receive_tgif_message ... 75

AWARD iv System Design Document

5.3.2.7 disconnect_receive_socket.. 76
5.3.2.8 send_eah_message ... 76
5.3.2.9 retry_eah_message... 78

5.3.3 Show Detailed Status (awdsg) ... 79
5.3.3.1 TeleUSE_main .. 79
5.3.3.2 awdsg_main... 80
5.3.3.3 INITIALLY... 81

5.3.4 award_dsif Library Routines ... 88
5.3.4.1 award_dsif_connect ... 88
5.3.4.2 award_dsif_send_sensor_data .. 89
5.3.4.3 award_dsif_send_crossing_delay.. 91
5.3.4.4 award_dsif_disconnect... 93

5.3.5 award_tgif Library Routines.. 94
5.3.5.1 award_tgif_connect.. 94
5.3.5.2 award_tgif_send_crossing_blockage... 95
5.3.5.3 award_tgif_disconnect ... 97

5.4 Railroad Subsystem Software Architecture ... 98
5.4.1 RR Configuration Information... 99
5.4.2 RR Software Design Details .. 100

5.4.2.1 Railroad System (RRSystem) Class ... 102
5.4.2.2 Sensor Interface (SensorIF) Class .. 105
5.4.2.3 RS-232 Port (Stream232) Class ... 119
5.4.2.4 Value Time Stamp (ValTime) Class... 121
5.4.2.5 Sensor Status (senseStatus) Class .. 122
5.4.2.6 Virtual Sensor (VSensor) Class.. 123
5.4.2.7 Acceleration Modification (AccelMod) Class ... 127
5.4.2.8 Crossing (Crossing) Class.. 130
5.4.2.9 Train Class.. 131
5.4.2.10 Train Summary (TrainSumry) Class... 136
5.4.2.11 Connection Description (ConnectionETA) Class ... 137
5.4.2.12 Event (Event) Class.. 144
5.4.2.13 Blockage (Blockage) Class ... 147
5.4.2.14 Date and Time (DateTime) Class.. 151
5.4.2.15 Utility Functions... 152

6. Traceability Matrix ...156

AWARD v System Design Document

List of Figures

Figure 1. Award Sensor and Crossing Sites ...2
Figure 2. Architectural Block Diagram..4
Figure 3. System Block Diagram...14
Figure 4. AWARD Process Flow...15
Figure 5. AWARD Context Diagram...28
Figure 6. AWARD Subsystem Processes...31
Figure 7. Dispatch Data Server Messages Data Flow...33
Figure 8. Dispatch Crossing Delays Data Flow..37
Figure 9. Show Detailed Status Data Flow ...40
Figure 10. award_dsif main structure chart...43
Figure 11. award_dsif_cleanup structure chart..45
Figure 12. send_heartbeat_pulse structure chart...46
Figure 13. initialize_award_dsif structure chart ...47
Figure 14. award_dsif_shmem_setup structure chart..49
Figure 15. award_dsif_config_shm_mgr structure chart...50
Figure 16. award_dsif_setup_crossing_shmem structure chart ...51
Figure 17. award_dsif_init_crossing_shmem structure chart ..53
Figure 18 - award_dsif_setup_sensor_shmem structure chart ..54
Figure 19. award_dsif_init_sensor_shmem structure chart ...56
Figure 20. load_feq_shmem structure chart..57
Figure 21. respond_to_read_sockets structure chart ...59
Figure 22. receive_dsif_message structure chart ..60
Figure 23. disconnect_receive_socket structure chart ...61
Figure 24. send_data_server_message structure chart ..62
Figure 25. update_sensor_shmem structure chart ...64
Figure 26. update_crossing_shmem structure chart ..65
Figure 27. sigalrm_handler structure chart...66
Figure 28. award_tgif main structure chart ..68
Figure 29. award_tgif_cleanup structure chart ...70
Figure 30. send_heartbeat_pulse structure chart...71
Figure 31. initialize_award_tgif structure chart..72
Figure 32. respond_to_read_sockets structure chart ...74
Figure 33. receive_tgif_message structure chart...75
Figure 34. disconnect_receive_socket structure chart ...76
Figure 35. send_eah_message structure chart...77
Figure 36. retry_eah_message structure chart ..78
Figure 37. awdsg teleuse_main structure chart...79
Figure 38. awdsg_main structure chart ..80
Figure 39. INITIALLY structure chart ..82
Figure 40. GET_UPDATE_RATE structure chart...83
Figure 41. periodic_update structure chart...84
Figure 42. PERIODIC_UPDATE structure chart ..85
Figure 43. UPDATE_STATUS structure chart..87
Figure 44. award_dsif_connect structure chart...89
Figure 45. award_dsif_send_sensor_data structure chart..90

AWARD vi System Design Document

Figure 46. award_dsif_send_crossing_delay structure chart ...92
Figure 47. award_dsif_disconnect structure chart ..93
Figure 48. award_tgif_connect structure chart ...95
Figure 49. award_tgif_send_crossing_blockage structure chart ..96
Figure 50. award_tgif_disconnect structure chart...97
Figure 51. RR Software Object Relationship Diagram ...101
Figure 52. RRSystem::sendCancelMajorAlarm Sequence Diagram ..103
Figure 53. RRSystem::MainLoop Sequence Diagram...105
Figure 54. Sensor Interface (SensorIF) Class State Diagram ..107
Figure 55. SensorIF::reactivate Sequence Diagram ..110
Figure 56. SensorIF::reactivate:NormalCycleBadLast (Use Case) Sequence Diagram...........................111
Figure 57. SensorIF::estAccel Sequence Diagram ..113
Figure 58. SensorIF::modemCmd Sequence Diagram...114
Figure 59. SensorIF::nextDatum Sequence Diagram ..115
Figure 60. SensorIF::nextDatum:ReadDataFromBuffer (Use Case) Sequence Diagram.........................116
Figure 61. SensorIF::probeRadar Sequence Diagram ...117
Figure 62. SensorIF::tryPhone Sequence Diagram..118
Figure 63. SensorIF::tryPhone:MakeConnection (Use Case) Sequence Diagram119
Figure 64. Virtual Sensor (Vsensor) Class State Diagram ..124
Figure 65. VSensor::newValue Sequence Diagram...126
Figure 66. AccelMod::thruRule Sequence Diagram..129
Figure 67. Train::merge Sequence Diagram ...133
Figure 68. Train::updateETA Sequence Diagram...135
Figure 69. ConnectionETA::checkETTA Sequence Diagram..140
Figure 70. ConnectionETA::incrementETTA Sequence Diagram..141
Figure 71. ConnectionETA::update..143
Figure 72. Event::checkETTA Sequence Diagram..145
Figure 73. Event::sendData Sequence Diagram..147
Figure 74. Blockage::sendData Sequence Diagram...150
Figure 75. calcDistance Sequence Diagram ...153
Figure 76. calcETTA Sequence Diagram...154

AWARD vii System Design Document

List of Tables

Table 1. Sensor Locations and Orientations ...17
Table 2. SmartSonic TSS-1 Specifications ..20
Table 3. Doppler Radar Speed Sensor Specifications ...21
Table 4. Doppler Radar Command Codes..22
Table 5. Modem Specifications ...24
Table 6. Enclosure Internal Power Loading..25
Table 7. External Data Flows..30
Table 8. Dispatch RR Crossing Data Input Data Flows ...34
Table 9. Dispatch RR Crossing Data Output Data Flows...34
Table 10. Dispatch RR Sensor Data Input Data Flows...34
Table 11. Dispatch RR Sensor Data Output Data Flows..35
Table 12. Dispatch Subsystem Heartbeat Input Data Flows ...35
Table 13. Dispatch Subsystem Heartbeat Output Data Flows ..35
Table 14. Generate Process Heartbeat Input Data Flows..36
Table 15. Generate Process Heartbeat Output Data Flows ...36
Table 16. Generate Process Heartbeat Input Data Flows..38
Table 17. Generate Process Heartbeat Output Data Flows ...38
Table 18. Generate Crossing Delay Alarm Input Data Flows ...38
Table 19. Generate Crossing Delay Alarm Output Data Flows...39
Table 20. Build Detailed Status Input Data Flows ..41
Table 21. Build Detailed Status Output Data Flows..41
Table 22. Update Detailed Status Input Data Flows...41
Table 23. Update Detailed Status Output Data Flows ..41
Table 24. Delete Detailed Status Input Data Flows ..42
Table 25. Routines called by award_dsif main ...44
Table 26. Routines called by award_dsif_cleanup...45
Table 27. Routines called by send_heartbeat_pulse ..46
Table 28. Routines called by initialize_award_dsif...47
Table 29. award_dsif configuration items ..48
Table 30. Routines called by award_dsif_shmem_setup ...49
Table 31. Routines called by award_dsif_config_shm_mgr ..50
Table 32. Routines called by award_dsif_setup_crossing_shem...52
Table 33. Routines called by award_dsif_init_crossing_shem...53
Table 34 - Routines called by award_dsif_setup_sensor_shem ..55
Table 35. Routines called by award_dsif_init_sensor_shmem...56
Table 36. Routines called by award_dsif_setup_crossing_shem..58
Table 37. Routines called by respond_to_read_sockets ..60
Table 38. Routines called by receive_dsif_message..61
Table 39. Routines called by disconnect_receive_socket...61
Table 40. Routines called by send_data_server_message..63
Table 41. Routines called by update_sensor_shmem ..64
Table 42. Routines called by update_crossing_shmem ...66
Table 43. Routines called by sigalrm_handler ..67
Table 44. Routines called by award_tgif main..69

AWARD viii System Design Document

Table 45. Routines called by award_tgif_cleanup ..70
Table 46. Routines called by send_heartbeat_pulse ..71
Table 47. Routines called by initialize_award_tgif ...72
Table 48. award_tgif configuration items...73
Table 49. Routines called by respond_to_read_sockets ..75
Table 50. Routines called by receive_tgif_message ..75
Table 51. Routines called by disconnect_receive_socket...76
Table 52. Routines called by send_eah_message ..77
Table 53. Routines called by retry_eah_message..78
Table 54. Routines called by awdsg teleuse_main ..80
Table 55. Routines called by awdsg_main ...81
Table 56. Routines called by INITIALLY ...82
Table 57. Routines called by GET_UPDATE_RATE ..83
Table 58. Routines called by periodic_update ..84
Table 59. Routines called by PERIODIC_UPDATE..86
Table 60. Routines called by UPDATE_STATUS...88
Table 61. Routines called by award_dsif_connect ..89
Table 62. Routines called by award_dsif_send_sensor_data ...91
Table 63. Routines called by award_dsif_send_crossing_delay...93
Table 64. Routines called by award_dsif_disconnect..94
Table 65. Routines called by award_tgif_connect...95
Table 66. Routines called by award_tgif_send_crossing_blockage..97
Table 67. Routines called by award_tgif_disconnect ..98
Table 68. Railroad Configuration Information ...100
Table 69. AWARD System Traceability Matrix ..157

AWARD 1 System Design Document

AWARD

(Advance Warning to Avoid Railroad Delays)

System Design Document

1. Introduction

The Advance Warning to Avoid Railroad Delays (AWARD) system is an Advanced Traveler
Information Service (ATIS) implementation designed to help motorists and emergency response vehicles
avoid delays due to railroad operations that cross freeway access frontage roads. Railroad operations in
urban areas are usually carried out at low speeds which can result in grade crossings being closed to
vehicular traffic for several minutes. In high traffic areas and during peak traffic times, closing a
frontage road for several minutes can prevent traffic from entering a freeway and can also block exiting
traffic. Eventually this can result in traffic congestion on feeder roads and in the exiting lanes of the
freeway. The AWARD system includes sensors to detect the presence and characteristics of trains
operating in affected areas and computer algorithms to predict the time and duration of blockage of grade
crossings at or near freeway exits and entrances. The AWARD system is integrated with TransGuide
operations to provide advance knowledge of train operations and allow motorists and emergency vehicles
to select different freeway exits or entrances or choose alternate routes to avoid congestion.

The AWARD system includes sensors at selected locations along the Union Pacific Kerrville line
track near IH 10. Trains on this section of track operate at speeds of approximately 10 mph and can
block freeway access at several frontage road locations for periods of over five minutes. The sensors
measure the speed of trains approaching grade crossings and transmit speed information to a central
computer at the TransGuide facility. Computer algorithms predict the time and duration that selected
grade crossings will be blocked and provide this information to TransGuide operators, motorists, and
emergency operations through other Model Deployment Initiative (MDI) components including the
Automatic Route Guidance System, the Traveler Advisory Information System, and the Area Wide
Database. The system hardware and software are designed to allow expansion for additional sensor and
grade crossing locations in the future.

1.1 Purpose of System

The purpose of the AWARD system is to predict when specified grade crossings will be closed
by train operations and provide this information to TransGuide operators, the motoring public and
emergency vehicle operators in time for them to select alternate routes and avoid traffic congestion at the
closed grade crossing. This has the capability to reduce congestion, reduce hazards that can cause
accidents and reduce delays in travel time.

The interactions between different modes of transportation often present particular difficulties in
traffic management and are the cause of traffic hazards, motorist delays, and obstructions to emergency
vehicle operations. In the case of freeway-railroad interaction addressed here, the Kerrville line of the

AWARD 2 System Design Document

Union Pacific Railroad runs nearly parallel to IH 10 from south of Culebra Road to near Basse Road
where IH 10 turns westerly. The railroad line continues northward, crossing under IH 410 at Jackson
Keller Road. In this interval of slightly over five miles, the railroad track crosses three major roads where
crossing blockages can affect freeway traffic.

Figure 1. Award Sensor and Crossing Sites

AWARD 3 System Design Document

Figure 1 shows the locations of sensors and major railroad grade crossings from Dreamland
Road, north of IH 410 to Poplar Street on the west side of IH 10. This section of track crosses three
major intersections that directly affect traffic on IH 10 and IH 410:

• Jackson-Keller at IH 410. Traffic on Jackson-Keller as well as both directions on the IH 410 access
road is blocked by trains at this crossing. Traffic exiting IH 410 East can be blocked by a train
causing congestion to back up onto the freeway lanes.

• Fredericksburg Road and Woodlawn Avenue at IH 10. At this point, traffic exiting from IH 10 and
attempting to turn east on either Woodlawn or Fredericksburg is blocked by passing trains. If the
grade crossing is blocked for several minutes, traffic can back up until it interferes with the exit lanes
and eventually causes congestion and hazards on the freeway.

• Hildebrand and IH 10. Traffic exiting from IH 10 and turning east on Hildebrand is blocked by
trains in grade crossings.

This track is used primarily to haul gravel and rock from a quarry north of town. Due to the

congestion of the area and the condition of the track, trains operating on this section of track are limited to
speeds of ten mph (discussions with Mr. Doug Woods of Union Pacific). Since the trains are moving so
slowly it takes a long time for them to clear a grade crossing and delays of up to ten minutes have been
reported by residents and motorists in the area. The trains do not maintain a fixed schedule but five or
more trains may move across the track on some days (according to businesses located next to the track).
As a result of all these factors, train operations in this section have an appreciable effect on freeway
traffic and on the travel time of motorists, including emergency vehicles.

1.2 Operational Concept

The AWARD system predicts grade crossing blockage by detecting approaching trains a distance
from the crossing. Sensors are placed at selected distances from the three chosen grade crossings. Trains
are detected by acoustic sensors consisting of directional microphones sensitive to the sound of railroad
cars moving on the track. The presence of a train energizes a doppler radar unit aimed at the tracks. The
doppler radar measures the speed of the passing train and transmits speed data to a central computer
located at the TransGuide center as shown in the Architectural Block Diagram. A workstation in the
TransGuide center calculates an equation of motion for the train and predicts the time of arrival and the
duration of closure for grade crossings ahead of the train.

The predicted time and duration of crossing closures is provided to TransGuide operators in the
form of a “railroad grade crossing event” patterned after traffic events currently used in TransGuide
operations. TransGuide operators may respond to the railroad grade crossing event by initiating variable
message sign displays or other appropriate actions. Information on grade crossing closures is also placed
in the Area Wide Database for use by other Model Deployment activities.

AWARD 4 System Design Document

Figure 2. Architectural Block Diagram

Radar

Radar

Radar

Award Master Computer

Kiosks In Vehicle
Navigation Map ATMS

AWARD 5 System Design Document

1.3 Goals and Objectives

The immediate goal of the AWARD system is to provide information on predicted grade crossing
closures early enough to allow motorists and emergency vehicle operators to select alternate routes to
avoid the congested areas. This results in reducing travel time for motorists, reducing congestion on
freeway exit lanes at the affected crossings and reducing delays in emergency vehicle response.

1.4 Referenced Documents

The following documents are referenced in this design:

• Texas Department of Transportation Request for Offer (RFO) for the Model Deployment
Initiative System Integration, 60115-7-70030; TxDOT Specification No. 795-SAT-01.

• San Antonio Advanced Traffic Management Software Requirements Document (December,
1995).

• Object Oriented Analysis and Design by Martin and Odell, Prentice Hall, 1992.
• Southwest Research Institute Proposal No. 10-20352, A Proposal for 60115-7-70030: Request

for Offer, Model Deployment Initiative System Integration.
• Installation and Operations Manual - SmartSonic™ TSS-1, International Road Dynamics,

Saskatoon, Sask., 1997
• MDI Common Code Software Design Document

AWARD 6 System Design Document

2. External Interfaces

AWARD system interfaces include electrical power and signal connections between hardware
subsystems (electrical interfaces), data interfaces between computer programs (software interfaces), and
between programs and operators (user interfaces). Each of these is described briefly below.

2.1 Remote Sensor Site

Interfaces at the remote sensor site include:

• Electrical power connection to the field unit is through liquid tight strain relief fittings. A surge
suppresser and circuit breaker is provided in the input power circuit.

• A power supply at each sensor site provides 12 VDC to the SmartSonic acoustic detector and to

the O’Conner radar unit.

• A signal from the SmartSonic controller card is wired directly to a time delay relay located on the

SmartSonic enclosure. The output of the time delay relay is wired directly to the transmit power
circuit of the radar unit.

• The Radar to Modem connection is EIA-232 also known as RS-232 at 2400 baud, 8 bit, no

parity, 1 stop bit. A DB 24 connector on a cable from the radar connects to a DB 24 connector
on the modem. EIA-232 establishes the electrical connections.

• The Modem to Telephone line connection includes a surge suppresser. RJ11 connectors are used

for the telephone line connections.

• Field modem to TransGuide modem: Each modem provides an RJ11 Socket for connecting to the

commercial telephone system through a surge suppresser. The electrical connection using RJ-11
connectors is standard U.S. telephone practice. The communication protocol used is standard,
uncompressed, serial, modulated signal technique.

2.2 TransGuide Location

Interfaces at the TransGuide location include:

• Telephone Lines to Modems at TransGuide: the telephone hook-up connects to computer
modems using RJ-11 connectors and is standard U.S. telephone connections. The communication
protocol is standard, uncompressed, serial, modulated signal technique.

• Modems at TransGuide to Workstation: the modem pool provides a SCSI-2 cable connection to

the workstation. The SCSI-2 standard defines the pertinent electrical and communication
protocols.

AWARD 7 System Design Document

2.3 Software Interfaces

External interfaces associated with the AWARD software are:

• AWARD software to TransGuide ATMS: The AWARD system provides the train delay
information to the TransGuide ATMS. This information is sent to the existing TransGuide
ATMS as an external event using a socket communication protocol. This event is similar to the
alarm incidents currently handled by the TransGuide ATMS. Crossing location and train delay
duration are transmitted as part of this event. The crossing location and train delay duration are
used by the TransGuide ATMS to perform automatic scenario searches and as an aid to the
TransGuide operators in determining the execution time for the selected scenario.

• AWARD Software to MDI Data Server: The AWARD system provides raw sensor information

and train delay information to the MDI Data Server.

AWARD 8 System Design Document

3. Requirements

This section presents the attributes that are required for a successful implementation of the
AWARD Railroad Delay Advance Warning System. Most of these requirements are derived directly
from TxDOT Specification 795-SAT-01, “Model Deployment Initiative System Integration Request for
Offer” and the Southwest Research Institute Proposal 10-20352. Listed in Section 3.1, General
Requirements, are the programmatic requirements that specify what items are to be delivered and the
schedule for specific events. Section 3.2, System Level Requirements, lists requirements that apply to the
overall AWARD system and Sections 3.3 through 3.8 list requirements that apply to each of the
subsystems individually.

The requirement definition number provides a unique code for reference and tracking. The first
two characters identify the Railroad Delay Project of MDI. The next 3 characters designate the group or
subsystem associated with the requirement. The numeric entry is a sequence number within the group.

3.1 General Requirements

The following section lists requirements for delivery of specific items during the project.

RR-GEN-01 An 80% System design document shall be delivered on February 14, 1997. (SwRI
Proposal 10-20352, section 2.1.2.8.3)

RR-GEN-02 A 100% design document shall be delivered on December 31, 1997. (SwRI Proposal 10-
20352, section 2.1.2.8.3)

RR-GEN-03 A Software Acceptance Test Plan shall be delivered. (SwRI Proposal 10-20352, section
2.1.2.8.3)

RR-GEN-04 A Version Description Document shall be delivered. (SwRI Proposal 10-20352, section
2.1.2.8.3)

RR-GEN-05 Monthly status reports shall be provided via a presentation with the customer. (SwRI
Proposal 10-20352 stated a report will be delivered. An alternative was negotiated.)

RR-GEN-06 A training program shall be presented. (SwRI Proposal 10-20352, section 2.1.2.8.3)

RR-GEN-07 A videotape of the training program shall be delivered. (SwRI Proposal 10-20352,
section 2.1.2.8.3)

RR-GEN-08 A final report shall be delivered. (SwRI Proposal 10-20352, section 2.1.2.8.3)

AWARD 9 System Design Document

3.2 System Level Requirements

The following requirements specify the overall operation and performance of the system. Each
requirement is identified by a unique code and is referenced to the source from which the requirement was
derived.

RR-SYS-01 The system shall deliver advance warning to motorists of expected delays at railroad
crossings. (TxDOT 795-SAT-01, Paragraph 28)

RR-SYS-02 The system shall determine the speed and length of a train engine and attached railroad
cars. (TxDOT 795-SAT-01, Paragraph 28)

RR-SYS-03 The system shall determine expected delay times at selected grade crossings. (TxDOT
795-SAT-01, Paragraph 28)

RR-SYS-04 The system shall transmit an expected delay to TransGuide Operators as an alarm
through a software interface with the existing TransGuide ITS system. (TxDOT 795-
SAT-01, Paragraph 28)

RR-SYS-05 Expected railroad delays shall be transmitted to the traveling public by use of existing
variable message signs and also to the San Antonio Area Wide Database. (TxDOT 795-
SAT-01, Paragraph 28)

RR-SYS-06 The system shall provide warnings for grade crossings at IH 10 and Fredericksburg
Road, IH 10 and Hildebrand Road, and IH 10 and Vance Jackson Road. (TxDOT 795-
SAT-01, Paragraph 29.1.3)

RR-SYS-07 The field equipment shall be mounted on a suitable structure at some location along the
railroad line in advance of the crossing for which warnings are to be given. (TxDOT
795-SAT-01, Section 29.2.1 refers to an ”existing structure” along the track.
Investigation has determined that there are no existing structures at some locations where
sensors will be needed.)

RR-SYS-08 Field equipment shall be located in TxDOT or the City of San Antonio right of way.
(TxDOT 795-SAT-01, Section 29.2.1)

RR-SYS-09 The field equipment shall determine length and speed of trains through observation only.
No connection to the railroad tracks or controlling equipment is allowed. ((TxDOT
795-SAT-01, Paragraph 29.2.2)

AWARD 10 System Design Document

3.3 Sensor Subsystem Requirements

RR-SNS-01 The train speed sensor shall have a range to allow measurement of the train speed from a
location outside the railroad right-of-way. This distance is normally 50 feet on either
side of the track center line but may vary in some locations. (RR-SYS-04)

RR-SNS-02 The detector unit shall measure locomotive speed within 2 miles per hour (+/-) at the
maximum train speeds allowed for the section of track where sensors are installed.
(TxDOT 795-SAT-01, Paragraph 29.2.4 specifies ±2 mph for trains traveling at 60
mph. Trains on the selected section of track operate at less than 10 mph. Specifying a
sensor that operates at 60 mph will reduce the measurement accuracy at low speeds.)

3.4 Communications Subsystem Requirements

RR-COM-01 The field unit shall communicate to the TransGuide equipment using a non-proprietary
protocol. (TxDOT 795-SAT-01, Paragraph 29.1.2)

3.5 Electrical Subsystems Requirements

RR-ELC-01 The field unit shall operate on standard line power. (nominal 120 VAC) (RR-545-07)

3.6 Mechanical Subsystem Requirements

RR-MEC-01 The equipment will be designed to operate within an ambient temperature range of -12°C
to 49°C (10°F to 120°F) and will not allow condensation accumulations which would
interfere with its operation. (RR-SYS-07)

RR-MEC-02 The system enclosure will be able to be mounted to a pole or other suitable structure.
(RR-SYS-07 and RR-SYS-08)

RR-MEC-03 The system will provide an internal mechanism for accurate pointing of the sensor. (RR-
SNS-01)

3.7 Railroad Software Subsystem Requirements

RR-RRS-01 The RR-Delay Master Computer shall calculate the length of the train from measured
train speed integrated over time. (SwRI Proposal 10-20352, Section 2.4.1) The RFO
stated (Paragraph 29.2.2) “The detector unit shall measure the length of the locomotive
and all attached cars within 10 feet (+/-).” The detector itself does not measure train
length directly. The specified accuracy is possible for trains traveling at speeds of 50
mph or more but can only be done for slow trains (10 mph) if acceleration or deceleration
is constant.

AWARD 11 System Design Document

RR-RRS-02 The RR-Delay Master Computer shall calculate the expected time of arrival of the first
element of the train and the last element of the train at selected downrail crossings.
(SwRI Proposal 10-20352, Section 2.4.1)

RR-RRS-03 The RR-Delay Master Computer shall determine expected delay times at railroad
crossings. The RR-Delay Master Computer shall estimate delay time within ±30
seconds. (TxDOT 795-SAT-01, Paragraph 29.3.3)

RR-RRS-04 The RR-Delay Master Computer shall transmit the railroad delay data to the existing
TransGuide ITS system. (TxDOT 795-SAT-01, Paragraph 29.3.3)

3.8 TransGuide Operational Software Subsystem Requirements

Software modifications to the TransGuide ATMS provide the system software interface and
operational control required to incorporate train delay information generated by the AWARD system into
the existing traffic management system software. The requirements related to these software changes are
in the table below.

RR-TGS-01 The TransGuide Operational Software shall interface with and receive railroad delay
data from the Railroad Operational Software. (RR-RRS-04)

RR-TGS-02 The TransGuide Operational Software shall transmit expected delay information to
TransGuide operators as an alarm. (TxDOT 795-SAT-01, Paragraph 28)

RR-TGS-03 The TransGuide Operational Software shall be capable of performing a scenario search
for a RR delay incident. (SwRI Proposal 10-20352, Section 2.4.1)

 3.8.1 TransGuide Alarm/Incident Handler Requirements

The Alarm/Incident Handler (AIH) subsystem of the TransGuide ATMS is responsible for the
handling of traffic incidents or alarms. This subsystem was be modified as part of the AWARD project
in order to handle the RR delay information being sent by the RSS. The requirements related to the
modifications made to the AIH are listed below.

RR-TGS-02.01 The AIH shall accept a RR delay alarm from the RSS. (RR-TGS-02)

RR-TGS-02.02 The AIH shall indicate the RR delay alarm as an update alarm if the RR delay alarm is
related to a current RR delay incident. (RR-TGS-02)

RR-TGS-02.03 The AIH shall create a new AIH RR incident if the RR delay alarm is not related to a
current RR delay incident. (RR-TGS-02)

RR-TGS-02.04 The AIH RR incident shall contain data from the railroad delay information contained in
the RR delay alarm. (RR-TGS-02)

AWARD 12 System Design Document

RR-TGS-02.05 The AIH shall build the AIH RR incident screen for new RR delay alarms. (RR-TGS-
92)

RR-TGS-02.06 The AIH shall display the AIH RR incident screen, as an icon, on the workstation of the
manager responsible for the sector containing the RR incident. (RR-TGS-02)

RR-TGS-02.07 The AIH shall generate an audio notification of new RR incident alarms at the
workstation of the manager responsible for the sector containing the RR incident. (RR-
TGS-02)

RR-TGS-02.08 The AIH shall update the railroad delay information for an existing incident using the
railroad delay information contained in the associated RR delay update alarm. (RR-
TGS-02)

RR-TGS-02.09 The AIH RR incident screen shall provide the same actions currently provided by the
AIH-NewIncidentScreen. (RR-TGS-02)

3.8.2 TransGuide Scenario Manager Requirements

The Scenario Manager (SCM) subsystem of the TransGuide ATMS is responsible for the
searching and execution of pre-defined and operator generated incident scenarios. This subsystem will
need to be modified as part of the AWARD project in order to search and execute scenarios related to
incidents occurring as a result of a RR delay. The requirement related to the modifications made to the
SCM is listed below.

RR-TGS-03.01 The SCM-ScenarioSearchScreen shall contain the RR incident type for selection by a
TransGuide operator. (RR-TGS-03)

AWARD 13 System Design Document

4. Sensor System Design

The AWARD system described in this design document is the initial implementation and test of a
new approach to handling intermodal traffic problems. It includes a limited number of sensors to predict
train activity at three specific grade crossings where blocked intersections affect freeway traffic. The
results of this limited implementation are being used to assess the effectiveness and benefits of the
concept. The effectiveness of the system will serve as the basis for future expansion of the system and for
implementation of advance warning methods at additional intersections. The design of the AWARD
system is based on the following goals:

• Provide advance information on train crossings to allow motorists to plan and take alternate
routes which avoid blocked intersections. This will reduce congestion at intersections and on
freeways and reduce traffic hazards.

• Provide advance information on train crossings to TransGuide operators to allow them to respond

to predicted crossing blockages. This will allow operators to include train information in
planning VMS messages and in responding to traffic incidents.

• Provide advance information to emergency services to allow route planning that avoids congested

intersections. This will lead to faster response time of emergency vehicles.

• Provide a system architecture that can be expanded to include additional sensor locations and

additional grade crossings in the future. This will allow expansion of the system and
implementation at other locations.

4.1 System Architecture

The AWARD system from an operational standpoint is depicted in Figure 3. Equipment in the
field is primarily composed of an acoustic detector and a radar speed gun connected to a modem. This
unit relays train velocity information using standard telephone communications through a second modem
to the Award Master Computer located at the TransGuide facility. Software running on the Award
Master Computer monitors the remote radar units to determine train locations and speeds. After
calculating where street blockages will be occurring, the data is relayed to the TransGuide ATMS and the
Area Wide Database. From the Area Wide Database, the data is available for use by other elements of the
Model Deployment Initiative.

AWARD 14 System Design Document

Figure 3. System Block Diagram

The flow of information related to grade crossing closures is illustrated in Figure 4. Train speed
measurements are transmitted to the Railroad Master Computer Subsystem where estimated time and
duration of crossing blockages are calculated. If any blockages are predicted to occur within specified
time intervals a railroad incident event is generated. This information is provided to the Scenario
Management Subsystem which communicates with TransGuide operations personnel through graphical
user interfaces.

Radar Sensor

Rs232 Cable
(2400 Baud)

Modem
(Auto Answer)

Telephone Line

Modem

Serial Port

SCSI
Cable

Sun Computer

MDI Data
Server

TransGuide
ATMS

In Vehicle
Nav

Transguide
Map Kiosks

Other MDI Components

Acoustic Sensor

RF Beam
Control

AWARD 15 System Design Document

Figure 4. AWARD Process Flow

4.2 System Geographic Layout

One important consideration in the design of the AWARD system was the location of sites for
train speed sensors. Sensors are located far enough from the grade crossings to provide enough advance
warning to allow motorists to decide on an alternate route, possibly change freeway lanes, and take an
earlier or later exit from the freeway. On the other hand, the sensors must be close enough to the
crossings so that train speed is relatively constant and accurate predictions of crossing closure can be
made. For this section of freeway, an advance warning time of 4 to 8 minutes was selected to provide
motorists with several miles of driving in which to make alternate route plans and execute them.

Discussions with Union Pacific determined that the particular section of track (the Kerrville line)
has a posted speed of 10 mph, the lowest in the city. The distance from sensors to grade crossings was
then calculated based on the nominal train speed.

RR
Software

Subsystem

RR Event
Generation
Subsystem

FE Comm
Subsystem

MDI Data
Server

TransGuide
ATMS

RR
Detection

Field
Equipment

RR
Detection
Data

RR Delay Data

RR
Incident
Event

RR
Detection
Data

RR Delay Data
and
Sensor Data

AWARD 16 System Design Document

distance = time*speed
distance = 6min*(1hr / 60min)*10mi / hr
Distance = 1mile

Based on this distance, six sensors (one on each side of each crossing) are used to provide accurate time
and duration estimates.

Regions of the track approximately one mile on each side of the three grade crossings were
investigated to determine the availability of sites for mounting train sensors. In addition to the correct
distance from grade crossings, acceptable sites must provide opportunities for mounting the sensor, an
un-obstructed view of the railroad track and the availability of power and communications.

Sites were identified at each required location which provided the required characteristics.

• SITE 1 - One mile south of the Fredericksburg-Woodlawn crossing the track runs through a
mixed residential/warehouse area. The sensor was mounted on a new 25-ft utility pole at Poplar
Street between a warehouse and a paved area adjacent to a loading dock. The acoustic detector
and the radar are aimed toward the track in the northward direction. There is very little
background noise at this location.

• SITE 2 - One mile south of the Hildebrand Street crossing the track runs beside IH 10 which is

double-decked at this location. The sensor at this location is mounted on an existing utility pole
on the north side of Cincinnati Street. The acoustic detector and the radar are aimed toward the
track in the northward direction. The acoustic sensor also picks up traffic noise from IH 10
which can be significant during heavy traffic.

• SITE 3 - One mile north of the Fredericksburg-Woodlawn crossing the track runs between the

edge of Martinez Creek and Capitol Street in an area of light industry. At this location the sensor
is mounted on a newly installed 30-foot utility pole located on the south side of San Francisco
Street. This pole is taller than the others since the sensor is directed northward looking across
San Francisco Street and the sensor must be high enough to clear any obstructing traffic on the
street.

• SITE 4 - One mile north of the Hildebrand Street crossing the track runs along Martinez creek

between Mardell Boulevard and Wildwood Drive. The sensor is mounted on a 25-foot pole on the
north side of Mariposa Street and is directed northward.

• SITE 5 - One mile south of the Jackson-Keller grade crossing the track runs parallel to Arroya

Vista Drive in a residential area. This sensor is located on a 25-foot utility pole on the north side
of Dresden Drive.

• SITE 6 - North of the Jackson-Keller grade crossing the track runs along Olmos Creek through a

wooded floodplain area without much development. The sensor is mounted on a 25-foot utility
pole on the south side of Dreamland Drive.

AWARD 17 System Design Document

Sensor
Code

Site Location
Telephone #

Location
Coordinates

Orientation
(angle to tracks)

Distance from Sensor Location to Crossings (ft)

Jackson-Keller Hildebrand

A6 Dreamland
(10689 TCM)
341-9615

Lat: -98 32 22
Lon: 29 32 11

44° facing south 8400 ft. South

A5 Dresden
(379 #TCM)
340-4689

Lat: -98 31 05
Lon: 29 29 55

39° facing north 7100 ft North

A4 Mariposa

733-6041

Lat: -98 30 56
Lon: 29 28 50

20/ facing north 5600 ft South

A3 San Francisco

735-0124

Lat: -98 30 47
Lon: 29 28 06

25/ facing north 900 ft South

A2 Cincinnati
(431 #TCM)
738-3894

Lat: -98 30 52
Lon: 29 26 54

29/ facing north 6600 ft North

A1 Poplar

733-6021

Lat: -98 30 45
Lon: 29 26 21

22/ facing north 10000 ft North

Table 1. Sensor Locations and Orientations

AWARD 18 System Design Document

4.3 Sensor Subsystem Design

Each remote site includes an acoustic sensor to detect the presence of a train and a speed sensor
to measure the speed of trains approaching a crossing.

Doppler radar was chosen as the most appropriate among the speed measurement technologies
although it has some certain limitations. No commercial off-the-shelf (COTS) radar unit was found
which was designed for viewing trains and communicating with a remote computer. Therefore, a vendor
was found who was willing to quote such a system (the quote was part of the proposal for AWARD).
Normal frequency bands of the radar units are X, K, and Ka. The least affected by rainfall is the X band,
however, the vendor had no X band radar’s which could measure vehicles approaching and receding,
therefore K band was chosen. Radar gun technology is based on measuring frequency shift of a returned
signal (i.e. Doppler shift) and is not very sensitive to slow speeds because these result in small frequency
shifts. Radar units, however, may be adjusted so that they are more sensitive to slower or faster speeds
than the nominal 60 miles per hour. One final limitation of using radar gun technology is that the FCC
does not want radar guns to remain transmitting when unattended; therefore the radar gun was used with
an acoustic sensor to activate the RF transmit beam only when a train is present.

4.3.1 Specifications for Selected Sensors

The SmartSonic Traffic Surveillance System (TSS-1) is a non-contact sensor designed for
highway use. It is capable of detecting the acoustic emissions of a vehicle and providing vehicle presence
signals to a traffic controller or other system. Each SmartSonic sensor is comprised of a microphone
array which listens continuously to sound energy emitted from vehicles or other sources within its
detection zone. The signals from the microphones are processed to provide sensor directivity, creating an
effective detection beam of only a few degrees. Only sounds coming from within a specific detection zone
are retained. Sounds from locations outside the detection zone (such as an adjacent highway or freeway)
are severely attenuated and are ignored. The detection zone size and shape is determined by the sensor
installation geometry. For the typical installation along the Union Pacific railroad track, the detection
zone is approximately a 12' x 12' area.

When a train enters the detection zone, an increase in sound energy is detected and a train
presence signal is generated. This signal is used to close a relay, providing power to the transmitter of the
radar. When the train leaves the detection zone, the sound energy level drops below the detection
threshold, and the train presence signal becomes inactive. During tests it was noted that the sound level
may drop below the detection level for short periods of time. In order to prevent the radar power from
being turned on and off intermittently as a train passes, a time delay relay was used to hold the radar on
for the short quiet intervals as a train passes.

The SmartSonic TSS-1 microphone array is mounted overhead on utility poles just beside the
enclosure holding the radar and modem. Each TSS-1 sensor has a single detection zone, and is aimed at
the railroad tracks at approximately the same location as the radar.

Each TSS-1 sensor is small and lightweight to facilitate easy installation using off-the-shelf
mounting hardware. The sensor utilizes a fully programmable digital signal processor (DSP) to process

AWARD 19 System Design Document

the microphone signals. Selectable processing bands provide flexibility to control detection zone size for
different installation geometries. For AWARD, the sensors have been set to operate in the lowest
frequency band to provide the greatest sensitivity to the low frequency sounds generated by the trains.

The cable (termed the ? home run? cable) from the TSS-1 acoustic sensor is brought through the
bottom of the pole mounted enclosure at a sealed fitting. The cable terminates at screw connectors on the
transition module which serves as the junction between the home run cable and the six conductor modular
cables connected to the TSS-1 controller card. The Transition Module is mounted on the case containing
the controller. Signal probe points on the transition module are readily accessible to facilitate trouble
shooting if it is necessary.

The TSS-1 controller uses a programmable microprocessor to implement detection processing.
The controller provides vehicle presence relay signals at the controller edge connector and visual LED
detection indicators on the front panel. A complete list of SmartSonic TSS-1 specifications is provided in
Table 1.

The time delay relay used to control the radar RF beam when the acoustic signal of a train is
present is a Syrelec Chronos multifunction timer. It operates from a 12 volt DC supply and can provide
time delays from 0.1 second to 10 hours. For this use, the time delay is set to 15 seconds.

AWARD 20 System Design Document

SENSOR
Detection Method Passive (Non-Emitting)
Detection Frequency Band 1 of 4 bands
Detection Beam Pattern 3dB Beamwidth of 8 degrees
Mounting Position Overhead or side mount
Detection Range (20ft to 40ft) or (6.1 m to 12.2m)
Temperature (-30°F to 160°F) or (-34°C to 71°C)
Wind Load Design (120mph) or (190Km/hr)
Weight Less than (8lb) or (3.62Kg)
Size 15.0" square x 3.0" deep
Color Gray
Enclosure Aluminum with baked enamel
Current Requirement Less than 55mA @ 24VDC
CONTROLLER
System Interface Type 170/NEMA cardfile/RS-232C
Relay Contacts Solid state coupled
Size of Controller Card 4.5"H x 6.875"D
Size (Shelfmount) 6.75"H x 7.94"D x 2.85"W
Power Requirements Less Than 90 mA @24VDC for Controller Card
SYSTEM
Power Requirements 12 to 24 VDC
Total Power Consumption 7 watts @24VDC (4 Sensors & Controller)
Sensor Interconnect Cable Twisted pair cable(4 pairs)
Sensor Home run Cable Twisted pair cable(4 Pairs)

Table 2. SmartSonic TSS-1 Specifications

The selected doppler radar sensor is Model 3004 from MPH Industries, Inc. manufactured by
O’Conner Engineering. Sensor specifications are listed in the table below.

AWARD 21 System Design Document

Criteria Specification
Sensor Type Doppler Radar
Frequency 24.125 Ghz
Power Output 0.005 Watt
Power Required 2.4 Watts, 10.8-24V, 250 mA at 12V
Size Approx: 4” x 4” x 9”
Antenna Type 100 mm (4 inch) sealed lens horn
Beam Width 7º
Range up to 2 miles
Train Response 35 Hz to 15,000 Hz weighted response

 (0.5 to 185 mph)
Accuracy ± 0.50 mph across response range
Output Signals target velocity

target closing
target receding
timer output
timed relay output

External Communications/
 Connector

RS 232 signals (EIA 232)
DB 9 connector

System Control Unit may be placed intro transmit mode by an external RS
232 command. Time to awaken transmitter until
transmitting data may take a few seconds.

Environment Designed for all weather, day/night, continuous operation.
-30°C to +60°C (-22°F to 140°F)
90% Relative Humidity at 37°C (99°F)

Lifetime Designed to last 7 to 10 years.
Actual lifetime may vary.

Manufacturers Warranty 2 years
Approval FCC, Part 15 (No license required.)

Table 3. Doppler Radar Speed Sensor Specifications

The radar communicates over a bidirectional RS-232 interface which is set for 2400 baud, 8 data bits, no
parity, I stop bit. When power is first turned on to the radar it is in a dormant state and commands must be
issued to start the desired operation. The setup commands for specific actions are:

AWARD 22 System Design Document

Desired Action Command (ASCII)

Turn microwave transmitter on D40

Turn microwave transmitter off D41

Send a single speed sample S

Begin sending continuous samples B1

Discontinue sending continuous samples B0

Set sending rate to 4/sec (250 mS period) T0

Set sending rate to 2/sec (500 mS period) Tl

Set sending rate to 1/second T3

Table 4. Doppler Radar Command Codes

Commands sent to the radar unit must be separated by a minimum of 50 milliseconds for proper
processing.

Output data format

The radar transmits coded data over the RS-232 port to the modem. Each speed sample is in the
form of an output string consisting of 5 groups of ASCII numbers separated by spaces. Groups are defined
as follows:

Group 1 - Receding target speed when receding flag = 1
Group 2 - Approaching target speed when approaching flag = 1
Group 3 - Don't care (appears to be uncorrected measurement)
Group 4 - Don't care (normally all l's)
Group 5 - Data Flags (don't care(normally 1), beam off, valid data, don't care (normally 1), approaching
target, receding target)

RRR AAA XXX 255 Don't
Care

Beam
Off

Valid
Data

Don't
Care

Appr.
Target

Recd.
Target

<cr>
<lf>

The target speed data transmitted by the speed sensor is a digital value which must be converted to speed in
miles per hour for processing. This is done by the following equation:

Target Speed (MPH) =.55 + (.318 * N) + (.000257 * N2)

Where N is the transmitted speed data (RRR or AAA in the table above)

AWARD 23 System Design Document

4.3.2 System Placement

The radar sensor requires a clear view of trains on the track. The unit is most accurate when
placed near the track so that the radar beam is aimed directly at an approaching train. In this application,
the sensors are located away from the RR track and the beam is aimed at an angle to the sides of the cars.

Since the unit is mounted in a box, a lexan window is provided for the sensor so that the radar unit
is relatively protected and the radar beam is barely attenuated.

4.3.3 Power Requirements

The radar unit requires approximately 250mA at 12 V. The supply of power for the unit is
described in the Electrical Subsystems Design.

4.3.4 Environmental Design Requirements

The radar unit requires that temperature be maintained between -30°C and +60°C (-22°F and
140°F). The relative humidity at 37°C (99°F) may not exceed 90%. The enclosure providing the
environmental conditions is described in the Mechanical Subsystem Design.

4.4 Communications Subsystem Design

The communications subsystem transmits train speed measurements from the train sensor to the
workstation located in the TransGuide operational center. Several alternative communication techniques
were considered as a part of the system design with the design goals of:

• reliability
• economical installation and operation
• adaptability to installation in multiple locations
• expandability to allow use of many sensors for many grade crossings

Based on system trade-off analysis, dial-up telephone lines were selected for communications
between the remote train sensors. This option also allows future inclusion of cellular telephone links if the
system is expanded. Wireless telephone service will be the lowest cost for locations where telephone
service is not available.

Telephone line communications between the computer located at TransGuide and each MPH train
sensor in the field is depicted in Figure 2 (see page 3). The radar unit provides an RS-232 (EIA-232)
connection at 2400 baud (8 bit, no parity, 1 stop bit, DB 9 connector). Per the MPH specification, the
radar unit is either placed into transmit mode or disabled by an external command. The total process of
awakening the radar transmitter, reading the train speed, and transmitting the data takes place in only a few
seconds.

A modem configured to automatically answer (and establish communications) is attached to the
radar unit and the telephone lines. The selected modem is a Maxtech Net Pacer, selected because it is rated
for environmental extremes that may be encountered.

AWARD 24 System Design Document

At the TransGuide facility, a Practical Peripherals 28.8 modem provides the other telephone
connection. The modem interfaces to the Award Master Computer (a Sun Workstation) via a SCSI
interface and provides a standard serial port application interface to the Award Software.

4.4.1 Modem at Remote Site

A number of modems were considered for placement at the remote site. The required specifications
include:

Operation to 54° C (130°F)
External modem configuration (i.e. not a computer board)
Normal telephone line operation
Auto-pickup (auto-answer)
2400 baud

4.4.1.1 Specifications

Criteria Specification
Communication Rate Up to 33 KB
Type Stand Alone/External
Digital Interface RS-232
Telephone Interface RJ11, RJ45
Environmental 0°C to 55° (32° to 131°F)

Humidity 95% non-condensing
Power 120 VAC, 10W nominal
Auto Answer Yes

Table 5. Modem Specifications

4.4.1.2 Power

The modem requires 115 V AC. The supply of power for the unit is described in the Electrical
Subsystems Design.

4.4.1.3 Environmental

The modem requires that temperature be maintained between 0°C and +55°C (32°F to 131°F).
The relative humidity must not allow condensation accumulations which would interfere with equipment
operation. The enclosure providing the environmental conditions is described in the Mechanical Subsystem
Design.

AWARD 25 System Design Document

4.5 Electrical Subsystems Design

The remote train speed sensor installation is connected to 115 VAC single phase power. A
terminal strip provides a circuit breaker and surge protection. The terminal strip provides 120 VAC power
to the modem and a power supply. The power supply provides 15 VDC power for the acoustic detector
and the doppler radar sensor. These are commercial, off-the-shelf components and have been selected to
have wide operating temperature ranges. The power supply is a Solo model 85-15-2150, chosen to have
low heat dissipation to minimize internal heating in the enclosure. Specific electrical parameters are
provided in Table 6.

4.6 Mechanical Subsystem Design

The mechanical design includes the enclosure for the remote sensor and electronics.

4.6.1 Enclosure for Sensors

The physical enclosure for the sensing system is based upon current enclosure designs selected and
used for traffic control installations in the City of San Antonio. Typical enclosures considered as
representative examples are those used at traffic lights to house the signal electronics and power.

4.6.1.1 Design Assumptions

• The control volume is defined about the enclosure.

• The enclosure and internal components are at best at ambient temperature.

• Internal sources of heat are as specified in Table 6.

Table 6. Enclosure Internal Power Loading

• Maximum ambient temperature is 49°C (120°F). During summer months at extreme conditions a
sun-shield is required. The sun-shield provides protection from the elements, as well. Analysis
shows vents will always be needed.

Component No Signal
Power (W)

Signal
Power (W)

Operating Temperature
Range

Radar 3 5 -30°C to +60°C (-22°F to +140°F)
SmartSonic
TSS-1

2 2 -34°C to 71°C (-30°F to 160°F)

Modem 10 10 0°C to +55°C (32°F to +131°F)
Power Supply 5 5 -25°C to +70°C (-13°F to 158°F)
Total 20 22

AWARD 26 System Design Document

• Minimum ambient temperature is -12°C (10°F). During extreme winter months, low temperatures
in San Antonio may exceed component design limits. Analysis shows that internal heating of
components in the sealed enclosure will maintain a suitable internal temperature.

4.6.1.2 Mechanical Layout

The dimensions of the enclosure are 12” x 12” x 12”. These dimensions provide ready access to
components and ample room for additional components if needed.

The radar window is lexan. The thickness and clarity are designed to prevent thermal loading, and
damage due to elements and/or vandalism.

4.6.1.2.1 Alignment for Sensor

Sensor alignment is provided for by a two degree-of-freedom mount. This mount allows for
rotation about the pitch and yaw axis of the enclosure. All components are designed for rigid mounting
within the enclosure.

4.6.1.3 External Mounting

The enclosure and sun-shield are designed for pole mount. Pole brackets are considered the
primary system for installation.

4.6.2 Electrical Connections

Power and communication access are being provided by industry standard electrical and
communication external connections. These provide for cabling isolation from the elements.

AWARD 27 System Design Document

5. Software System Design

The AWARD Software monitors the field sensors, filtering data from them and detecting the speed
and length of trains. The software is cognizant of crossings and sensors downstream from the current
sensor of interest. Crossing blockage times and durations are calculated. This information is provided to
the Area Wide Database and to the TransGuide ATMS. The discussion which follows describes the
software in two sections: the TransGuide Operational Software related to receiving events through the
TransGuide system to motorists, the public and emergency vehicles and the Railroad Operational Software
related to determining the speed of trains and predicting arrival times at grade crossings and.

5.1 External Interfaces

The AWARD subsystem has eight external interfaces as shown in Figure 5. The following
sections describe these external systems in more detail.

AWARD 28 System Design Document

5.1.1 TransGuide Personnel

TransGuide Personnel represents the operations and system adminstration personnel assigned to
the TransGuide ATMS. These are the end-users of the AWARD subsystem and will interact with the
AWARD subsystem via graphical user interfaces associated with the detailed status GUI.

5.1.2 Process Status GUI

The Process Status GUI is the graphical user interface providing the visual description of each of
the processes within the subsystem. The user has the ability to stop and start processes as configured by
the status GUI. The user can also invoke the detailed status GUI of the subsystem from the Process Status

0

AWARD

RR
Sensors

Data
Server

TransGuide
ATMS

TransGuide
Personnel

Subsystem
Process
Control

Subsystem
Heartbeat
Management

Subsystem
Status
Logger

Process
Status
GUI

Sensor Data

RR Sensor Data

Crossing Delay
Alarm

Subsystem
Heartbeat

GUIs

User Commands

RR Crossing
Data

Sensor Commands

Start Process

Stop Process

Process
Heartbeat

Most Severe
Process Status

Status Log
Message

Display Detailed
Status

Figure 5. AWARD Context Diagram

AWARD 29 System Design Document

GUI. The detailed status GUI can provide information about field equipment associated with the
subsystem or other information of importance.

5.1.3 Data Server

Data Server is the central repository of information generated and maintained by the MDI
subsystems. The AWARD subsystem sends sensor data and crossing data to the Data Server. The Data
Server also receives the subsystem-level heartbeat which includes the overall status of the AWARD
subsystem.

5.1.4 Subsystem Status Logger

Subsystem Status Logger is the process responsible for logging status information to a log file. A
log file for each day of the week is maintained. These log files are kept only for the current week.

5.1.5 TransGuide ATMS

TransGuide ATMS is the existing Advanced Traffic Management System currently in place at the
TransGuide facility. Modifications to the TransGuide ATMS have been made to support the AWARD
subsystem. These modifications are described in the TransGuide ATMS maintenance manual.

5.1.6 RR Sensors

RR Sensors represent the physical hardware deployed in the field. These sensors are used to detect
trains travelling on the monitored tracks.

5.1.7 Subsystem Heartbeat Management

Subsystem Heartbeat Management receives all the process-level heartbeat messages and maintains
the current status information for the subsystem. The most severe process-level status is sent periodically
to the Data Server through the subsystem's Data Server Interface.

5.1.8 Subsystem Process Control

Subsystem Process Control is responsible for starting and automatically restarting the processes
associated with the AWARD subsystem.

5.1.9 External Data Flows

Several data flows exist between the AWARD subsystem and the external interfaces described
above. These data flows are described in more detail in Table 7.

AWARD 30 System Design Document

5.2 Subsystem Design

The AWARD subsystem software resides on the AWARD master computer and the TransGuide
ATMS master computer. The AWARD subsystem consists of four data processes shown in Figure 6.
These data processes and associated data flows are described in the following sections.

Data Flow Description
Crossing Delay Alarm Crossing Delay Alarm is an external alarm (external to TransGuide ATMS) generated by the AWARD

subsystem. This alarm indicates changes in delays at a specified crossing. The alarm could
represent a crossing being blocked or a clearing of a previously blocked crossing.

Display Detailed Status Display Detailed Status is an event used to trigger the display of the subsystem's detailed status GUI.
GUIs GUIs are graphical user interfaces. These interfaces are used to communicate information from the

subsystem to the user and to allow the user to control certain aspects of the execution of the
subsystem.

Most Severe Process Status Most Severe Process Status is the value of the process status being managed by the Subsystem
Heartbeat Management that represents the worst status of all the processes. For example if all
processes indicated an ok status except one process indicated a warning status then the Most
Severe Process Status would be warning.

Process Heartbeat Process Heartbeat is the heartbeat pulse sent from each process within the subsystem. The
Process Heartbeat contains the status information for the process along with the process identifier.

RR Crossing Data RR Crossing Data is the data associated with the railroad crossing being monitored by the AWARD
subsystem. This data includes the railroad crossing identifier, the expected arrival times of the front
and rear of a train, and the expected duration of the crossing delay.

RR Sensor Data Railroad Sensor Data is the data associated with the sensor field equipment. This data includes the
sensor identifiers, the current status of the sensors, and the current readings obtained from the
sensors.

Sensor Commands Sensor Commands are commands sent to the field equipment. Initialization sequences are an
example of Sensor Commands.

Sensor Data Sensor Data represents the actual data stream from the Sensors. This data stream is used to detect
trains and calculate railroad crossing delays.

Start Process Start Process is an event used to start the execution of a process.
Status Log Message Status Log Message contains information to be logged to the subsystem log file. Typical Status Log

Messages include error messages such as memory allocation errors or data being logged from field
equipment associated with the subsystem.

Stop Process Stop Process is an event used to stop the execution of a process.
Subsystem Heartbeat Subsystem Heartbeat is the heartbeat message containing the overall status of the AWARD

subsystem. This message is generated by the Subsystem Heartbeat Management process and is
passed on to the Data Server by the subsystem's Data Server Interface process.

User Commands User Commands are the commands selected by the user from the graphical user interfaces. These
commands are generated through push buttons, radio buttons, text boxes, and other user interface
components.

Table 7. External Data Flows

AWARD 31 System Design Document

5.2.1 Dispatch Data Server Messages

Dispatch Data Server Messages receives messages to be sent to the Data Server and sends these
messages on to the Data Server. This process represents the subsystem's single interface point to the Data
Server. This process periodically sends a heartbeat message containing the status of the process. This

1
Dispatch
Data Server
Messages

2
Dispatch
Crossing
Delays

3

Monitor
Trains

4
Show
Detailed
Status

Crossing
Data

Sensor
Data

Display Detailed
Status

Most Severe
Process Status

Stop Process

Start Process

User Commands

Sensor Data

Status Log
Message

Process
HeartbeatSensor Commands

RR Crossing
Data

GUIs

Subsystem
Heartbeat

Crossing Delay
Alarm

RR Sensor Data

Process
Heartbeat

Process
Heartbeat

Status Log
Message

Status Log
Message

Crossing Delay
Data

Sensor Data

Crossing Data

Stop Process

Start Process

Stop Process

Start Process

Figure 6. AWARD Subsystem Processes

AWARD 32 System Design Document

process is also responsible for setting up the Sensor Data and Crossing Data to be displayed by the detail
status GUI.

The data flow diagram for the Dispatch Data Server Messages data process is shown in Figure 7.
The data processes and associated data flows are described in the subsections that follow.

AWARD 33 System Design Document

1.1
Dispatch
RR Crossing
Data

1.2
Dispatch
RR Sensor
Data

1.3
Dispatch
Subsystem
Heartbeat

1.4
Generate
Process
Heartbeat

Process
Status

RR Crossing
Configuration

RR Sensor
Configuration

Crossing Data

Sensor Data

Start Process

Stop Process

Most Severe
Process Status

Crossing Data

Sensor Data

RR Sensor Data

Subsystem
Heartbeat

RR Crossing
Data

Process
Heartbeat

Status Log
Message

Start Process

Stop Process

Start Process

Stop Process

Start Process

Stop Process

Status Log
Message

Status Log
Message

Status Log
Message

Figure 7. Dispatch Data Server Messages Data Flow

AWARD 34 System Design Document

5.2.1.1 Dispatch RR Crossing Data

Dispatch RR Crossing Data is responsible for receiving the Crossing Data from the Monitor
Trains data process and sending the RR Crossing Data to the Data Server and storing the Crossing Data
for viewing by the detail status GUI. Errors that occur sending the data to the Data Server or in storing the
information are logged using Status Log Messages.

The input data flows are described in Table 8 and the output data flows are described in Table 9.

5.2.1.2 Dispatch RR Sensor Data

Dispatch RR Sensor Data is responsible for receiving the Sensor Data from the Monitor Trains
Data process and sending the RR Sensor Data to the Data Server and storing the Sensor Data for viewing
by the detail status GUI. Errors that occur sending the data to the Data Server or in storing the information
are logged using Status Log Messages.

The input data flows are described in Table 10 and the output data flows are described in Table
11.

Data Flow Description
Crossing Data Crossing Data is the data associated with a specific railroad crossing being monitored by the AWARD

subsystem. This information is updated whenever a change is detected at the specific railroad crossing. This
information is maintained within the subsystem for the Detailed Status GUI as well as being dispatched to the
Data Server to be made available to other MDI subsystems.

RR Crossing
Configuration

RR Crossing Configuration contains the equipment IDs for each of the crossings defined for the AWARD
system. This information is used to initialize the Crossing Data data store for use by the detail status GUI.

Start Process Start Process is an event used to start the execution of a process.
Stop Process Stop Process is an event used to stop the execution of a process.

Table 8. Dispatch RR Crossing Data Input Data Flows

Data Flow Description
Crossing Data Crossing Data is the data associated with a specific railroad crossing being monitored by the AWARD

subsystem. This information is updated whenever a change is detected at the specific railroad crossing. This
information is maintained within the subsystem for the Detailed Status GUI as well as being dispatched to the
Data Server to be made available to other MDI subsystems.

Process Status Process Status contains the current value associated with the execution status of the process. This status
can indicate an OK condition, a warning condition, or an error condition.

RR Crossing Data RR Crossing Data is the data associated with the railroad crossing being monitored by the AWARD
subsystem. This data includes the railroad crossing identifier, the expected arrival times of the front and rear
of a train, and the expected duration of the crossing delay.

Status Log
Message

Status Log Message contains information to be logged to the subsystem log file. Typical Status Log
Messages include error messages such as memory allocation errors or data being logged from field equipment
associated with the subsystem.

Table 9. Dispatch RR Crossing Data Output Data Flows

Data Flow Description
RR Sensor
Configuration

RR Sensor Configuration contains the equipment IDs for each of the sensors being monitored by AWARD.
This information is used to initialize the Sensor Data data store for use by the detail status GUI.

Sensor Data Sensor Data represents the actual data stream from the Sensors. This data stream is used to detect trains
and calculate railroad crossing delays.

Start Process Start Process is an event used to start the execution of a process.
Stop Process Stop Process is an event used to stop the execution of a process.

Table 10. Dispatch RR Sensor Data Input Data Flows

AWARD 35 System Design Document

5.2.1.3 Dispatch Subsystem Heartbeat

Dispatch Subsystem Heartbeat is responsible for receiving the Most Severe Process Status from
the Subsystem Heartbeat Management data process and sending the Subsystem Heartbeat to the Data
Server. Errors that occur sending the Subsystem Heartbeat to the Data Server are logged using Status Log
Messages.

The input data flows are described in Table 12 and the output data flows are described in Table
13.

5.2.1.4 Generate Process Heartbeat

Generate Process Heartbeat periodically sends the Process Heartbeat to the Subsystem Heartbeat
Management process. The current Process Status is read and sent as part of the Process Heartbeat. The
time interval for sending the Process Heartbeat is specified by the Heartbeat Interval configuration item.
Errors and other status information is logged using the Status Log Message.

Data Flow Description
Process Status Process Status contains the current value associated with the execution status of the process. This status

can indicate an OK condition, a warning condition, or an error condition.
RR Sensor Data Railroad Sensor Data is the data associated with the sensor field equipment. This data includes the sensor

identifiers, the current status of the sensors, and the current readings obtained from the sensors.
Sensor Data Sensor Data is the shared information between the AWARD subsystem and the Detailed Status GUI. The

Dispatch Data Server Messages process maintains this information and the Detailed Status GUI uses the
information to display the current status to the TransGuide ATMS personnel.

Status Log
Message

Status Log Message contains information to be logged to the subsystem log file. Typical Status Log
Messages include error messages such as memory allocation errors or data being logged from field equipment
associated with the subsystem.

Table 11. Dispatch RR Sensor Data Output Data Flows

Data Flow Description
Most Severe
Process Status

Most Severe Process Status is the value of the process status being managed by the Subsystem Heartbeat
Management that represents the worst status of all the processes. For example if all processes indicated an
ok status except one process indicated a warning status then the Most Severe Process Status would be
warning.

Start Process Start Process is an event used to start the execution of a process.
Stop Process Stop Process is an event used to stop the execution of a process.

Table 12. Dispatch Subsystem Heartbeat Input Data Flows

Data Flow Description
Process Status Process Status contains the current value associated with the execution status of the process. This status

can indicate an OK condition, a warning condition, or an error condition.
Status Log
Message

Status Log Message contains information to be logged to the subsystem log file. Typical Status Log
Messages include error messages such as memory allocation errors or data being logged from field equipment
associated with the subsystem.

Subsystem
Heartbeat

Subsystem Heartbeat is the heartbeat message containing the overall status of the AWARD subsystem. This
message is generated by the Subsystem Heartbeat Management process and is passed on to the Data Server
by the subsystem's Data Server Interface process.

Table 13. Dispatch Subsystem Heartbeat Output Data Flows

AWARD 36 System Design Document

The input data flows are described in Table 14 and the output data flows are described in Table
15.

5.2.2 Dispatch Crossing Delays

Dispatch Crossing Delays is responsible for receiving Crossing Delay Data from the Monitor
Trains process and generating a Crossing Delay Alarm which is sent to the TransGuide ATMS. This
process periodically sends a heartbeat message containing its current status.

The data flow diagram for the Dispatch Crossing Delays data process is shown in Figure 8. The
data processes and associated data flows are described in the subsections that follow.

Data Flow Description
Process Status Process Status contains the current value associated with the execution status of the process. This status

can indicate an OK condition, a warning condition, or an error condition.
Start Process Start Process is an event used to start the execution of a process.
Stop Process Stop Process is an event used to stop the execution of a process.

Table 14. Generate Process Heartbeat Input Data Flows

Data Flow Description
Process Heartbeat Process Heartbeat is the heartbeat pulse sent from each process within the subsystem. The Process

Heartbeat contains the status information for the process along with the process identifier.
Process Status Process Status contains the current value associated with the execution status of the process. This status

can indicate an OK condition, a warning condition, or an error condition.
Status Log
Message

Status Log Message contains information to be logged to the subsystem log file. Typical Status Log
Messages include error messages such as memory allocation errors or data being logged from field equipment
associated with the subsystem.

Table 15. Generate Process Heartbeat Output Data Flows

AWARD 37 System Design Document

2.2
Generate
Crossing
Delay Alarm

2.1
Generate
Process
Heartbeat

Process
Status

Heartbeat
Interval

Status Log
Message

Crossing Delay
Data

Status Log
Message

Process
Heartbeat

Crossing Delay
Alarm

Start Process

Stop Process

Start Process

Stop Process

Figure 8. Dispatch Crossing Delays Data Flow

AWARD 38 System Design Document

5.2.2.1 Generate Process Heartbeat

Generate Process Heartbeat periodically sends the Process Heartbeat to the Subsystem Heartbeat
Management process. The current Process Status is read and sent as part of the Process Heartbeat. The
time interval for sending the Process Heartbeat is specified by the Heartbeat Interval configuration item.
Errors and other status information is logged using the Status Log Message.

The input data flows are described in Table 16 and the output data flows are described in Table
17.

5.2.2.2 Generate Crossing Delay Alarm

Generate Crossing Delay Alarm receives the Crossing Delay Data and submits the Crossing Delay
Alarm to the TransGuide ATMS. Errors and other status information are logged using the Status Log
Message.

The input data flows are described in Table 18 and the output data flows are described in Table
19.

Data Flow Description
Heartbeat Interval Heartbeat Interval is a configuration item that indicates how often the process-level heartbeat message is sent

to the Subsystem Heartbeat Management process. This value is specified in seconds.
Process Status Process Status contains the current value associated with the execution status of the process. This status

can indicate an OK condition, a warning condition, or an error condition.
Start Process Start Process is an event used to start the execution of a process.
Stop Process Stop Process is an event used to stop the execution of a process.

Table 16. Generate Process Heartbeat Input Data Flows

Data Flow Description
Process Heartbeat Process Heartbeat is the heartbeat pulse sent from each process within the subsystem. The Process

Heartbeat contains the status information for the process along with the process identifier.
Process Status Process Status contains the current value associated with the execution status of the process. This status

can indicate an OK condition, a warning condition, or an error condition.
Status Log
Message

Status Log Message contains information to be logged to the subsystem log file. Typical Status Log
Messages include error messages such as memory allocation errors or data being logged from field equipment
associated with the subsystem.

Table 17. Generate Process Heartbeat Output Data Flows

Data Flow Description
Crossing Delay
Data

Crossing Delay Data contains the information needed to generate the Crossing Delay Alarm to be sent to the
TransGuide ATMS. This data is used to create new Crossing Delay Alarms for the TransGuide ATMS as well
as update existing Crossing Delay Alarms.

Start Process Start Process is an event used to start the execution of a process.
Stop Process Stop Process is an event used to stop the execution of a process.

Table 18. Generate Crossing Delay Alarm Input Data Flows

AWARD 39 System Design Document

5.2.3 Monitor Trains

Monitor Trains is the process which communicates directly with the sensor field equipment and
uses the sensor information to predict locations of trains and expected crossing delays within the monitored
railroad sections. This process periodically sends a heartbeat message containing the current status of the
process. Full details of this process can be found in Section 5.4.2.

5.2.4 Show Detailed Status

Show Detailed Status is the graphical user interface providing the TransGuide personnel with the
ability to view the current status and data for the railroad sensors and crossings being monitored by the
AWARD subsystem.

The data flow diagram for the Show Detailed Status data process is shown in Figure 9. The data
processes and associated data flows are described in the subsections that follow.

Data Flow Description
Crossing Delay
Alarm

Crossing Delay Alarm is an external alarm (external to TransGuide ATMS) generated by the AWARD
subsystem. This alarm indicates changes in delays at a specified crossing. The alarm could represent a
crossing being blocked or a clearing of a previously blocked crossing.

Process Status Process Status contains the current value associated with the execution status of the process. This status
can indicate an OK condition, a warning condition, or an error condition.

Status Log
Message

Status Log Message contains information to be logged to the subsystem log file. Typical Status Log
Messages include error messages such as memory allocation errors or data being logged from field equipment
associated with the subsystem.

Table 19. Generate Crossing Delay Alarm Output Data Flows

AWARD 40 System Design Document

5.2.4.1 Build Detailed Status

Build Detailed Status is responsible for generating the initial graphical user interface displaying the
AWARD subsystem detailed status. The detailed status includes the current status and readings of each of
the sensor field equipment and the current values associated with each of the railroad crossings being
monitored by the AWARD subsystem. The current Sensor Data and Crossing Data is used to fill in the
details displayed to the TransGuide Personnel.

The input data flows are described in Table 20 and the output data flows are described in Table
21.

4.2
Update
Detailed
Status

4.1
Build
Detailed
Status

4.3
Delete
Detailed
Status

Detailed
Status
Update Rate

Crossing DataSensor Data

User Commands

Display Detailed
Status

GUIs

GUIs

Display Detailed
Status

Crossing Data
Sensor Data

Figure 9. Show Detailed Status Data Flow

AWARD 41 System Design Document

5.2.4.2 Update Detailed Status

Update Detailed Status is responsible for periodically updating the status information within the
detailed status GUI. The current Crossing Data and Sensor Data is read and used to display the status
within the GUI. The Detailed Status Update Rate is used to cause the periodic update of the GUI.

The input data flows are described in Table 22 and the output data flows are described in Table
23.

5.2.4.3 Delete Detailed Status

Delete Detailed Status deletes the detailed status GUI from the display. This process is invoked
when the TransGuide personnel issue the "close" command for the detailed status GUI.

Data Flow Description
Crossing Data Crossing Data is the shared information between the AWARD subsystem and the Detailed Status GUI. This

information is maintained by the Dispatch Data Server Messages process and is used by the Detailed Status
GUI to provide the current information to the TransGuide Personnel.

Display Detailed
Status

Display Detailed Status is an event used to trigger the display of the subsystem's detailed status GUI.

Sensor Data Sensor Data is the shared information between the AWARD subsystem and the Detailed Status GUI. The
Dispatch Data Server Messages process maintains this information and the Detailed Status GUI uses the
information to display the current status to the TransGuide ATMS personnel.

Table 20. Build Detailed Status Input Data Flows

Data Flow Description
GUIs GUIs are graphical user interfaces. These interfaces are used to communicate information from the

subsystem to the user and to allow the user to control certain aspects of the execution of the subsystem.

Table 21. Build Detailed Status Output Data Flows

Data Flow Description
Crossing Data Crossing Data is the shared information between the AWARD subsystem and the Detailed Status GUI. This

information is maintained by the Dispatch Data Server Messages process and is used by the Detailed Status
GUI to provide the current information to the TransGuide Personnel.

Detailed Status
Update Rate

Detailed Status Update Rate is the configuration item that specifies how often the contents of the detailed
status GUI are updated. This update rate is specified in seconds.

Display Detailed
Status

Display Detailed Status is an event used to trigger the display of the subsystem's detailed status GUI.

Sensor Data Sensor Data is the shared information between the AWARD subsystem and the Detailed Status GUI. The
Dispatch Data Server Messages process maintains this information and the Detailed Status GUI uses the
information to display the current status to the TransGuide ATMS personnel.

Table 22. Update Detailed Status Input Data Flows

Data Flow Description
GUIs GUIs are graphical user interfaces. These interfaces are used to communicate information from the

subsystem to the user and to allow the user to control certain aspects of the execution of the subsystem.

Table 23. Update Detailed Status Output Data Flows

AWARD 42 System Design Document

The input data flows are described in Table 24. Delete Detailed Status removes the detailed status
GUI from the display so there are no associated output data flows.

5.3 TransGuide Subsystem Software Architecture

The AWARD subsystem is composed of four processes that interact in order to

• monitor the sensors and railroad crossings,
• disseminate the current sensor readings and railroad crossing data to the Data Server,
• generate external alarms to warn TransGuide personnel of railroad crossing delays, and
• provide the TransGuide personnel with the ability to easily view the sensor and crossing

information.

 The four processes are shown in the data flow diagram in Figure 6 on page 31. The software
design for dispatch data server messages (award_dsif), dispatch crossing delays (award_tgif), and show
detailed status (awdsg) are presented in the following subsections. The software design for monitor trains
is presented in Section 5.4.

 The award_dsif and award_tgif processes also have a related set of library routines to be used by
other processes to interact with the award_dsif and the award_tgif. These libraries will be discussed
following the discussions of each process.

5.3.1 Dispatch Data Server Messages (award_dsif)

 The award_dsif process provides the single point of interface between the AWARD subsystem and
the Data Server. award_dsif is responsible for receiving messages from the other processes in the
AWARD subsystem and directing these messages to the Data Server.

5.3.1.1 main

 The structure chart for the main routine is shown in Figure 10. The main routine is responsible for
setting up the clean up routines, configuring the appropriate signals to catch and ignore, initializing the
status logging and configuration data, setting up the crossing and sensor shared memory segments,
connecting to the heartbeat process and the data server, sending periodic heartbeats to the project-level
heartbeat process, and responding to requests made by the other processes within the AWARD subsystem.
A description of the routines called by the main routine of award_dsif is provided in Table 25.

Data Flow Description
User Commands User Commands are the commands selected by the user from the graphical user interfaces. These

commands are generated through push buttons, radio buttons, text boxes, and other user interface
components.

Table 24. Delete Detailed Status Input Data Flows

AWARD 43 System Design Document

award_dsif
mainatexit

utl_signal_setup

sigset

initialize_award_dsif

process_status_config_with_logge

award_dsif_shmem_setup

ph_connect ds_init process_status_message

sock_listen_with_reuse

alarm

process_status_get_status

send_heartbeat_pulse

select

respond_to_read_sockets

sigalrm_handler

award_dsif_cleanup

 Figure 10. award_dsif main structure chart

AWARD 44 System Design Document

5.3.1.2 award_dsif_cleanup

 The award_dsif_cleanup routine is called when the award_dsif process performs a normal
termination. This routine performs the necessary housekeeping chores to cause a graceful exit of the
award_dsif process. The structure chart for the award_dsif_cleanup routine is shown in Figure 11. A
description of the routines called by award_dsif_cleanup is provided in Table 26.

 Routine Description
 alarm System Call used to set the alarm clock of the calling process to send a SIGALRM

signal after the specified number of seconds have elapsed.
 atexit C Library Function used to register routines to be called on normal termination of a

program.
 award_dsif main The award_dsif main routine is responsible for setting up configuration information,

opening the socket used for communication, and connecting to the status logger. This
routine enters a loop waiting for data server messages and periodically sending
heartbeat messages to the subsystem heartbeat process.

 award_dsif_cleanup Called when award_dsif exits. This routine is responsible for performing the
housekeeping necessary for a graceful shutdown. This includes sending a last
heartbeat, disconnecting from the process-level heartbeat service, disconnecting from
the Data Server, and closing any sockets that are open for communicating with the
award_dsif process.

 award_dsif_shmem_setup Responsible for setting up the shared memory segment for the AWARD field
equipment. There are two shared memory segments for the field equipment. One for
the railroad sensors and one for the railroad crossings.

 ds_init MDI Data Server library routine used to initialize the connection to the Data Server.
 initialize_award_dsif The award_dsif configuration file specified on the command line is read to obtain the

values of the configurable items of the award_dsif process.
 ph_connect MDI Process Heartbeat routine used to connect to the specified process-level

heartbeat service. The host name and service name are used to make the connection.
 process_status_config_with_logge process_status_config_with_logger is an MDI Process Status Common routine used

to configure the process status handling for the process. This routine is used to set
up the connection to the status logger used by the calling program.

 process_status_get_status MDI Process Status routine used to obtain the most severe process-level status. This
is an aggregation of the status for each of the status types defined for the process.

 process_status_message MDI Process Status routine used to log a status message for the specified status
type. If the process status library was configured to use a status logger then the
message is forwarded to the status logger. Otherwise the message is written to the
configured status log file.

 respond_to_read_sockets Loops through the list of socket descriptors ready for reading and either accepts
connections, if the socket descriptor is for the listen socket, or receives messages
containing information to be sent to the Data Server.

 select C Library Function used to multiplex synchronous I/O. The list of file descriptors for
reading, writing, and receiving exceptions are examined and any file descriptors that
are ready for reading, writing, or have an exceptional condition pending are identified.

 send_heartbeat_pulse Sends the process-level heartbeat to the Subsystem Heartbeat process.
 sigalrm_handler The signal handler for the SIGALRM signal. This signal is used to indicate when the

process-level heartbeat should be sent to the AWARD subsystem heartbeat process.
The alarm is reinitialized as part of this routine.

 sigset C Library Function used to modify the disposition of a signal. The signal can be
caught, ignored, or returned to the default disposition.

 sock_listen_with_reuse MDI Common Socket routine used to set up a socket to listen for connections and to
make the socket address reusable.

 utl_signal_setup MDI Common Utility Library routine used to set up a default signal handler for all
catchable signals.

 Table 25. Routines called by award_dsif main

AWARD 45 System Design Document

5.3.1.3 send_heartbeat_pulse

 The send_heartbeat_pulse routine is invoked periodically whenever the socket selection is
interrupted by an alarm signal. This routine is responsible for sending the process-level heartbeat message
to the project-level heartbeat process. The structure chart for send_heartbeat pulse is shown in Figure 12.
The descriptions of the routines called by send_heartbeat_pulse are contained in Table 27.

award_dsif_cleanup

send_heartbeat_pulse

ph_disconnect

ds_close

sock_close

 Figure 11. award_dsif_cleanup structure chart

 Routine Description
 award_dsif_cleanup Called when award_dsif exits. This routine is responsible for performing the housekeeping

necessary for a graceful shutdown. This includes sending a last heartbeat, disconnecting from the
process-level heartbeat service, disconnecting from the Data Server, and closing any sockets that
are open for communicating with the award_dsif process.

 ds_close MDI Data Server routine used to close the connection to the Data Server.
 ph_disconnect MDI Process Heartbeat routine used to disconnect from the process-level heartbeat service.
 send_heartbeat_pulse Sends the process-level heartbeat to the Subsystem Heartbeat process.
 sock_close MDI Socket routine used to close the specified socket connection.

 Table 26. Routines called by award_dsif_cleanup

AWARD 46 System Design Document

5.3.1.4 initialize_award_dsif

 The initialize_award_dsif routine is called to read the award_dsif configuration file and set up
configuration information for the entire process. The structure chart for initialize_award_dsif is shown in
Figure 5. Descriptions of the routines called by initialize_award_dsif are contained in Table 28.
Configurable items for the award_dsif process are described in Table 29.

send_heartbeat_pulse

ph_send_heartbeat ph_disconnect ph_connectprocess_status_message

 Figure 12. send_heartbeat_pulse structure chart

 Routine Description
 ph_connect MDI Process Heartbeat routine used to connect to the specified process-level heartbeat service.

The host name and service name are used to make the connection.
 ph_disconnect MDI Process Heartbeat routine used to disconnect from the process-level heartbeat service.
 ph_send_heartbeat MDI Process Heartbeat routine used to send the specified status value to the heartbeat service

configured by the ph_connect call.
 process_status_message MDI Process Status routine used to log a status message for the specified status type. If the

process status library was configured to use a status logger then the message is forwarded to
the status logger. Otherwise the message is written to the configured status log file.

 send_heartbeat_pulse Sends the process-level heartbeat to the Subsystem Heartbeat process.

 Table 27. Routines called by send_heartbeat_pulse

AWARD 47 System Design Document

cfg_load_configuration_data

cfg_get_value

utl_get_shmem_base_value

atoi

initialize_award_dsif

 Figure 13. initialize_award_dsif structure chart

 Routine Description
 atoi C Library Function to convert an ASCII string to an integer value.
 cfg_get_value MDI Configuration File routine used to return the value of the specified configuration name.
 cfg_load_configuration_data MDI Configuration File routine used to read the configuration name-value pairs from the

specified configuration file. These name-value pairs are loaded into memory so they can be
accessed on demand by the calling program.

 initialize_award_dsif The award_dsif configuration file specified on the command line is read to obtain the values
of the configurable items of the award_dsif process.

 utl_get_shmem_base_value MDI Utility routine used to convert a text string containing a shared memory base value name
to the actual base value used by the shared memory routines.

 Table 28. Routines called by initialize_award_dsif

AWARD 48 System Design Document

5.3.1.5 award_dsif_shmem_setup

 The award_dsif_shmem_setup routine is responsible for configuring the shared memory manager
library routines, setting up the sensor and crossing shared memory segments, and then loading and sorting
the sensor and crossing information within the segments. The structure chart for the
award_dsif_shmem_setup routine is shown in Figure 14. A description of the routines called by
award_dsif_shmem_setup is provided in Table 30.

 Configuration Item Description Optional
 SERVICE_NAME The name of the service providied by the

award_dsif process.
 N

 HEARTBEAT_SERVICE_NAME The name of the service provided by the
AWARD project-level heartbeat process.

 N

 HEARTBEAT_HOST_NAME The host name where the AWARD project-
level heartbeat process resides.

 Y

 STATUS_LOGGER_SERVICE_NAME The name of the service provided by the
AWARD subsystem status logger process.

 N

 STATUS_LOGGER_HOST_NAME The host name where the AWARD
subsystem status logger process resides

 Y

 HEARTBEAT_PULSE The periodic time value for sending the
heartbeat to the AWRAD project-level
heartbeat process. This is specified in
seconds.

 Y

 DATASERVER_SERVICE_NAME The name of the service provided by the
data server process.

 N

 DATASERVER_HOST_NAME The host name where the data server
process resides.

 Y

 AWARD_SHM_BASE The name of the constant or an integer
value indicating the starting base for the
AWARD shared memory segments.

 N

 SENSOR_SEGMENT_NUMBER The segment number of the sensor shared
memory segment.

 N

 CROSSING_SEGMENT_NUMBER The segment number of the crossing
shared memory segment.

 N

 NUM_SHMEM_SEGMENTS The total number of shared memory
segments used by the AWARD
subsystem.

 N

 AWARD_RR_MASTER_CFG The name of the configuration file
containing the information about the
sensors and crossings defined for the
AWARD subsystem.

 N

 Table 29. award_dsif configuration items

AWARD 49 System Design Document

5.3.1.6 award_dsif_config_shm_mgr

 The award_dsif_config_shm_mgr routine is responsible for initializing the shared memory manager
library with the base value of the AWARD shared memory segments and the number of shared memory
segments to be maintained. The structure chart for award_dsif_config_shm_mgr is shown in Figure 15.
The descriptions of the routines called by award_dsif_config_shm_mgr are contained in Table 31. Any

award_dsif_shmem_setup

award_dsif_config_shm_mgr

award_dsif_setup_crossing_shmem award_dsif_setup_sensor_shmem

load_feq_shmem

 Figure 14. award_dsif_shmem_setup structure chart

 Routine Description
 award_dsif_config_shm_mgr Responsible for initializing and configuring the MDI Shared Memory Manager library

routines.
 award_dsif_setup_crossing_shmem Responsible for reading the field equipment configuration files to determine the number

of crossings being monitored and to initialize the shared memory segment data.
 award_dsif_setup_sensor_shmem Responsible for reading the field equipment configuration files to determine the number

of sensors being monitored and to initialize the shared memory segment data.
 award_dsif_shmem_setup Responsible for setting up the shared memory segment for the AWARD field equipment.

There are two shared memory segments for the field equipment. One for the railroad
sensors and one for the railroad crossings.

 load_feq_shmem Reads the contents of the sensor shared memory segment and the crossing shared
memory segment and sorts them in ascending order by address. This allows for easier
updates to and retrieval of the information stored within these shared memory segments.

 Table 30. Routines called by award_dsif_shmem_setup

AWARD 50 System Design Document

errors that occur during this routine are logged to the AWARD status log using the
process_status_message routine.

5.3.1.7 award_dsif_setup_crossing_shmem

 The award_dsif_setup_crossing_shmem routine is responsible for creating, attaching, and
initializing the shared memory segment associated with the crossing data The crossing configuration file is
read in order to determine the number of crossings and their associated ids. The structure chart for
award_dsif_setup_crossing_shmem is shown in Figure 16. The descriptions of the routines called by

award_dsif_config_shm_mgr

cfg_get_value

atoi config_shm_mgr

process_status_message

 Figure 15. award_dsif_config_shm_mgr structure chart

 Routine Description
 atoi C Library Function to convert an ASCII string to an integer value.
 award_dsif_config_shm_mgr Responsible for initializing and configuring the MDI Shared Memory Manager library

routines.
 cfg_get_value MDI Configuration File routine used to return the value of the specified configuration name.
 config_shm_mgr MDI Shared Memory Manager routine used to initialize and configure the shared memory

manager library routines for the calling program.
 process_status_message MDI Process Status routine used to log a status message for the specified status type. If

the process status library was configured to use a status logger then the message is
forwarded to the status logger. Otherwise the message is written to the configured status log
file.

 Table 31. Routines called by award_dsif_config_shm_mgr

AWARD 51 System Design Document

award_dsif_setup_crossing_shmem are contained in Table 32. Any errors that occur during this routine
are logged to the AWARD status log using the process_status_message routine.

award_dsif_setup_crossing_shmem

cfg_get_value

award_dsif_read_crossing_file

segment_exists

sizeof_segment

process_status_message

attach_to_segment create_segment

award_dsif_init_crossing_shmem

free

 Figure 16. award_dsif_setup_crossing_shmem structure chart

AWARD 52 System Design Document

5.3.1.7.1 award_dsif_read_crossing_file

The award_dsif_read_crossing file routine opens the crossing configuration file and parses each
line looking for the crossing identifiers. A list of these identifiers is built and the number of crossings found
in the file is maintained. This information is used by the calling routine to create the shared memory
segments and perform the initialization of these areas. The award_dsif_read_crossing_file routine is made
up of numerours C Library Functions. For that reason, no structure chart was produced for this routine.

5.3.1.7.2 award_dsif_init_crossing_shmem

 The award_dsif_init_crossing_shmem routine is responsible for clearing the shared memory
segment and initializing each of the elements within the crossing shared memory. Each element in the
segment corresponds to one crossing configured in the crossing configuration file. The structure chart for
award_dsif_init_crossing_shmem is shown in Figure 17. The descriptions of the routines called by
award_dsif_init_crossing_shmem are contained in Table 33.

 Routine Description
 attach_to_segment MDI Shared Memory Manager routine used to attach the calling process to the

specified shared memory segment.
 award_dsif_init_crossing_shmem Responsible for initializing the crossing shared memory segment based on the

number of crossings specified and the list of crossing ids specified.
 award_dsif_read_crossing_file Reads the specified crossing file and builds a comma-delimited list of the names of

the crossings currently configured. The memory allocated to the names list must be
freed by the calling routine.

 award_dsif_setup_crossing_shmem Responsible for reading the field equipment configuration files to determine the
number of crossings being monitored and to initialize the shared memory segment
data.

 cfg_get_value MDI Configuration File routine used to return the value of the specified configuration
name.

 create_segment MDI Shared Memory Manager routine used to create a shared memory segment of
the specified size. The shared memory segment is automatically attached to the
calling process.

 free C Library Function used to free previously allocated memory and make it available for
further allocation.

 process_status_message MDI Process Status routine used to log a status message for the specified status
type. If the process status library was configured to use a status logger then the
message is forwarded to the status logger. Otherwise the message is written to the
configured status log file.

 segment_exists MDI Shared Memory Manager routine to test for the existence of the specified shared
memory segment.

 sizeof_segment MDI Shared Memory Manager routine used to obtain the size in bytes of the specified
shared memory segment.

 Table 32. Routines called by award_dsif_setup_crossing_shem

AWARD 53 System Design Document

5.3.1.8 award_dsif_setup_sensor_shmem

 The award_dsif_setup_sensor_shmem routine is responsible for creating, attaching, and initializing
the shared memory segment associated with the sensor data The sensor configuration file is read in order to
determine the number of sensors and their associated ids. The structure chart for
award_dsif_setup_sensor_shmem is shown in Figure 18. The descriptions of the routines called by
award_dsif_setup_sensor_shmem are contained in Table 34. Any errors that occur during this routine are
logged to the AWARD status log using the process_status_message routine.

award_dsif_init_crossing_shmem

memset strtok strncpy write_segment_element

 Figure 17. award_dsif_init_crossing_shmem structure chart

 Routine Description
 award_dsif_init_crossing_shmem Responsible for initializing the crossing shared memory segment based on the number

of crossings specified and the list of crossing ids specified.
 memset C Library Function used to set an area of memory to a specified value.
 strncpy C Library Function used to copy a specified number of characters from a source string

to a destination string.
 strtok C Library Function used to break the specified string into a sequence of tokens.
 write_segment_element MDI Shared Memory Manager function to write information to a specific element in a

shared memory segment. In this case the shared memory segment is viewed as an
array of elements.

 Table 33. Routines called by award_dsif_init_crossing_shem

AWARD 54 System Design Document

award_dsif_setup_sensor_shmem

cfg_get_value

award_dsif_read_sensor_file

segment_exists

sizeof_segment

process_status_message

attach_to_segment create_segment

award_dsif_init_sensor_shmem

free

 Figure 18 - award_dsif_setup_sensor_shmem structure chart

AWARD 55 System Design Document

5.3.1.8.1 award_dsif_read_sensor_file

 The award_dsif_read_sensor_file routine opens the sensor configuration file and parses each line
looking for the sensor identifiers. A list of these identifiers is built and the number of sensorss found in the
file is maintained. This information is used by the calling routine to create the shared memory segments
and perform the initialization of these areas. The award_dsif_read_sensors_file routine is made up of
numerous C Library Functions. For that reason, no structure chart was produced for this routine.

5.3.1.8.2 award_dsif_init_sensor_shmem

 The award_dsif_init_sensor_shmem routine is responsible for clearing the shared memory segment
and initializing each of the elements within the sensor shared memory. Each element in the segment
corresponds to one sensor configured in the sensor configuration file. The structure chart for
award_dsif_init_sensor_shmem is shown in Figure 19. The descriptions of the routines called by
award_dsif_init_sensor_shmem are contained in Table 35.

 Routine Description
 attach_to_segment MDI Shared Memory Manager routine used to attach the calling process to the

specified shared memory segment.
 award_dsif_init_sensor_shmem Responsible for initializing the sensor shared memory segment based on the number of

sensors specified and the list of sensor ids specified.
 award_dsif_read_sensor_file Reads the specified sensor file and builds a comma-delimited list of the names of the

sensors currently configured. The memory allocated to the names list must be freed by
the calling routine.

 award_dsif_setup_sensor_shmem Responsible for reading the field equipment configuration files to determine the number
of sensors being monitored and to initialize the shared memory segment data.

 cfg_get_value MDI Configuration File routine used to return the value of the specified configuration
name.

 create_segment MDI Shared Memory Manager routine used to create a shared memory segment of the
specified size. The shared memory segment is automatically attached to the calling
process.

 free C Library Function used to free previously allocated memory and make it available for
further allocation.

 process_status_message MDI Process Status routine used to log a status message for the specified status type.
If the process status library was configured to use a status logger then the message is
forwarded to the status logger. Otherwise the message is written to the configured
status log file.

 segment_exists MDI Shared Memory Manager routine to test for the existence of the specified shared
memory segment.

 sizeof_segment MDI Shared Memory Manager routine used to obtain the size in bytes of the specified
shared memory segment.

 Table 34 - Routines called by award_dsif_setup_sensor_shem

AWARD 56 System Design Document

5.3.1.9 load_feq_shmem

 The load_feq_shmem routine is reads the crossing and sensor shared memory segments into local
memory. These lists are then sorted and stored back into the shared memory segments. This is done as an
aid in updating the status information for a particular sensor or crossing. The structure chart for
load_feq_shmem is shown in Figure 20. The descriptions of the routines called by load_feq_shmem are
contained in Table 36. Any errors that occur during this routine are logged to the AWARD status log
using the process_status_message routine.

award_dsif_init_sensor_shmem

memset strtok strncpy write_segment_element

 Figure 19. award_dsif_init_sensor_shmem structure chart

 Routine Description
 award_dsif_init_sensor_shmem Responsible for initializing the sensor shared memory segment based on the number of

sensors specified and the list of sensor ids specified.
 memset C Library Function used to set an area of memory to a specified value.
 strncpy C Library Function used to copy a specified number of characters from a source string to

a destination string.
 strtok C Library Function used to break the specified string into a sequence of tokens.
 write_segment_element MDI Shared Memory Manager function to write information to a specific element in a

shared memory segment. In this case the shared memory segment is viewed as an array
of elements.

 Table 35. Routines called by award_dsif_init_sensor_shmem

AWARD 57 System Design Document

lload_feq_shmem

calloc

process_status_message

read_segment

qsort

write_segment

crossing_sort_by_address sensor_sort_by_address

 Figure 20. load_feq_shmem structure chart

AWARD 58 System Design Document

5.3.1.9.1 crossing_sort_by_address

 The crossing_sort_by_address routine that returns the result of a string comparison between two
crossing ids. This routine is also used during the search for a particular crossing. This routine is made up
of only a single call to strcmp. For that reason, no structure chart was produced for this routine.

5.3.1.9.2 sensor_sort_by_address

 The crossing_sort_by_address routine that returns the result of a string comparison between two
crossing ids. This routine is also used during the search for a particular crossing. This routine is made up
of only a single call to strcmp. For that reason, no structure chart was produced for this routine.

5.3.1.10 respond_to_read_sockets

 The respond_to_read_sockets routine is heart of the award_dsif process. This routine is called
when there is data pending on any of the sockets that are connected to the process. This data could be a
connection request to the award_dsif process, a message being sent to the award_dsif process by another
process already connected, or it could be an indication of a process that has disconnected from the
award_dsif process. When a connection request is received the process immediately accepts the
connection. If a message is being sent then the message is read from the active socket and is then dispatch
to the data server according the type of message received. If a connected process disconnects from the
award_dsif process the socket connection from the award_dsif process to the disconnected process is closed
and removed from the list of active sockets. Errors that occur are logged to the AWARD subsystem status
log. The structure chart for the respond_to_read_sockets is shown in Figure 21. A description of the
routines called by respond_to_read_sockets is provided in Table 37.

 Routine Description
 calloc C Library Function to allocate the specified amount of space and fill it with zeros.
 crossing_sort_by_address Comparison routine used in the qsort call to sort the crossing ids in ascending order and used

by the bsearch routine to find a match.
 load_feq_shmem Reads the contents of the sensor shared memory segment and the crossing shared memory

segment and sorts them in ascending order by address. This allows for easier updates to and
retrieval of the information stored within these shared memory segments.

 process_status_message MDI Process Status routine used to log a status message for the specified status type. If the
process status library was configured to use a status logger then the message is forwarded to
the status logger. Otherwise the message is written to the configured status log file.

 qsort C Library Function that implements the quick-sort algorithm. The caller supplies the address of
the comparison function to be used to sort the data in place.

 read_segment MDI Shared Memory Manager routine to read the contents of the specified shared memory
segment. The contents are stored in a memory area allocated by the caller.

 sensor_sort_by_address Comparison routine used in the qsort call to sort the sensor ids in ascending order and used by
the bsearch routine to find a match.

 write_segment MDI Shared Memory Manager routine that writes data to the specified shared memory segment.

 Table 36. Routines called by award_dsif_setup_crossing_shem

AWARD 59 System Design Document

respond_to_read_sockets

process_status_message

process_status_set_status_type_v

sock_accept

sock_set_nonblocking

receive_dsif_message

disconnect_receive_socket

send_data_server_message

 Figure 21. respond_to_read_sockets structure chart

AWARD 60 System Design Document

5.3.1.11 receive_dsif_message

 The receive_dsif_message routine reads the message from the active socket and places in the
received message buffer.. The structure chart for receive_dsif_message is shown in Figure 22. The
descriptions of the routines called by award_dsif_config_shm_mgr are contained in Table 38.

 Routine Description
 disconnect_receive_socket Removes the specified socket descriptor from the specified file descriptor set and

shuts down and closes the associated socket.
 process_status_message MDI Process Status routine used to log a status message for the specified status

type. If the process status library was configured to use a status logger then the
message is forwarded to the status logger. Otherwise the message is written to the
configured status log file.

 process_status_set_status_type_v process_status_set_status_type_value is used to set the value associated with the
specified process status status type.

 receive_dsif_message Reads a message from the specified socket. There is no attempt to clear the socket
data or try to resynch the message data if any errors occur during reading.

 respond_to_read_sockets Loops through the list of socket descriptors ready for reading and either accepts
connections, if the socket descriptor is for the listen socket, or receives messages
containing information to be sent to the Data Server.

 send_data_server_message Extracts the contents of the message and sends the contents on to the Data Server.
This could be a sensor message, a crossing message, or a heartbeat message.

 sock_accept MDI Socket routine that accepts connections on the specified listen socket.
 sock_set_nonblocking MDI Socket routine that sets the specified socket to be a non-blocking socket.

 Table 37. Routines called by respond_to_read_sockets

receive_dsif_message

sock_readn

 Figure 22. receive_dsif_message structure chart

AWARD 61 System Design Document

5.3.1.12 disconnect_receive_socket

 The disconnect_receive_socket routine shuts down the active socket and removes the socket from
the list of sockets the award_dsif process listens to for data. The structure chart for
disconnect_receive_socket is shown in Figure 23. The descriptions of the routines called by
award_dsif_setup_crossing_shmem are contained in Table 39.

5.3.1.13 send_data_server_message

 The send_data_server_message routine takes the message that has been read from the active socket
and breaks it apart for sending to the data server. The network to host byte-ordering of the data takes place
here. The components of the message are used in the different data server library calls depending on the
type of message that is received.. If the message is a sensor update then the sensor shared memory is

 Routine Description
 receive_dsif_message Reads a message from the specified socket. There is no attempt to clear the socket data or try to

resynch the message data if any errors occur during reading.
 sock_readn MDI Socket routine that reads a specified number of bytes from the specified socket.

 Table 38. Routines called by receive_dsif_message

disconnect_receive_socket

sock_close

 Figure 23. disconnect_receive_socket structure chart

 Routine Description
 disconnect_receive_socket Removes the specified socket descriptor from the specified file descriptor set and shuts down

and closes the associated socket.
 sock_close MDI Socket routine used to close the specified socket connection.

 Table 39. Routines called by disconnect_receive_socket

AWARD 62 System Design Document

modified and the contents sent to the data server. If the message is a crossing update then the sensor shared
memory is modified and the contents sent to the data server. If the message is the heartbeat message then
the status in the heartbeat message is passed to the data server. The structure chart for
send_data_server_message is shown in Figure 24. The descriptions of the routines called by
send_data_server_message are contained in Table 40. Any errors that occur during this routine are logged
to the AWARD status log using the process_status_message routine.

send_data_server_message

ntohl

update_sensor_shmem

get_sensor_shmem_info

ds_write_rr_sens_data

process_status_message

get_crossing_shmem_info

update_crossing_shmem

ds_write_rr_cross_data

ds_send_heartbeat

 Figure 24. send_data_server_message structure chart

AWARD 63 System Design Document

5.3.1.13.1 get_sensor_shmem_info

 The get_sensor_shmem_info routine returns the number of sensors currently configured and a
pointer to the sensors shared memory segment. This routine is considered an access function and has no
function calls. For that reason, no structure chart was produced for this routine.

5.3.1.13.2 update_sensor_shmem

 The update_sensor_shmem routine takes the sensor message information and updates the shared
memory element for only the sensor specified in the message. Since the shared memory elements are
sorted, the bsearch routine is used to locate the sensor of interest The structure chart for
update_sensor_shmem is shown in Figure 25. The descriptions of the routines called by
update_sensor_shmem are contained in Table 41.

 Routine Description
 ds_send_heartbeat MDI Data Server routine used to send the subsystem-level heartbeat message to the Data

Server. The heartbeat status is the overall status for the subsystem.
 ds_write_rr_cross_data MDI Data Server routine used to send the railroad crossing data to the Data Server.
 ds_write_rr_sens_data MDI Data Server routine used to send the railroad sensor data to the Data Server.
 get_crossing_shmem_info Used to obtain the address of the current crossing information and the number of crossings

configured.
 get_sensor_shmem_info Used to obtain the address of the current sensor information and the number of sensors

configured.
 ntohl Network Function used to convert between network and host byte order.
 process_status_message MDI Process Status routine used to log a status message for the specified status type. If the

process status library was configured to use a status logger then the message is forwarded to
the status logger. Otherwise the message is written to the configured status log file.

 send_data_server_message Extracts the contents of the message and sends the contents on to the Data Server. This
could be a sensor message, a crossing message, or a heartbeat message.

 update_crossing_shmem Updates the information for the specified crossing in the shared memory segment. The
updated information is available to any process attached to the crossing shared memory
segment.

 update_sensor_shmem Updates the information for the specified sensor in the shared memory segment. The
updated information is available to any process attached to the sensor shared memory
segment.

 Table 40. Routines called by send_data_server_message

AWARD 64 System Design Document

5.3.1.13.3 get_crossing_shmem_info

update_sensor_shmem

bsearch write_segment process_status_message

sensor_sort_by_address

 Figure 25. update_sensor_shmem structure chart

 Routine Description
 bsearch C Library Function implementing a binary search algorithm. A function is passed to this routine

specifying the comparison routine to be used during the binary search. A pointer to the element
found is returned or NULL if no element matching the search criteria is found.

 process_status_message MDI Process Status routine used to log a status message for the specified status type. If the
process status library was configured to use a status logger then the message is forwarded to
the status logger. Otherwise the message is written to the configured status log file.

 sensor_sort_by_address Comparison routine used in the qsort call to sort the sensor ids in ascending order and used by
the bsearch routine to find a match.

 update_sensor_shmem Updates the information for the specified sensor in the shared memory segment. The updated
information is available to any process attached to the sensor shared memory segment.

 write_segment MDI Shared Memory Manager routine that writes data to the specified shared memory segment.

 Table 41. Routines called by update_sensor_shmem

AWARD 65 System Design Document

 The get_crossing_shmem_info routine returns the number of crossings currently configured and a
pointer to the crossings shared memory segment. This routine is considered an access function and has no
function calls. For that reason, no structure chart was produced for this routine.

5.3.1.13.4 update_crossing_shmem

 The update_crossing_shmem routine takes the crossing message information and updates the
shared memory element for only the crossing specified in the message. Since the shared memory elements
are sorted, the bsearch routine is used to locate the sensor of interest The structure chart for
update_crossing_shmem is shown in Figure 26. The descriptions of the routines called by
update_crossing_shmem are contained in Table 42.

update_crossing_shmem

bsearch write_segment process_status_message

crossing_sort_by_address

 Figure 26. update_crossing_shmem structure chart

AWARD 66 System Design Document

5.3.1.14 sigalrm_handler

 The sigalrm_handler routine is invoked whenever the award_dsif process receives an alarm signal
from the process alarm clock. The routine sets a flag indicating a heartbeat message needs to be sent to the
data server and then sets the alarm clock again so the routine will be invoked. The structure chart for the
sigalrm_handler is shown in Figure 27. A description of the routines called by sigalrm_handler is provided
in Table 43.

 Routine Description
 bsearch C Library Function implementing a binary search algorithm. A function is passed to this routine

specifying the comparison routine to be used during the binary search. A pointer to the element
found is returned or NULL if no element matching the search criteria is found.

 crossing_sort_by_address Comparison routine used in the qsort call to sort the crossing ids in ascending order and used
by the bsearch routine to find a match.

 process_status_message MDI Process Status routine used to log a status message for the specified status type. If the
process status library was configured to use a status logger then the message is forwarded to
the status logger. Otherwise the message is written to the configured status log file.

 update_crossing_shmem Updates the information for the specified crossing in the shared memory segment. The
updated information is available to any process attached to the crossing shared memory
segment.

 write_segment MDI Shared Memory Manager routine that writes data to the specified shared memory segment.

 Table 42. Routines called by update_crossing_shmem

sigalrm_handler

alarm

 Figure 27. sigalrm_handler structure chart

AWARD 67 System Design Document

5.3.2 Dispatch Crossing Delays (award_tgif)

 The award_tgif process provides the single point of interface between the AWARD subsystem and
the TransGuide ATMS. award_tgif is responsible for receiving messages from the other processes in the
AWARD subsystem and directing these messages to the TransGuide ATMS.

5.3.2.1 main

 The structure chart for the main routine is shown in Figure 28. The main routine is responsible for
setting up the clean up routines, configuring the appropriate signals to catch and ignore, initializing the
status logging and configuration data, connecting to the heartbeat process and the external alarm handler on
the TransGuide ATMS, sending periodic heartbeats to the project-level heartbeat process, and responding
to requests made by the other processes within the AWARD subsystem. A description of the routines
called by the main routine of award_tgif is provided in Table 44.

 Routine Description
 alarm System Call used to set the alarm clock of the calling process to send a SIGALRM signal after the

specified number of seconds have elapsed.
 sigalrm_handler The signal handler for the SIGALRM signal. This signal is used to indicate when the process-level

heartbeat should be sent to the AWARD subsystem heartbeat process. The alarm is reinitialized as part
of this routine.

 Table 43. Routines called by sigalrm_handler

AWARD 68 System Design Document

award_tgif
mainatexit

utl_signal_setup

sigset

initialize_award_tgif

process_status_config_with_logge

eah_connect

ph_connect

award_tgif_cleanup

process_status_message

sock_listen_with_reuse

tgif
respond_to_read_sockets

process_status_get_status

send_heartbeat_pulse

select

 Figure 28. award_tgif main structure chart

AWARD 69 System Design Document

5.3.2.2 award_tgif_cleanup

 The award_tgif_cleanup routine is called when the award_tgif process performs a normal
termination. This routine performs the necessary housekeeping chores to cause a graceful exit of the
award_tgif process. The structure chart for the award_tgif_cleanup routine is shown in Figure 29. A
description of the routines called by award_tgif_cleanup is provided in Table 45.

 Routine Description
 atexit C Library Function used to register routines to be called on normal

termination of a program.
 award_tgif main The award_tgif main routine is responsible for setting up configuration

information, opening the socket used for communication, and connecting
to the status logger. This routine enters a loop waiting for TransGuide
messages and periodically sending heartbeat messages to the subsystem
heartbeat process.

 award_tgif_cleanup Called when award_tgif exits. This routine is responsible for performing
the housekeeping necessary for a graceful shutdown. This includes
sending a last heartbeat, disconnecting from the process-level heartbeat
service, disconnecting from the TransGuide external alarm handler, and
closing any sockets that are open for communicating with the award_tgif
process.

 eah_connect MDI External Alarm Handler routine used to connect to the specified
ATMS external alarm handler service. The host name and service name
are used to make the connection.

 initialize_award_tgif The award_tgif configuration file specified on the command line is read to
obtain the values of the configurable items of the award_tgif process.

 ph_connect MDI Process Heartbeat routine used to connect to the specified process-
level heartbeat service. The host name and service name are used to
make the connection.

 process_status_config_with_logge process_status_config_with_logger is an MDI Process Status Common
routine used to configure the process status handling for the process.
This routine is used to set up the connection to the status logger used by
the calling program.

 process_status_get_status MDI Process Status routine used to obtain the most severe process-level
status. This is an aggregation of the status for each of the status types
defined for the process.

 process_status_message MDI Process Status routine used to log a status message for the specified
status type. If the process status library was configured to use a status
logger then the message is forwarded to the status logger. Otherwise the
message is written to the configured status log file.

 select C Library Function used to multiplex synchronous I/O. The list of file
descriptors for reading, writing, and receiving exceptions are examined
and any file descriptors that are ready for reading, writing, or have an
exceptional condition pending are identified.

 send_heartbeat_pulse Sends the process-level heartbeat to the Subsystem Heartbeat process.
 sigset C Library Function used to modify the disposition of a signal. The signal

can be caught, ignored, or returned to the default disposition.
 sock_listen_with_reuse MDI Common Socket routine used to set up a socket to listen for

connections and to make the socket address reusable.
 tgif respond_to_read_sockets Loops through the list of socket descriptors ready for reading and either

accepts connections, if the socket descriptor is for the listen socket, or
receives messages containing information to be sent to the external alarm
handler.

 utl_signal_setup MDI Common Utility Library routine used to set up a default signal handler
for all catchable signals.

 Table 44. Routines called by award_tgif main

AWARD 70 System Design Document

award_tgif_cleanup

send_heartbeat_pulse

ph_disconnect

eah_disconnect

sock_close

 Figure 29. award_tgif_cleanup structure chart

 Routine Description
 award_tgif_cleanup Called when award_tgif exits. This routine is responsible for performing the housekeeping

necessary for a graceful shutdown. This includes sending a last heartbeat, disconnecting
from the process-level heartbeat service, disconnecting from the TransGuide external alarm
handler, and closing any sockets that are open for communicating with the award_tgif process.

 eah_disconnect MDI External Alarm Handler routine used to disconnect from the external alarm handler
service.

 ph_disconnect MDI Process Heartbeat routine used to disconnect from the process-level heartbeat service.
 send_heartbeat_pulse Sends the process-level heartbeat to the Subsystem Heartbeat process.
 sock_close MDI Socket routine used to close the specified socket connection.

 Table 45. Routines called by award_tgif_cleanup

AWARD 71 System Design Document

5.3.2.3 send_heartbeat_pulse

 The send_heartbeat_pulse routine is invoked periodically whenever the socket selection is
interrupted by a timeout. This routine is responsible for sending the process-level heartbeat message to the
project-level heartbeat process. The structure chart for send_heartbeat pulse is shown in Figure 30. The
descriptions of the routines called by send_heartbeat_pulse are contained in Table 46.

5.3.2.4 initialize_award_tgif

 The initialize_award_tgif routine is called to read the award_tgif configuration file and set up
configuration information for the entire process. The structure chart for initialize_award_tgif is shown in
Figure 31. Descriptions of the routines called by initialize_award_tgif are contained in Table 47.
Configurable items for the award_tgif process are described in Table 48.

send_heartbeat_pulse

ph_send_heartbeat ph_disconnect ph_connectprocess_status_message

 Figure 30. send_heartbeat_pulse structure chart

 Routine Description
 ph_connect MDI Process Heartbeat routine used to connect to the specified process-level heartbeat service.

The host name and service name are used to make the connection.
 ph_disconnect MDI Process Heartbeat routine used to disconnect from the process-level heartbeat service.
 ph_send_heartbeat MDI Process Heartbeat routine used to send the specified status value to the heartbeat service

configured by the ph_connect call.
 process_status_message MDI Process Status routine used to log a status message for the specified status type. If the

process status library was configured to use a status logger then the message is forwarded to
the status logger. Otherwise the message is written to the configured status log file.

 send_heartbeat_pulse Sends the process-level heartbeat to the Subsystem Heartbeat process.

 Table 46. Routines called by send_heartbeat_pulse

AWARD 72 System Design Document

cfg_load_configuration_data

cfg_get_value

initialize_award_tgif

atoi

 Figure 31. initialize_award_tgif structure chart

 Routine Description
 atoi C Library Function to convert an ASCII string to an integer value.
 cfg_get_value MDI Configuration File routine used to return the value of the specified configuration

name.
 cfg_load_configuration_data MDI Configuration File routine used to read the configuration name-value pairs from

the specified configuration file. These name-value pairs are loaded into memory so
they can be accessed on demand by the calling program.

 initialize_award_tgif The award_tgif configuration file specified on the command line is read to obtain the
values of the configurable items of the award_tgif process.

 Table 47. Routines called by initialize_award_tgif

AWARD 73 System Design Document

5.3.2.5 respond_to_read_sockets

 The respond_to_read_sockets routine is heart of the award_tgif process. This routine is called
when there is data pending on any of the sockets that are connected to the process. This data could be a
connection request to the award_tgif process, a message being sent to the award_tgif process by another
process already connected, or it could be an indication of a process that has disconnected from the
award_tgif process. When a connection request is received the process immediately accepts the connection.
If a message is being sent then the message is read from the active socket and is then dispatch to the
external alarm handler. If a connected process disconnects from the award_tgif process the socket
connection from the award_tgif process to the disconnected process is closed and removed from the list of
active sockets. Errors that occur are logged to the AWARD subsystem status log. The structure chart for
the respond_to_read_sockets is shown in Figure 32. A description of the routines called by
respond_to_read_sockets is provided in Table 49.

 Configuration Item Description Optional
 SERVICE_NAME The name of the service providied by the

award_tgif process.
 N

 HEARTBEAT_SERVICE_NAME The name of the service provided by the AWARD
project-level heartbeat process.

 N

 HEARTBEAT_HOST_NAME The host name where the AWARD project-level
heartbeat process resides.

 Y

 STATUS_LOGGER_SERVICE_NAME The name of the service provided by the AWARD
subsystem status logger process.

 N

 STATUS_LOGGER_HOST_NAME The host name where the AWARD subsystem
status logger process resides

 Y

 HEARTBEAT_PULSE The periodic time value for sending the heartbeat
to the AWRAD project-level heartbeat process.
This is specified in seconds.

 Y

 EAH_SERVICE_NAME The name of the service provided by the external
alarm handler process.

 N

 EAH_HOST_NAME The host name where the external alarm handler
process resides.

 Y

 Table 48. award_tgif configuration items

AWARD 74 System Design Document

tgif
respond_to_read_sockets

process_status_message

process_status_set_status_type_v

sock_accept

sock_set_nonblocking

receive_tgif_message

disconnect_receive_socket

send_eah_message

retry_eah_message

 Figure 32. respond_to_read_sockets structure chart

AWARD 75 System Design Document

5.3.2.6 receive_tgif_message

 The receive_tgif_message routine reads the message from the active socket and places in the
received message buffer. The structure chart for receive_tgif_message is shown in Figure 33. The
descriptions of the routines called by receive_tgif_message are contained in Table 50.

 Routine Description
 disconnect_receive_socket Removes the specified socket descriptor from the specified file descriptor set

and shuts down and closes the associated socket.
 process_status_message MDI Process Status routine used to log a status message for the specified

status type. If the process status library was configured to use a status logger
then the message is forwarded to the status logger. Otherwise the message is
written to the configured status log file.

 process_status_set_status_type_v process_status_set_status_type_value is used to set the value associated
with the specified process status status type.

 receive_tgif_message Reads a message from the specified socket. There is no attempt to clear the
socket data or try to resynch the message data if any errors occur during
reading.

 retry_eah_message Attempts to reestablish communications with the external alarm handler
process running on the ATMS master computer. The specified message is
sent to the external alarm handler if communications are reestablished.

 send_eah_message Extracts the contents of the message and sends the contents on to the
External Alarm Handler. The message contains the data needed to create the
crossing delay alarm.

 sock_accept MDI Socket routine that accepts connections on the specified listen socket.
 sock_set_nonblocking MDI Socket routine that sets the specified socket to be a non-blocking socket.
 tgif respond_to_read_sockets Loops through the list of socket descriptors ready for reading and either

accepts connections, if the socket descriptor is for the listen socket, or
receives messages containing information to be sent to the external alarm
handler.

 Table 49. Routines called by respond_to_read_sockets

receive_tgif_message

sock_readn

 Figure 33. receive_tgif_message structure chart

 Routine Description
 receive_tgif_message Reads a message from the specified socket. There is no attempt to clear the socket data or

try to resynch the message data if any errors occur during reading.
 sock_readn MDI Socket routine that reads a specified number of bytes from the specified socket.

 Table 50. Routines called by receive_tgif_message

AWARD 76 System Design Document

5.3.2.7 disconnect_receive_socket

 The disconnect_receive_socket routine shuts down the active socket and removes the socket from
the list of sockets the award_tgif process listens to for data. The structure chart for
disconnect_receive_socket is shown in Figure 34. The descriptions of the routines called by
disconnect_receive_socket are contained in Table 51.

5.3.2.8 send_eah_message

 The send_eah_message routine takes the message that has been read from the active socket and
breaks it apart for sending to the external alarm handler. The network to host byte-ordering of the data
takes place here. The components of the message are used in the external alarm handler library call The
structure chart for send_eah_message is shown in Figure 35. The descriptions of the routines called by
send_eah_message are contained in Table 52. Any errors that occur during this routine are logged to the
AWARD status log using the process_status_message routine.

disconnect_receive_socket

sock_close

 Figure 34. disconnect_receive_socket structure chart

 Routine Description
 disconnect_receive_socket Removes the specified socket descriptor from the specified file descriptor set and shuts down

and closes the associated socket.
 sock_close MDI Socket routine used to close the specified socket connection.

 Table 51. Routines called by disconnect_receive_socket

AWARD 77 System Design Document

send_eah_message

ntohl process_status_message

eah_send_crossing_blockage

 Figure 35. send_eah_message structure chart

 Routine Description
 eah_send_crossing_blockage Packages the specified crossing delay data into the crossing delay alarm

message and sends it to the External Alarm Handler process.
 ntohl Network Function used to convert between network and host byte order.
 process_status_message MDI Process Status routine used to log a status message for the specified status

type. If the process status library was configured to use a status logger then the
message is forwarded to the status logger. Otherwise the message is written to
the configured status log file.

 send_eah_message Extracts the contents of the message and sends the contents on to the External
Alarm Handler. The message contains the data needed to create the crossing
delay alarm.

 Table 52. Routines called by send_eah_message

AWARD 78 System Design Document

5.3.2.9 retry_eah_message

 The retry_eah_message routine is called in the event an error occurs during the first send to the
external alarm handler. This routine disconnects from the external alarm handler in order to reset the
connection information, reconnects to the external alarm handler, and attempts to send the message again.
The structure chart for retry_eah_message is shown in Figure 36. The descriptions of the routines called
by retry_eah_message are contained in Table 53.

retry_eah_message

eah_disconnect eah_connect send_eah_message

 Figure 36. retry_eah_message structure chart

 Routine Description
 eah_connect MDI External Alarm Handler routine used to connect to the specified ATMS external alarm

handler service. The host name and service name are used to make the connection.
 eah_disconnect MDI External Alarm Handler routine used to disconnect from the external alarm handler

service.
 retry_eah_message Attempts to reestablish communications with the external alarm handler process running on

the ATMS master computer. The specified message is sent to the external alarm handler if
communications are reestablished.

 send_eah_message Extracts the contents of the message and sends the contents on to the External Alarm
Handler. The message contains the data needed to create the crossing delay alarm.

 Table 53. Routines called by retry_eah_message

AWARD 79 System Design Document

5.3.3 Show Detailed Status (awdsg)

 The AWARD detailed status GUI (awdsg) process provides the ability to visually inspect the
current status and values associated with each of the sensors and crossings configured within AWARD.
awdsg runs as a separate process from the rest of the AWARD subsystem. When awdsg runs it attempts
to attach itself to the sensor and crossing shared memory segments. Then on a periodic basis it reads the
information from these shared memory segments and displays on the workstation for the user.

5.3.3.1 TeleUSE_main

 The TeleUSE model requires a TeleUSE provided main routine to initially gain control of the
process. This main routine does numerous things that are not modeled here with the exception of invoking
the application main routine and then firing the INITIALLY rules that exist in the different D modules.
The structure chart for the TeleUSE_main routine is shown in Figure 37. This is a theoretical
represenation of the actual source code since this routine was not developed by SwRI. A description of the
routines called by TeleUSE_main is provided in Table 54.

awdsg
teleuse_main

awdsg_main INITIALLY

 Figure 37. awdsg teleuse_main structure chart

AWARD 80 System Design Document

5.3.3.2 awdsg_main

 The awdsg_main routine is called prior to any GUI setup being done. This routine is used to
initialize the application prior to performing any user interface functions. This routine loads the
configuration data, configures the shared memory manager, and attaches to the shared memory segment..
The structure chart for the awdsg_main routine is shown in Figure 38. A description of the routines called
by awdsg_main is provided in Table 55. The only configuration item for this program is the
UPDATE_RATE. This item is optional, but if specified it indicates how often the details will be updated.

 Routine Description
 awdsg teleuse_main This is the main routine of the AWARD Detailed Status GUI. This routine is supplied by the

TeleUSE UIMS tool and is used as the entry point into the process. This routine is responsible
for setting up any TeleUSE specific environment and then invoking the application main routine
followed by the INITIALLY events in the associated D modules.

 awdsg_main This is the main routine of the AWARD Detailed Status GUI. This routine is responsible for
loading the configuration information, configuring the shared memory manager library, and
attaching to the field equipment shared memory segments.

 INITIALLY This D event is the first event invoked by the TeleUSE runtime environment. This event creates
the top-level shell to contain the detailed status information, sets the update rate for the GUI, and
then starts the update process by triggering the periodic_update event. Any errors during this
event will cause tu_exit to be called to start a graceful shutdown of the process.

 Table 54. Routines called by awdsg teleuse_main

awdsg_main

cfg_load_configuration_data

cfg_get_value

atoi

config_shm_mgr

attach_to_segment

 Figure 38. awdsg_main structure chart

AWARD 81 System Design Document

5.3.3.3 INITIALLY

 INITIALLY is the first rule that gets triggered in any D module. For the detailed status GUI the
INITIALLY rule creates the top level shell widget, obtains the current update rate defined for the
application, and starts the periodic updates. The structure chart for INITIALLY in Figure 39.
Descriptions of the routines called by INITIALLY are contained in Table 56.

 Routine Description
 atoi C Library Function to convert an ASCII string to an integer value.
 attach_to_segment MDI Shared Memory Manager routine used to attach the calling process to the

specified shared memory segment.
 awdsg_main This is the main routine of the AWARD Detailed Status GUI. This routine is

responsible for loading the configuration information, configuring the shared
memory manager library, and attaching to the field equipment shared memory
segments.

 cfg_get_value MDI Configuration File routine used to return the value of the specified configuration
name.

 cfg_load_configuration_data MDI Configuration File routine used to read the configuration name-value pairs from
the specified configuration file. These name-value pairs are loaded into memory so
they can be accessed on demand by the calling program.

 config_shm_mgr MDI Shared Memory Manager routine used to initialize and configure the shared
memory manager library routines for the calling program.

 Table 55. Routines called by awdsg_main

AWARD 82 System Design Document

5.3.3.3.1 GET_UPDATE_RATE

 The GET_UPDATE_RATE routine is a bridge layer routine that calls the application layer routine
to obtain the configured update rate The structure chart for GET_UPDATE_RATE is shown in Figure 40.
The descriptions of the routines called by GET_UPDATE_RATE are contained in Table 57.

INITIALLY

create
widget send tu_exitGET_UPDATE_RATE

periodic_update

 Figure 39. INITIALLY structure chart

 Routine Description
 create widget create widget is used to create a widget of a particular TeleUSE template allowing for the

specification of a widget name and a parent for the widget.
 GET_UPDATE_RATE A bridge layer routine used to obtain the update rate value from the application layer.
 INITIALLY This D event is the first event invoked by the TeleUSE runtime environment. This event

creates the top-level shell to contain the detailed status information, sets the update rate for
the GUI, and then starts the update process by triggering the periodic_update event. Any
errors during this event will cause tu_exit to be called to start a graceful shutdown of the
process.

 periodic_update An GUI layer event used to perform the steps necesary to update the details of the GUI on a
periodic basis.

 send A TeleUSE statement used to trigger events immediately or queue events for later dispatch.
 tu_exit A TeleUSE library routine used to exit the application.

 Table 56. Routines called by INITIALLY

AWARD 83 System Design Document

5.3.3.3.1.1 periodic_update

 The periodic_update event is invoked to control the updates to the detailed status GUI and to cause
the next triggering of periodic_update to occurr.. The structure chart for periodic_update is shown in
Figure 41. The descriptions of the routines and events called by periodic_update are contained in Table 58.

GET_UPDATE_RATE

awdsg_get_update_rate

 Figure 40. GET_UPDATE_RATE structure chart

 Routine Description
 awdsg_get_update_rate The application layer routine responsible for returning the configured update rate for the

detailed status GUI.
 GET_UPDATE_RATE A bridge layer routine used to obtain the update rate value from the application layer.

 Table 57. Routines called by GET_UPDATE_RATE

AWARD 84 System Design Document

5.3.3.3.1.1.1 PERIODIC_UPDATE

 The PERIODIC_UPDATE routine is the bridge layer routine responsible for invoking the
application layer routine which provides the update capability. The structure chart for the
PERIODIC_UPDATE is shown in Figure 42. A description of the routines called by
PERIODIC_UPDATE is provided in Table 59.

periodic_update

PERIODIC_UPDATE send
create
widget tu_exit

 Figure 41. periodic_update structure chart

 Routine Description
 create widget create widget is used to create a widget of a particular TeleUSE template allowing for the

specification of a widget name and a parent for the widget.
 PERIODIC_UPDATE The bridge layer routine that invokes the application layer routine responsible for handling the

periodic update requests.
 periodic_update An GUI layer event used to perform the steps necesary to update the details of the GUI on a

periodic basis.
 tu_exit A TeleUSE library routine used to exit the application.

 Table 58. Routines called by periodic_update

AWARD 85 System Design Document

PERIODIC_UPDATE

awdsg_periodic_update

attach_to_segment read_segment UPDATE_STATUS

 Figure 42. PERIODIC_UPDATE structure chart

AWARD 86 System Design Document

5.3.3.3.1.1.1.1 UPDATE_STATUS

 The UPDATE_STATUS takes the detailed status information and creates the necessary event
structures in order to inform the GUI layer to update the appropriate GUI components. The structure chart
for UPDATE_STATUS is shown in Figure 43. The descriptions of the routines called by
UPDATE_STATUS are contained in Table 60.

 Routine Description
 attach_to_segment MDI Shared Memory Manager routine used to attach the calling process to the specified

shared memory segment.
 awdsg_periodic_update The application layer routine responsible for handling the periodic update requests. This

routine attaches to the sensor and crossing shared memory segments if not attached,
reads the data from these segments, and, using the bridge layer, causes the contents of
the GUI to be updated based on the contents of the shared memory segments.

 PERIODIC_UPDATE The bridge layer routine that invokes the application layer routine responsible for handling
the periodic update requests.

 read_segment MDI Shared Memory Manager routine to read the contents of the specified shared memory
segment. The contents are stored in a memory area allocated by the caller.

 UPDATE_STATUS This is the bridge layer routine that receives the current status information for a particular
sensor or crossing and then generates the event to update the status information within
the detailed status GUI.

 Table 59. Routines called by PERIODIC_UPDATE

AWARD 87 System Design Document

UPDATE_STATUS

tu_create_named_event

tu_assign_event_field

tu_dispatch_event

tu_free_event

update_status

 Figure 43. UPDATE_STATUS structure chart

AWARD 88 System Design Document

5.3.4 award_dsif Library Routines

 The award_dsif library contains four routines that are used to interact with the award_dsif process.
The routines needed to send a heartbeat to the award_dsif are described in MDI Common Code Software
Design Document. The four routines defined by this library are:

• award_dsif_connect
• award_dsif_send_sensor_data
• award_dsif_send_crossing_delay
• award_dsif_disconnect

 These routines are discussed in more detail in the following subsections.

5.3.4.1 award_dsif_connect

 The structure chart for the award_dsif_connect routine is shown in Figure 44. This routine is
responsible for establishing the communications path to the data server from the calling process. This is
accomplished by obtaining the port number associated with the specified service and then connecting a
socket to the port on the specified host computer.. A description of the routines called by
award_dsif_connect is provided in Table 61.

 Routine Description
 send A TeleUSE statement used to trigger events immediately or queue events for later

dispatch.
 tu_assign_event_field TeleUSE Library Function to associate the contents of a C variable with the contents of

an event attribute.
 tu_create_named_event TeleUSE Library Function used to create the data structure necessary to interface the C

code with the D event code.
 tu_dispatch_event TeleUSE Library Function used to dispatch the created event. This causes the event to

be executed.
 tu_free_event TeleUSE Library Function used to free up any memory that was allocated to the event

data structure using tu_create_named_event.
 update_indicator This GUI layer event is used to make the actual modifications to the appropriate GUI

components. The GUI component is specified as one of the calling attributes along with
the current status information to be displayed in the GUI.

 update_status The D event that receives the status information and updates the appropriate GUI
components.

 UPDATE_STATUS This is the bridge layer routine that receives the current status information for a particular
sensor or crossing and then generates the event to update the status information within
the detailed status GUI.

 Table 60. Routines called by UPDATE_STATUS

AWARD 89 System Design Document

5.3.4.2 award_dsif_send_sensor_data

 The structure chart for award_dsif_send_sensor_data is shown in Figure 45. This routine is
responsible for filling in the message structure with the specified data parameters. A call to select is used
to make sure the award_dsif connection is still valid. All values in the message are converted to network
byte format using the htonl call, when required. A description of the routines called by
award_dsif_send_sensor_data is provided in Table 62.

award_dsif_connect

sock_get_service_port sock_connect

 Figure 44. award_dsif_connect structure chart

 Routine Description
 award_dsif_connect Used to connect to the AWARD Data Server Interface process. The caller specifies the host name

and service name associated with the AWARD Data Server Interface.
 sock_connect MDI Socket routine used to create a socket connection to the specified host and port.
 sock_get_service_port MDI Socket routine that returns the port number associated with the specified service name.

 Table 61. Routines called by award_dsif_connect

AWARD 90 System Design Document

award_dsif_send_sensor_data

memset

select

htonl

strcpy

sock_writen

 Figure 45. award_dsif_send_sensor_data structure chart

AWARD 91 System Design Document

5.3.4.3 award_dsif_send_crossing_delay

 The structure chart for award_dsif_send_crossing_delay is shown in Figure 46. This routine is
responsible for filling in the message structure with the specified data parameters. A call to select is used
to make sure the award_dsif connection is still valid. All values in the message are converted to network
byte format using the htonl call, when required. A description of the routines called by
award_dsif_send_crossing_delay is provided in Table 63.

 Routine Description
 award_dsif_send_sensor_data Packages the specified sensor data into the appropriate message and sends it to the

AWARD Data Server Interface process.
 htonl Network function used to convert from host to network byte formats.
 memset C Library Function used to set an area of memory to a specified value.
 select C Library Function used to multiplex synchronous I/O. The list of file descriptors for

reading, writing, and receiving exceptions are examined and any file descriptors that are
ready for reading, writing, or have an exceptional condition pending are identified.

 sock_writen MDI Socket routine used to write a specified number of bytes to a specified socket.
 strcpy C Library Function used to copy a source string to a destination string.

 Table 62. Routines called by award_dsif_send_sensor_data

AWARD 92 System Design Document

award_dsif_send_crossing_delay

memset

select

htonl

strcpy

sock_writen

 Figure 46. award_dsif_send_crossing_delay structure chart

AWARD 93 System Design Document

5.3.4.4 award_dsif_disconnect

 The structure chart for award_dsif_disconnect is shown in Figure 47. This routine is used to
disconnect the calling process from the award_dsif process. Once this routine is called no more messages
can be sent to the award_dsif process unless the award_dsif_connect routine is called. A description of the
routines called by award_dsif_disconnect is provided in Table 64.

 Routine Description
 award_dsif_send_crossing_delay Packages the specified crossing data into the appropriate message and sends it to the

AWARD Data Server Interface process.
 htonl Network function used to convert from host to network byte formats.
 memset C Library Function used to set an area of memory to a specified value.
 select C Library Function used to multiplex synchronous I/O. The list of file descriptors for

reading, writing, and receiving exceptions are examined and any file descriptors that are
ready for reading, writing, or have an exceptional condition pending are identified.

 sock_writen MDI Socket routine used to write a specified number of bytes to a specified socket.
 strcpy C Library Function used to copy a source string to a destination string.

 Table 63. Routines called by award_dsif_send_crossing_delay

award_dsif_disconnect

sock_close

 Figure 47. award_dsif_disconnect structure chart

AWARD 94 System Design Document

5.3.5 award_tgif Library Routines

 The award_tgif library contains three routines that are used to interact with the award_tgif process.
The three routines defined by this library are:

• award_tgif_connect
• award_tgif_send_crossing_blockage
• award_tgif_disconnect

These routines are discussed in more detail in the following subsections.

5.3.5.1 award_tgif_connect

The structure chart for the award_tgif_connect routine is shown in Figure 48. This routine is
responsible for establishing the communications path to the award_tgif process from the calling process.
This is accomplished by obtaining the port number associated with the specified service and then
connecting a socket to the port on the specified host computer. A description of the routines called by
award_tgif_connect is provided in Table 65.

 Routine Description
 award_dsif_disconnect Disconnects the calling process from the AWARD Data Server Interface process. The socket

connection is closed and reset to indicate a connection to the AWARD Data Server Interface
process does not exist.

 sock_close MDI Socket routine used to close the specified socket connection.

 Table 64. Routines called by award_dsif_disconnect

AWARD 95 System Design Document

5.3.5.2 award_tgif_send_crossing_blockage

The structure chart for award_tgif_send_crossing_blockage is shown in Figure 49. This routine is
responsible for filling in the message structure with the specified data parameters. A call to select is used
to make sure the award_tgif connection is still valid. All values in the message are converted to network
byte format using the htonl call, when required. A description of the routines called by
award_tgif_send_crossing_blockage is provided in Table 66.

award_tgif_connect

sock_get_service_port sock_connect

Figure 48. award_tgif_connect structure chart

Routine Description
award_tgif_connect Used to connect to the AWARD TransGuide Interface process. The caller specifies the

host name and service name associated with the AWARD TransGuide Interface.
sock_connect MDI Socket routine used to create a socket connection to the specified host and port.
sock_get_service_port MDI Socket routine that returns the port number associated with the specified service

name.

Table 65. Routines called by award_tgif_connect

AWARD 96 System Design Document

award_tgif_send_crossing_blockag

memset

select

htonl

strcpy

sock_writen

Figure 49. award_tgif_send_crossing_blockage structure chart

AWARD 97 System Design Document

5.3.5.3 award_tgif_disconnect

The structure chart for award_tgif_disconnect is shown in Figure 50. This routine is used to
disconnect the calling process from the award_tgif process. Once this routine is called no more messages
can be sent to the award_tgif process unless the award_tgif_connect routine is called. A description of the
routines called by award_tgif_disconnect is provided in Table 67.

Routine Description
award_tgif_send_crossing_blockag Packages the specified crossing delay data into the crossing blockage

message and sends it to the AWARD TransGuide Interface process.
htonl Network function used to convert from host to network byte formats.
memset C Library Function used to set an area of memory to a specified value.
select C Library Function used to multiplex synchronous I/O. The list of file

descriptors for reading, writing, and receiving exceptions are examined
and any file descriptors that are ready for reading, writing, or have an
exceptional condition pending are identified.

sock_writen MDI Socket routine used to write a specified number of bytes to a
specified socket.

strcpy C Library Function used to copy a source string to a destination string.

Table 66. Routines called by award_tgif_send_crossing_blockage

award_tgif_disconnect

sock_close

Figure 50. award_tgif_disconnect structure chart

AWARD 98 System Design Document

5.4 Railroad Subsystem Software Architecture

The Railroad Operational Software (ROS) subsystem transmits the railroad sensor data and the
railroad delay data to the MDI Data Server thus allowing access to this information by other programs
within the MDI. The railroad sensor data is transmitted to the MDI Data Server via socket
communications and consists of the following information for each physical sensor:

• Sensor ID - A unique identifier assigned to each railroad sensor.
• Communication Status - The current status of the communications between the FE Communication

Subsystem and the physical sensors.
• Measurement - the speed value obtained from the sensor during the last polling cycle
• Acceleration/Deceleration - the rate of acceleration or deceleration detected during the last polling

cycle.
• Last Update Time - A timestamp indicating the last time the sensor was polled.

 The railroad delay data is transmitted to the MDI Data Server using socket communications and

consists of the following information for each railroad crossing associated with physical railroad sensors:

• Crossing ID - A unique identifier assigned to each railroad crossing.
• Estimated ETA of the front of the train
• Estimated ETA of the back of the train
• Length of the train
• Estimated duration of the railroad crossing blockage

 The ROS subsystem transmits the railroad delay information to the TransGuide ATMS to allow

TransGuide operations personnel to properly handle each railroad crossing delay incident. The railroad
delay data is transmitted to the TransGuide ATMS as a RR Incident Event using socket communications.
The contents of the RR Incident Event are:

• Crossing ID - A unique identifier assigned to each railroad crossing
• The type of ATMS alarm (Major, Minor, or Normal)
• Estimated ETA of the front of the train
• Estimated ETA of the back of the train
• Length of the train
• Estimated duration of the railroad crossing blockage

Routine Description
award_tgif_disconnect Disconnects the calling process from the AWARD TransGuide Interface process. The

socket connection is closed and reset to indicate a connection to the AWARD TransGuide
Interface process does not exist.

sock_close MDI Socket routine used to close the specified socket connection.

Table 67. Routines called by award_tgif_disconnect

AWARD 99 System Design Document

5.4.1 RR Configuration Information

 Configuration information, located in text files, enumerates sensors, virtual sensors, crossings, and
connections between the virtual sensors and crossings. Specifically, each actual sensor becomes two
virtual sensors; this approach was taken to reduce complexity of the configuration files. In this
arrangement, it is simple to get a downstream virtual sensor associated with an upstream element; it is also
somewhat verbose in that many distances between sensors, etc. will be entered twice. The connection’s list
requires distances to be both positive and negative items, where sign is dependent on sensor pointing
direction, presenting an even greater challenge at entering the data correctly.

 One additional configuration file is defined and because of the relationship to the determination of
acceleration, the file definition is located in that section, below. Each of the definitions in the boxes lists all
of the information that will appear on each line of data in the configuration file.

 Information on Each Line of the Master
Configuration File

 Actual sensors configuration file name
 Virtual sensors configuration file name
 Crossings configuration file name
 Downstream connections configuration file name
 AWARD ATMS events configuration file name
 Acceleration modification configuration file name
 Name of the DataServer interface process host machine
 Name of the DataServer service
 Name of the Heartbeat interface process host machine
 Name of the Heartbeat service
 Name of the ATMS interface process host machine
 Name of the ATMS service
 Name of the status logger interface process host machine
 Name of the status logger service
 Use the acceleration in calculations flag (yes or no)
 System poll cycle time (minimum)

 Information on Each Line of the Actual
Sensors List

 Sensor ID (a1..aN)
 Telephone number
 SUN port id to use
 Angle of the sensor versus the tracks
 Maximum velocity for this site
 Sensor is operational (flag)
 Alpha-numeric text descriptor (ATMS identifier)
 Comment

 Information on Each Line of the Virtual
Sensors List
 (There must be 2 virtual sensors for
each actual sensor - one associated with
each direction of train movement)

 Virtual sensor ID (s1..sM)
 Actual sensor associated (a1..aN)
 Alpha-numeric text descriptor
 Direction with respect to the sensor (i.e. says whether positive or negative
velocities from the actual sensor belong with this
 virtual sensor)
 Comment (like “at Dreamland heading towards downtown”)

 Information on Each Line of the
Crossings List

 Crossing ID (c1..cP)
 Alpha-numeric text descriptor
 Nominal time to train crossing sensing distance (0 if no crossing signals)
 Comment

 Information on Each Line of the
AWARD ATMS Events List

 Crossing ID (c1..cP)
 Alpha-numeric text descriptor of the name of the crossing
 Alpha-numeric text descriptor of the event ID
 Time the event is to start
 Time the event is to end
 Comment

 Information on Each Line of the
Connections List
 (Just virtual sensors to downstream
crossings and
 other downstream virtual sensors)

 Virtual sensor (s1..sM)
 Downstream item (s1..sM or c1..cP)
 Distance (must be positive in miles)
 Comment

AWARD 100 System Design Document

 Information on Each Line of the
Acceleration Modification List
(Associated with virtual sensors)

 Virtual sensor (s1..sM)
 Day of week (1..7)
 Start and End time of affect
 Interpretable code defining affect on acceleration
 Comment

 Table 68. Railroad Configuration Information

5.4.2 RR Software Design Details

 To explain the diagram (and software design) below, the RR Software Object Relationship
Diagram, in some more detail, the diagram reveals that the actual sensor object (SensorIF), actually
maintains a list of samples where each has the sensor reading and a timestamp (ValTime). These values
are processed, resulting in an interpretation of the activity on the tracks. This information is used to update
the virtual sensor (Vsensor) objects, which creates or updates a train summary (TrainSumry) object. A
train summary object (which is associated with a particular virtual sensor) may also be the same train that
another sensor is detecting or has detected in the recent past. Therefore, train summaries are merged to
form a single unified interpretation of a train (Train) object, including length, speed, acceleration, etc.
There are two important pieces of information the ROS needs to know about a train: when is it going to
block a crossing and when should it be detected by some downstream sensor? Answering these two
questions requires knowledge of where downstream sensors and crossings are located (Connection
Descriptions) and coming up with an estimate of how long before the train reaches them (Connection
ETA). When a train is certain to block an intersection, some description of the blockage is communicated
to the Area Wide Database (and therefore to In-Vehicle Navigation, Kiosks, and the TransGuide Map) as
well as to the TransGuide ATMS.

AWARD 101 System Design Document

Train

- acceleration
- atTime
- eta
- length
- speed
- sumries
+ Train
+ Train;2
+ Train;3
+ cancelAlarm
+ crossingExists
+ currentAccl
+ currentLength
+ currentSpeed
+ currentTime
+ majorAlarmSent
+ merge
+ operator=
+ operator==
+ pastAll
+ updateETA
+ ~Train

RRSystem

- accelMods
- accelModsName
- configName
- connections
- connectionsName
- crossings
- crossingsName
- events
- eventsName
- majors
- sensors
- sensorsName
- trains
- updateRate
- useAcceleration
- vSensors
- vsensorsName
- LoadAccelMods
- LoadConnectionETAs
- LoadCrossings
- LoadEvents
- LoadSensors
- LoadVSensors
- MainLoop
+ RRSystem
+ RRSystem;2
- ReadConfig
+ WriteConfig
+ addCrossingToMajorList
+ sendCancelMajorAlarm
+ ~RRSystem

TrainSumry

- connects
- currAcc
- currSpd
- currTime
- estLngth
- inView
- initSpd
- initTime
- vId
+ TrainSumry
+ TrainSumry;2
+ connections
+ initialA
+ initialTime
+ initialV
+ isSameVid
+ operator=
+ operator==
+ recentA
+ recentL
+ recentTime
+ recentV
+ stillInView
+ update
+ vsensorID
+ ~TrainSumry

VSensor

- connects
- directed
- id
- lastTime
- lastVel
- name
- rules
- sensorId
- state
- sumry
- ReadConfig
+ VSensor
+ VSensor;2
+ VSensor;3
- WriteConfig
+ connections
+ direction
- endTrain
+ identifier
- newTrain
+ newValue
+ operator=
+ operator==
+ sensorIdentifier
+ summary
- updateTrain
+ vName
+ ~VSensor

ConnectionETA

- ETA
- ETATime
- ETTA
- acc
- blkg
- distTime
- distance
- downstream
- events
- id
- length
- maxVel
- name
- nomTime
- origDist
- runLevel
- vSensorId
- vel
+ ConnectionETA
+ ConnectionETA;2
+ ConnectionETA;3
+ ID
- ReadConfig
- WriteConfig
+ blockageL
+ checkETTA
+ currentA
+ currentBlockage
+ currentDistance
+ currentETA
+ currentETTA
+ currentV
+ downstreamList
+ eventsList
+ finishCreate
+ incrementETTA
+ isBlockage
+ isOverlappingTimes
+ lastETATime
+ majAlarmSent
+ maxVelocity
+ merge
+ operator=
+ operator==
+ origL
+ sendNormalAlarm
+ update
+ vSensorID
+ ~ConnectionETA

Event

- atmsEvent
- cancelSent
- crossingId
- endTime
- eventId
- lastDuration
- lastLength
- lastTimeCheck
- lastTrainETA
- majorAlarmSent
- name
- preceed
- pretermination
- startTime
+ Event
+ Event;2
+ Event;3
- ReadConfig
- WriteConfig
+ atmsID
+ cID
+ cancelAlarm
+ cancelSENT
+ checkETTA
+ endTIME
+ hasEvent
+ majAlarmSent
+ merge
+ newETA
+ newLength
+ operator=
+ operator==
+ preTime
+ sName
sendData
+ setCancelSent
+ startOrEnd
+ startTIME
+ ~Event

Blockage

ETA
blockId
blocks
cancelSent
destination
detail
duration
eventFrontETA
eventRearETA
id
lastBlock
length
name
origSent
runLevel
+ Blockage
+ Blockage;2
+ Blockage;3
+ atETA
+ blockID
+ cancelBlockage
conclude
+ itemID
+ itemName
newBlockID
+ newETA
+ newLength
+ operator=
+ operator==
sendData
startUp
+ trainDuration
+ trainLength
+ ~Blockage

TransGuide
ATMS

MDI Data
Server

SensorIF

- acceleration
- angle
- atTime
- conAttemptsMade
- conTimer
- id
- lastRead
- maxVel
- name
- numberSensorPolls
- operational
- recent
- retryTimer
- runLevel
- sensorsStatusFlag
- simIn
- startTime
- state
- sunPort
- takenOffLine
- telephoneNum
- toRadar
- useAcceleration
- useData
- v1
- v2
- velocity
+ ID
+ ReadConfig
+ SensorIF
+ SensorIF;2
- WriteConfig
- checkSensorDataValidity
- estAccel
+ getSensorsStatusFlag
+ maxV
- modemCmd
- nextDatum
+ operator==
- probeRadar
+ reactivate
+ reactivate;2
+ resetSensorsStatusFlag
+ test
- tryPhone
+ ~SensorIF

Stream232

+ fd
- maxlen
- sbuf
- sbuflen
tio
+ Stream232
+ close
+ configure_chars
+ configure_control
+ configure_input
+ configure_local
+ configure_output
+ open
+ read
+ read;2
+ write
+ ~Stream232

ValTime

- stamp
- val
+ ReadConfig
+ ValTime
+ ValTime;2
+ WriteConfig
+ newValue
+ operator=
+ operator==
+ time
+ value
+ ~ValTime

AccelMod

- constAccel
- constMult
- constOffset
- dayOfWeek
- endTime
- maxA
- minA
- startTime
- vSensorId
+ AccelMod
+ AccelMod;2
+ AccelMod;3
+ ReadConfig
+ WriteConfig
+ compare
+ operator=
+ operator==
+ thruRule
+ vSensorID
+ ~AccelMod

Crossing

- id
- majorAlarmTime
- name
- nominalTime
+ Crossing
+ Crossing;2
+ Crossing;3
+ ID
- ReadConfig
- WriteConfig
+ crossingName
+ majAlarmTime
+ nomTime
+ operator=
+ operator==
+ setMajorAlarmTime
+ ~Crossing

DateTime

- jday
- sec
- yr
+ DateTime
+ DateTime;2
+ DateTime;3
+ DateTime;4
+ DateTime;5
+ UTC
- cvt_jday
- cvt_mo_da
+ double
+ now
+ operator+
+ operator+;2
+ operator-
+ operator-;2
+ operator=
+ val
+ val;2
+ wDay
+ ~DateTime

All classes use the DateTime class with
the exception of the Stream232 class senseStatus

- id
- working
+ isUp
+ operator=
+ operator==
+ operator==;2
+ senseStatus
+ senseStatus;2
+ senseStatus;3
+ setUpDown
+ setUpDown;2
+ setvId
+ vId

MDI Data
Server

(-) denotes Private
(+) denotes Public
(#) denotes Protected

() denotes send data to

1

*

Managed by

1

1..*

Managed by

0..1 1creates and
updates

*

*

has a list of

1

*has a set of
and manages

1

1..*

has a list of

1 *Managed by

1 0..1Managed by

Inherits from

12 Managed by

1 1..*Managed by

1

*

maintains
a list of

1 *maintains
a list of

1

1..*

Managed by

1

0..2

updates
and uses

1

1

Uses

 Figure 51. RR Software Object Relationship Diagram

 As the diagram above illustrates, the ROS is a collection of objects that holds and manipulates data

or manages and manipulates the objects (that hold data) to inform the TransGuide ATMS and the Area
Wide Database component of MDI of upcoming crossing blockages. The classes are described in more
detail below.

AWARD 102 System Design Document

5.4.2.1 Railroad System (RRSystem) Class

 This class is the topmost of the AWARD system. The class, upon creation loads configuration
information about train sensors and begins the processing loop. The class also maintains the current list of
trains that are of interest. The class cannot be copied because the Stream232 class (which is part of
SensorIF) cannot be copied. The data maintained by (within) the class includes:

• name of master configuration file
• log handling pointers/references
• a list of sensor interfaces (SensorIF class)
• a list of crossings (Crossing class)
• a list of trains (Train class)

The RRSystem class contains the following attributes:

PRIVATE:

accelMods List of all acceleration modifications.

accelModsName Acceleration modification configuration file name.

configName Master configuration file name.

connections List of all downstream connections.

connectionsName Downstream connections configuration file name.

crossings List of all crossings.

crossingsName Crossings configuration file name.

events List of all ATMS events.

eventsName ATMS events configuration file name.

majors List of all major alarms sent to ATMS that have NOT been
cancelled.

sensors List of all actual sensors.

sensorsName Actual sensors configuration file name.

trains List of all active trains.

updateRate Duration between normal polling of the sensors.

AWARD 103 System Design Document

useAcceleration Flag indicating to use calculated acceleration in the estimates
for sending alarms. This flag is set via the configuration file.

vSensors List of all virtual sensors

vsensorsName Virtual sensors configuration file name.

The RRSystem class contains the following operations:

PUBLIC:

addCrossingToMajorList Adds a crossing to the major alarm's sent to ATMS list.

RRSystem Default constructor.
Note: the default constructor generates a runtime error if it is
used without an initializer.

RRSystem;2 Constructor that takes a configuration file name as and the run
level indicator as initializers.

sendCancelMajorAlarm Sends a cancel event for a previously sent major alarm.
The sequence diagram for this member function is given in
Figure 52.

Description

IF there are no crossings in the majoe alarms sent list
THEN

Exit this function now

ENDIF

Get the current time

FOR EACH crossing in the major alarms sent list DO

Get the time stamp when the major alarm was sent

Add five minutes to that time (the alarm cannot be
cancelled in the first five minutes)

Cast the current time to a double for comparison

Get the crossing name that received the major alarm

IF the five minutes has passed THEN
 see if the alarms needs to be cancelled

Check if the crossing exist in the train's
downstream connection list

IF the crossing is in the downstream connection list
THEN

Attempt to cancel the major alarm sent

IF the alarm was cancelled THEN

Remove the crossing the major alarms sent list

ENDIF

ENDIF

ENDIF

ENDIF

Exit this function now

Train

Train

Crossing

Crossing

DateTime

DateTime

sendCancelMajorAlarm [RRSystem.]

now

majAlarmTime

double

double

ID

crossingExists

cancelAlarm

Figure 52. RRSystem::sendCancelMajorAlarm Sequence Diagram

WriteConfig Write actual or example configuration data to a file.

~RRSystem Destructor.

AWARD 104 System Design Document

PRIVATE:

LoadAccelMods Create the acceleration modifications list and initialize it from
its configuration file.

LoadConnectionETAs Create the downstream connections list and initialize it from
its configuration file.

LoadCrossings Create the crossing list and initialize it from its configuration
file.

LoadEvents Create the events list and initialize it from its configuration
file.

LoadSensors Create the actual sensors list and initialize it from its
configuration file.

LoadVSensors Create the virtual sensors list and initialize it from its
configuration file.

AWARD 105 System Design Document

MainLoop Executes the main processing loop. It polls the sensors,
updates existing trains, etc.
The sequence diagram for this member function is given in
Figure 53.

Description

WHILE program is executing (forever loop)

Connect to DataServer process

Connect to ATMS process

Connect to HeartBeat process

Get current time to compare to poll cycle time

IF time to poll sensor THEN

Reset the sensor status flag to FE_ACTIVE

FOR EACH sensor DO

Attempt to get data from the sensor

IF the sensor is sensing a Train THEN

Create a new Train object

Add new Train object to the trains list

ENDIF

ENDFOR

Get the sensor status flag to send to HeartBeat

Send data to the HeartBeat process

FOR EACH Train in the trains list DO

Check if a Train object in the list is equal to
another (different) Train object in the list

IF a Train object in the list is EQUAL to another
(different) Train object in the list THEN

Merge the two trains

IF the merge was successful THEN

Remove the redundent Train from the
trains list

ENDIF

ENDIF

ENDFOR

FOR EACH Train in the trains list DO

Check if the Train is past all of its downstream
connections

IF Train is past all of its downstream
connections THEN

Remove the Train from the trains list

ELSE

Update the Train's ETA and length

Check if the update sent a major alarm to
ATMS

IF a major alarm was sent to ATMS THEN

Add the crossing that received the major
alarm to the majors list

Check if crossing is already in the major
alarm sent list

Get current time

Find crossing in the crossings list

Set major alarm time for the crossing

ENDIF

If this is NOT the Train object that sent the
major alarm to ATMS and the crossing is in
this object's downstream items, cancel the
alrrm.

Get current time

Get time stamp when major alarm was
sent

Get major alarm crossing ID

Check if crossing exist in the train's
downstream connections

Cancel major alarm

ENDIF

ENDFOR

Set the next poll cycle time

ELSE

Sleep for 100,000 microseconds

Get current hour, minute, and second

IF the time is EQUAL to or GREATER THAN 23
hours, 59 minutes, and 55 seconds THEN

Sleep for 10 seconds to allow for the julian day
to change

Set the next poll cycle time

ENDIF

ENDIF

ENDWHILE (forever loop)

RRSystem

RRSystem

SensorIF

SensorIF

Train

Train

DateTime

DateTime

Crossing

Crossing

MainLoop [RRSystem.]

resetSensorsStatusFlag

reactivate

Train;2

getSensorsStatusFlag

merge

pastAll

updateETA

majorAlarmSent

operator==

now

now

val

now

addCrossingToMajorList

sendCancelMajorAlarm

now

majAlarmTime

ID

crossingExists

cancelAlarm

ID

now

ID

setMajorAlarmTime

Figure 53. RRSystem::MainLoop Sequence Diagram

ReadConfig Reads the configuration information.

5.4.2.2 Sensor Interface (SensorIF) Class

This class is responsible for interfacing and controlling the Stream232 class that communicates to
the remote radar units. The class implements a finite state machine (depicted in the figure below). When
the class is created, it must be provided configuration information. Then most later interactions are simply

AWARD 106 System Design Document

to tell it to reactivate (leave some internal wait state and run) which causes it to attempt to get data from the
remote sensor, determine if it is valid, and send it to the appropriate virtual sensor. This class cannot be
copied because the Stream232 object, which the class contains, cannot be copied. When the configuration
data for the class is loaded, a flag is set which indicates that the remote sensor is operational. If it is not, the
class does not initialize and cannot be used.

AWARD 107 System Design Document

SensorIF

Start

TryPhone

Establish telephone
connection

ProbeRadar

Check for sensor
working or not working

NormalCycle/NormalCycleBadLast

Await reactivate

Get time stamp; add it & results to history buffe

Perform acceleration algorithm

Use most recent data values with a new time stamp

S

S

S

S

Report error and set data values to 0

M

Unsuccessful connection/
Inform error handler and
DataServer

Connection
Established

Radar not working/
Inform error handler
and DataServer

Radar
Working

Connection lost/
Inform error handler
and DataServer

Radar not working/
Inform error handler
and DataServerActivate radar

and await results

Data
Received

Filter data to
detect validity

Valid
data

Reactivate
Signal

Probe Radar for
working/not working

Invalid data but had
valid data last time Invalid data and had

invalid data last time

Provide data to
both virtual sensors

Figure 54. Sensor Interface (SensorIF) Class State Diagram

AWARD 108 System Design Document

The SensorIF class contains the following attributes:

PRIVATE:

acceleration The current estimate of acceleration.

angle The angle of the sensor to the track in degrees (the sign of the
angle is ignored).

atTime The timestamp associated with the current values.

conAttemptsMade The number of consecutive connection attempts made to a
sensor.

conTimer Time when to attempt a reconnection to a sensor that was
removed from service due to a loss of communication.

id The actual sensor identifier, a1..aN.

lastRead Last entry read from file.
Note: This field is required for simulation operations.

maxVel The maximum velocity this sensor should see.

name The ATMS name of the sensor.

numberSensorPolls The number of sensor polls to keep the useData flag set to
TRUE because the data valid bit from the sensor was set to
TRUE.

operational Configuration parameter indicating the unit is known to be up
or down.

recent A list of recent recorded values and timestamps.

retryTimer If TRUE, attempt reconnection, after the proper time has
elapsed, to a sensor that was removed from service due to a
loss of communication.

runLevel The program's execution level. 0 is normal operations, -3 is
simulation mode.

sensorsStatusFlag Global status flag used to update the MDI heartbeat process.
This global variable is only visible to SensorIF objects. If one
sensors fails, the flag is used to inform ATMS of a possible
warning.

AWARD 109 System Design Document

simIn The simulation file.
Note: This field is required for simulation operations.

startTime The beginning simulation time.
Note: This field is required for simulation operations.

state The current state with respect to the finite state machine.

sunPort SUN port id to use to communicate with the radar.

takenOffLine If TRUE, the sensor has been removed from service due to a
lost communication and unable to reconnect.

telephoneNum The telephone number of the radar unit.

toRadar The Stream232 interface to the Sensor.

useAcceleration Flag indicating to use calculated acceleration in the estimates
for sending alarms.

useData Flag indicating to use the data from the sensor because the
current or previous data valid bit (from the sensor) was set to
TRUE.

v1 Virtual sensor #1.

v2 Virtual sensor #2.

velocity The current (radar) velocity.

The SensorIF class contains the following operations:

PUBLIC:

ID Returns the actual sensor id.

ReadConfig Reads original configuration information.

SensorIF Default constructor. Note: the default constructor generates a
runtime error (on purpose) so it should never be used.

SensorIF;2 Constructor that loads in configuration data from a supplied
data file.

getSensorsStatusFlag Returns the global sensor status flag.

maxV Returns the maximum velocity the sensor should see.

AWARD 110 System Design Document

operator== Overloaded equality operator used to detect that two instances
are identical.

reactivate Get data from the radar unit and process it.

reactivate;2 Get data from the radar unit and process it for data acquisition.
The sequence diagrams for this member function are given in
Figure 55 and Figure 56.

Description

Determine if in data aquistition mode

IF in data aquissition mode THEN

Set dataAcq flag to TRUE

ELSE

Set dataAcq flag to FALSE

ENDIF

IF the sensor is operational THEN

Set take off line flag to FALSE

Check the sensors off line list for this sensor

IF the sensor is in the off line list THEN

Set take off line flag to TRUE

ENDIF

IF need to take the sensor off line THEN

Get the current time

Get another time stamp, set it equal to the current time minus one second

IF not in data aquistition mode THEN

Send values to the first virtual sensor to set up closing out if it is seeing a train

Send values to the second virtual sensor to set up closing out if it is seeing a train

Send values to the first virtual sensor closing out the train

Send values to the second virtual sensor closing out the train

For the first virtual sensor, set the flag in the sensor status list to indicate it is off line

For the first virtual sensor, set the flag in the sensor status list to indicate it is off line

ENDIF

Close the RS-232 port

Set the operational flag to FALSE

Clear the recent values list

For the virtual state machine, set the state to Invalid

ENDIF

ELSE

If the sensor is not suppossed to be offline then restore it

IF putting it back on line THEN

IF not in data aquistition mode THEN

For the first virtual sensor, set the flag in the sensor status list to indicate it is now on line

For the first virtual sensor, set the flag in the sensor status list to indicate it is now on line

ENDIF

ENDIF

Set the state to TryPhone

Set the operational flag to TRUE

ENDIF

IF the sensor is NOT operating THEN

Send data to DataServer that the sensor is Not-In-Service

Exit from this member function

ENDIF

SWITCH on the state flag (the state machine)

CASE Invalid state DO

In start up state, just exit the SWITCH statement

CASE TryPhone state DO

Attempt connection to the sensor

IF error occured connecting to the sensor THEN

Report the error to the error handler

Report the sensor in error to the DataServer

Set the sensor status flag to FE_ERROR

Exit this function now

ENDIF

Connection was successful, set the state to ProbeRadar

Coninue, fall through to the ProbeRadar state

CASE ProbeRadar state DO

Check that the sensor is transmitting

IF the sensor is in error THEN

Report the error to the error handler

Report the sensor in error to the DataServer

Set the sensor status flag to FE_ERROR

Set the state to TryPhone

Exit this function now

ELSE

Report sensor communication established to the error handler

Set the state to NormalCycle

Coninue, fall through to the NormalCycle state

ENDIF

CASE NormalCycle state DO

Coninue, fall through to the NormalCycleBadLast state

CASE NormalCycleBadLast state DO

Perform the NormaCycleBadLast Uses Case
 (This is documented in the
 NormalCycleBadLast Sequence Diagram)

DEFAULT

Report to the error handler that the state has an invalid value

Exit the program

ENDSWITCH

Exit this function now

SensorIF

SensorIF

VSensor

VSensor

senseStatus

senseStatus

Stream232

Stream232

DateTime

DateTime

reactivate [SensorIF.]

now

newValue

newValue

newValue

newValue

setUpDown;2

setUpDown;2

close

setUpDown;2

setUpDown;2

tryPhone

probeRadar

operator-;2

reactivate:NormalCycleBadLast[SensorIF.]

Figure 55. SensorIF::reactivate Sequence Diagram

AWARD 111 System Design Document

Description

Tells the radar to send a single sample

IF in data aquisition mode THEN

IF data collection was successful THEN

Get the data's time stamp

Place the time stamp into the proper format

Get the velocity data (in fps)

Dump the data to the correct file or place

Send the sensor data to the DataServer

ELSE IF a timeout occured trying to get data THEN

Report the error to the error handler

Set the sensor status flag to FE_ERROR

Report the sensor in error to the DataServer

Set state to ProbeRadar

ELSE an error occured getting the data

Report lost telephone connection to the error
handler

Set the sensor status flag to FE_ERROR

Report the sensor in error to the DataServer

Set state to TryPhone

ENDIF

Exit this function now

ENDIF

IF a timeout occured getting the data THEN

Set state to ProbeRadar

Report the error to the error handler

Report the sensor in error to the DataServer

Set the sensor status flag to FE_ERROR

Exit this function now

ENDIF

IF an error occured getting the data THEN

Set state to TryPhone

Report lost telephone connection to the error handler

Report the sensor in error to the DataServer

Set the sensor status flag to FE_ERROR

Exit this function now

ENDIF

Get the sensor's velocity from the data

IF the absolute value of the velocity > the maximum
velocity THEN

Get the time stamp from the data

Reset the data using the time stamp and setting the
velocity to 0.0

ENDIF

Add the data to list of recent values (if the list is at its
maximum size, then delete the oldest value)

Remove any data from the list that is older than four
minutes

Get the current time and the data's time

Calculate the time delta (deltaT) from the last sensor
reading to now

Cast the time values to doubles and calculate the
delta

IF the deltaT < 2 minutes THEN

Calculate estimate velocity (estVel) using
acceleration

ELSE

Set the estimated velocity (estVel) to the actual
velocity

ENDIF

IF the difference between the estimated velocity and
the actual velocity > 0.6 AND there is more than 1
value in the recent values list THEN

Report the estimate off to the error handler

Set the data valid flag to FALSE

ELSE

Set the data valid flag to TRUE

ENDIF

IF the data is NOT valid AND the state = NormalCycle
THEN

Replace the current velocity value with the last
velocity value

Reset the time stamp with the current time stamp

Reset the velocity to the last velocity

ELSE IF the data is NOT valid AND the state = Norm

Report consistently bad data from the sensor to the
error handler

Remove the last two data values from the values list

Reset the time stamp with the current time stamp

Reset the velocity to the last velocity

Set acceleration = 0

ELSE

Set the time stamp with the current time stamp

Set the velocity to the last velocity

Set the acceleration using the Least Squares Method

IF acceleration is close to equalling 0 THEN

Set acceleration = 0

ENDIF

Get the sensor status to update the DataServer

Get the time for the data in UTC (seconds since Jan.
1 1970)

Update the DataServer with the sensor data

ENDIF

Prepare for the next cycle through the state machine

IF the data was NOT valid THEN

Set the state to NormalCycleBadLast

ELSE

Set the state to NormalCycle

ENDIF

Send new values to the first virtual sensor

Send new values to the second virtual sensor

IF sending new values to both virtual sensors resulted
in both retuning Train Sumry pointers THEN

Report to the error handler that both virtual sensors
created trains

Exit the program

ENDIF

IF sending new values to the first virtual sensor
resulted in retuning a Train Sumry pointer THEN

Return the Train Sumry pointer and exit this function
now

ENDIF

IF sending new values to the second virtual sensor
resulted in retuning a Train Sumry pointer THEN

Return the Train Sumry pointer and exit this function
now

ENDIF

SensorIF

SensorIF

VSensor

VSensor

DateTime

DateTime

ValTime

ValTime

reactivate:NormalCycleBadLast[SensorIF.]

nextDatum

time

val

value

value

time

newValue

time

time

double

newValue

newValue

UTC

estAccel

double

value

newValue

time

value

time

time

value

value

Figure 56. SensorIF::reactivate:NormalCycleBadLast (Use Case) Sequence Diagram

AWARD 112 System Design Document

resetSensorsStatusFlag Resets the global sensor status flag.

~SensorIF Destructor.

PRIVATE:

checkSensorDataValidity Polls the sensor for multiple data sets to check for the data
valid bits. Returns TRUE if any of the data sets has a TRUE
setting of the data valid bit.

estAccel Estimates acceleration from the current and previous
velocities.
The sequence diagram for this member function is given in
Figure 57.

AWARD 113 System Design Document

Description

Confirm there is enough data points to estimate the
acceleration

If there is not enough points for a calculation then
return a 0.0 acceleration and exit this function now

IF there are exactly two data points THEN

Just perform a linear estimate

Get the two points

IF the time difference between the two points is close
to 0 THEN

Return a 0.0 acceleration and exit this function now

ENDIF

Compute the linear estimate ((point1 - point2) / the
time differnce)

Return the estimate and exit this function now

ENDIF

Since there are more than two data points, perform a
least squares estimate

The equation solved is: (y = m*x + b). Results are also
calculated for standard error of estimate, se. Notice
that the x values are slid close to 0 to avid overflow.

Initialize all variables to 0

Initialize the xslide variable to the oldest time in the
data point list minus 1 minute

FOREACH data point in the values list DO

x = the data point time stamp - xslide

y = the data point value

IF y NOT EQUAL TO 0.0 THEN

Increment the count

xbar = xbar + x;

ybar = ybar + y;

sumxy = sumxy + (x*y);

sumx2 = sumx2 + (x*x);

sumy2 = sumy2 + (y*y);

ENDIF

ENDFOR

xbar = xbar / count;

ybar = ybar / count;

IF (sumx2 - (count*xbar*xbar)) = 0.0 THEN

Return 0.0 acceleration

ENDIF

m = (sumxy - (count*xbar*xbar)) / (sumx2 -
(count*xbar*xbar))

The following 2 statements are commented out but are
available if further acceleration smoothing is
necessary.

b = ybar - m * xbar

se = square root of
 ((sumy2 - b * ybar + count - m * sumxy) / count -
2)

Return m and exit this function now

ValTime

ValTime

DateTime

DateTime

estAccel [SensorIF.]

operator=

double

double

double

Figure 57. SensorIF::estAccel Sequence Diagram

WriteConfig Write actual or example configuration data to a file.

AWARD 114 System Design Document

modemCmd Sends the "AT" command to the modem.
The sequence diagram for this member function is given in
Figure 58.

Description

IF the timeout supplied is < 0.0 THEN

Inform the error handler of the invalid timeout and
exit the program

ENDIF

Flush out anything in the data buffer

Send the command string to the sensor ("AT")

Initialize the time variables needed to measure the
timeout

Read the echo from the sensor

WHILE no data received AND the timeout has NOT
occured DO

Read data from the sensor

IF data received from the sensor THEN

Set the flag to exit the WHILE DO loop

ELSE

Get a new time to measure the timeout

ENDIF

ENDWHILE

IF a timeout occured THEN

Return a FALSE and exit this function now

ENDIF

IF there is a need to check for the OK from the sensor
THEN

WHILE no OK received from the sensor AND the
timeout has NOT occured DO

Read data from the sensor

IF data received from the sensor THEN

Set the flag to exit the WHILE DO loop

ELSE

Get a new time to measure the timeout

ENDIF

ENDWHILE

IF a timeout occured THEN

Return a FALSE and exit this function now

ENDIF

ENDIF

All data has been received, return TRUE and exit this
function now

Stream232

Stream232

DateTime

DateTime

modemCmd [SensorIF.]

read

write

now

read;2

now

read;2

now

Figure 58. SensorIF::modemCmd Sequence Diagram

AWARD 115 System Design Document

NextDatum Tells the radar to send a single sample.
The sequence diagrams for this member function are given in
Figure 59 and Figure 60.

Description

Handle getting data from the file if in simulation mode

IF in simulation mode THEN

Get the current time

Get the time from the last simulation reading

Cast the last simulation time, current time, and the
start simulation time to doubles for comparison

IF it is time to get a new simulated sensor reading
THEN

WHILE there is need for new simulation data DO

Convert the last read velocity from MPH to FPS

Set the atT to the current time

IF not end of file of the simulation file THEN

Read new simulation data from the simulation
file

ENDIF

ENDWHILE

ELSE

The sensor read the same value as the last time,
just update the atT to the current time

ENDIF

Set the state for the sensor to indicate a good read
occured

Create a new ValTime object and set its data values

Return the new ValTime object and exit this function
now

ENDIF

Flush the data in the buffer making certain that
communications have not been lost

WHILE flushing the buffer DO

Read data from the RS-232 port

IF the number of characters read = 0 THEN

Buffer has been flushed, set the state to continue

ELSE

IF the data read from the buffer contains "DONE"
in it THEN

Communications error occured, set the state to
communications lost

ENDIF

IF the data read from the buffer contains "NO
CARRIER" in it THEN

Communications error occured, set the state to
communications lost

ENDIF

IF the data read from the buffer contains "ERROR"
in it THEN

Communications error occured, set the state to
communications lost

ENDIF

IF the data read from the buffer contains "BUSY" in
it THEN

Communications error occured, set the state to
communications lost

ENDIF

ENDIF

ENDWHILE

IF the state is in communications error THEN

Return a 0.0 and exit this function now

ENDIF

Have the radar send one data sample ("S ")

Initialize the data parameters necessary to read the
data from the RS-232 port

Perform the "While readind data from buffer do" Use
Case
 (This is documented in the
 ReadDataFromBuffer Sequence Diagram)

IF the state is in communications error THEN

Return a 0.0 and exit this function now

ENDIF

Adjust the velocity to account for the angle versus the
track direction

Convert the velocity from MPH to FPS

Create a new ValTime object and set its data values

Return the new ValTime object and exit this function
now

Stream232

Stream232

ValTime

ValTime

DateTime

DateTime

nextDatum [SensorIF.]

now

time

double

operator=

ReadConfig

operator=

ValTime

read;2

write

now

ValTime

nextDatum:ReadDataFromBuffer[SensorIF.]

Figure 59. SensorIF::nextDatum Sequence Diagram

AWARD 116 System Design Document

Description
WHILE reading data from the buffer DO

Read data from the RS-232 port
IF the data read from the buffer contains "DONE" in it
THEN

Communications error occured, set the state to
communications lost

ENDIF
IF the data read from the buffer contains "NO
CARRIER" in it THEN

Communications error occured, set the state to
communications lost

ENDIF
IF the data read from the buffer contains "ERROR" in
it THEN

Communications error occured, set the state to
communications lost

ENDIF
IF the data read from the buffer contains "BUSY" in it
THEN

Communications error occured, set the state to
communications lost

ENDIF
Remove any leading spaces from the buffer
Parse the data from the buffer string
IF the buffer string is the correct size THEN

IF buffer string is in the proper format THEN
Confirm that the values are numeric
IF the values are numeric THEN

Set the time when data aquisition was aquired
Get the velocity from the data buffer
IF velocity > 0 THEN

IF the data valid bit from the sensor is
FALSE AND the useData flag is FALSE
THEN

Check the sensor for the data valid bit
IF the return state < 0 THEN

Return a 0.0 velocity
ENDIF
IF the sensor's data valid bit returned
TRUE THEN

Set the original data valid bit to TRUE
ENDIF

ENDIF
IF the data valid bit is TRUE THEN

Set the useData flag to TRUE
Set the number of sensor polls equal to
NUM_SENSOR_POLLS

ELSE
IF the useData flage is set THEN

Decrease the value of the number of
sensor polls by a factor of 1

ENDIF
ENDIF

ELSE
IF the useData flage is set THEN

Decrease the value of the number of
sensor polls by a factor of 1

ENDIF
ENDIF
IF the useData flage is set THEN

IF the number of sensor polls is equal to 0
THEN

Set the useData flag to FALSE
Set velocity equal to 0.0

ENDIF
ENDIF
Adjust the velocity for MPH using the formula
supplied from the senso maker
Set the appropriate sign for the velocity. This
indicates whether the train is moving toward
the sensor or away from the sensor

ENDIF
ELSE

Received the wrong data format from the sensor.
Report this to the error handler and exit the
program

ENDIF
ENDIF
IF still reading data from the sensor AND not the first
pass THEN

Sleep for 25000 micro seconds and get the current
time

ENDIF
ENDWHILE

DateTime

DateTime

Stream232

Stream232

SensorIF

SensorIF

nextDatum:ReadDataFromBuffer[SensorIF.]

read;2

now

now

checkSensorDataValidity

Figure 60. SensorIF::nextDatum:ReadDataFromBuffer (Use Case) Sequence Diagram

AWARD 117 System Design Document

probeRadar Attempts to determine if the radar unit is working.
The sequence diagram for this member function is given in
Figure 61.

Description

IF in simulation mode THEN

Exit htis function now

ENDIF

Make certain the transmitter is on ("D40 ")

Set transmitter to send at a continous rate of 250mS
(T0 ")

Tell the radar not to send continuous samples ("B0 ")

Set the time out for getting data to 10 seconds

Attemp to get data from the radar

Return the state of the communications received from
"nextDatum" and exit this function now

SensorIF

SensorIF

Stream232

Stream232

probeRadar [SensorIF.]

write

write

write

nextDatum

Figure 61. SensorIF::probeRadar Sequence Diagram

AWARD 118 System Design Document

tryPhone Attempts to establish a communication channel using the
sunPort attribute value and then dialing the telephoneNum
attribute value to the remote radar unit.
The sequence diagrams for this member function are in given
Figure 62 and Figure 63.

Description

Perform the "Make connection" Use Case
 (This is documented in the
 MakeConnection Sequence Diagram)

Initialize the two monitoring time structures

Initialize t1

Initialize t2

Monitor the phone call

WHILE the state of the call is still receiving (rstate = 0)
AND the time difference is < 25.0 seconds DO

Get data from the connection and place it in the buffer

IF the state is still receiving (rstate = 0) AND the buffer contains the string "NO
DIALTONE" THEN

Set the state to no dial tone (-1)

ENDIF

IF the state is still receiving (rstate = 0) AND the buffer contains the string "NO
CARRIER" THEN

Set the state to no carrier tone (-2)

ENDIF

IF the state is still receiving (rstate = 0) AND the buffer contains the string "RING"
THEN

Set the state to phone rings (-3)

ENDIF

IF the state is still receiving (rstate = 0) AND the buffer contains the string "ERROR"
THEN

Set the state to error dialing the number (-4)

ENDIF

IF the state is still receiving (rstate = 0) AND the buffer contains the string "BUSY"
THEN

Set the state to busy signal (-5)

ENDIF

IF the state is still receiving (rstate = 0) AND the buffer contains the string "NO
ANSWER" THEN

Set the state to phone rings but no answer (-6)

ENDIF

IF the state is still receiving (rstate = 0) AND the buffer contains the string "CONNECT"
THEN

IF the buffer contains the string "2400" THEN

Set the state to connected (1)

ELSE

Set the state to connected (2)

ENDIF

ENDIF

Sleep for 100000 micro seconds to allow for more data to be transmitted

Update the second time structure

ENDWHILE

SWITCH on the data received state

CASE no dial tone DO

Set error string to no dial tone

CASE no carrier tone DO

Set error string to no carrier tone

CASE phone rings DO

Fall through to the phone rings but no answer CASE

CASE phone rings but no answer DO

Set error string to phone rings but no answer

CASE error dialing number DO

Set error string to error dialing sensor

CASE busy signal DO

Set error string to busy signal

CASE still in receive state DO

Set error string to unsuccessful connection attempt

CASE connected state #1 DO

Fall through to the connected state #2 CASE

CASE connected state #2 DO

Set error string to connected to sensor

ENDSWITCH

IF the connection was not successful THEN

Send the hangup command to the modem ("HO")

Report the error contained in the error string to the error handler

Exit this function now returning FALSE for unsuccessful

ENDIF

Exit this function now returning TRUE for successful

SensorIF

SensorIF

Stream232

Stream232

DateTime

DateTime

tryPhone [SensorIF.]

now

now

read;2

now

modemCmd

tryPhone:MakeConnection[SensorIF.]

Figure 62. SensorIF::tryPhone Sequence Diagram

AWARD 119 System Design Document

Description

Close any open RS-232 ports

IF in simulation mode THEN

Exit this function now

ENDIF

Make a connection to the sensor (open the RS-232
port)

IF an error occured making the connection THEN

Report the error to the error handler

Exit this function now

ENDIF

Set the baud rate to 2400
Set the bits per character to 8
Set the flag for two stop bits to FALSE
Set enable receiving
Set parity off

Configure the port for unbuffered communication using
the above settings

Set ignore the break command
Set ignore signal on break
Turn off the following input controls: parity errors, mark
parity errors, strip bit #8, map newline to carriage
return, ignore carriage return, map carriage return to
newline, map uppercase to lowercase, enable
start/stop output control, enable start/stop input control,
enable any character to restart output, and echo BEL
on input line too long.

Configure the port's input parameters using the above
settings

Turn off post processing

Configure the port's outpout parameters using the
above setting

Turn off the following settings: enable signals,
canonical input, canonical upper/lower
prepresentation, enable echo.
Turn on disable flush after interrupt or quit

Configure the port's local parameters using the above
settings

Turn off the port's special chaarcters and set the
timeouts

Get the modem's attention ("+++")

Flush out anything on the line

Check on the modem ("")

IF there is an error on the modem THEN

Report unable to communicate to the local modem
port to the error handler

Exit this function now

ENDIF

Tell the modem to give up on the remote modem after
15 seconds ("S7=15")

IF there is an error on the modem THEN

Report unable to configure the local modem port to
the error handler

Exit this function now

ENDIF

Tell the modem to set the maximum DCE speed to
2400 ("S37=6")

IF there is an error on the modem THEN

Report unable to configure the local modem port to
the error handler

Exit this function now

ENDIF

Dial and connect to the remote modem (DT???????,
where ??????? = the phone number)

IF there is an error on the modem THEN

Report unable to communicate to the local modem
port to the error handler

Exit this function now

ENDIF

SensorIF

SensorIF

Stream232

Stream232

tryPhone:MakeConnection[SensorIF.]

close

open

configure_control

configure_input

configure_output

configure_local

configure_chars

write

read

modemCmd

modemCmd

modemCmd

Figure 63. SensorIF::tryPhone:MakeConnection (Use Case) Sequence Diagram

5.4.2.3 RS-232 Port (Stream232) Class

This class is used for dealing with RS232 I/O. This class allows for a file descriptor supporting
both reading and writing. This class cannot be copied.

AWARD 120 System Design Document

The Stream232 class contains the following attributes:

PUBLIC:

fd File descriptor to the Sun port, non-negative means a valid
descriptor.

PRIVATE:

maxlen The maximum number of characters to read from the port.

sbuf The character read buffer.

sbuflen The length of sbuf.

PROTECTED:

tio The structure for the Terminal I/O characteristics.

The Stream232 class contains the following operations:

PUBLIC:

Stream232 Default constructor.

close Standard file closure.

configure_chars Configure the character processing control parameters of the
RS 232 port.

configure_input Configure the input control parameters of the RS 232 port.

configure_local Configure the local control parameters of the RS 232 port.

configure_output Configure the output control parameters of the RS 232 port.

open The routine opens the device for reading and writing, then
confirms that ioctl system calls can be made on the device using
the TCGETA flag.

read Read from the RS 232 port using the current settings. The
system will read until some sort of end of line condition is
reached or timeout condition occurs (depending on the current
settings) or the maxlen is read.

AWARD 121 System Design Document

read;2 Overloaded read function that reads from the RS 232 port and
performs pseudo-line processing.

write Writes to the RS 232 port using the current settings.

~Stream232 Class destructor.

5.4.2.4 Value Time Stamp (ValTime) Class

This class is responsible for containing a value and an associated timestamp. This class should be
able to be used in an ordered list because it has an equality operator, a copy constructor, an assignment
operator, and a default constructor.

The ValTime class contains the following attributes:

PRIVATE:

stamp The timestamp associated with the value.

val The value.

The ValTime class contains the following operations:

PUBLIC:

ReadConfig Read original configuration information.

ValTime Default constructor.

ValTime;2 Constructor that takes a ValTime instance as an initializer.

WriteConfig Writes actual or example configuration data to a file.

newValue Updates the object with new values.

operator= Overloaded assignment operator to assign one ValTime object
to another.

operator== Overloaded equality operator used to detect that two instances
are identical.

time Returns the timestamp associated with the value.

value Returns the value.

~ValTime Destructor.

AWARD 122 System Design Document

5.4.2.5 Sensor Status (senseStatus) Class

This class is used to keep track if a virtual sensor is up or down.

The senseStatus class contains the following attributes:

PRIVATE:

id The virtual sensor id, s1..sM, it is associated with.

working Boolean flag that states whether the virtual sensor is working.

The senseStatus class contains the following operations:

PUBLIC:

isUp Returns the Boolean flag that states whether the virtual sensor
is working or not working.

operator= Overloaded assignment operator to assign one senseStatus
object to another.

operator== Overloaded equality operator used to detect that two instances
are identical. This operator accepts a string to compare against
the id.

operator==;2 Overloaded equality operator used to detect that two instances
are identical. This operator accepts another senseStatus
instance compare against.

senseStatus The default constructor.

senseStatus;2 Constructor where the values must be passed in.

senseStatus;3 Constructor that takes a senseStatus instance as an initializer.

setUpDown Accepts TRUE or FALSE to set the virtual sensor up or down.

setUpDown;2 Accepts a string and a TRUE or FALSE to set the virtual
sensor up or down. Only sets the value if string passed matches
the id. Then it returns TRUE, otherwise it returns FALSE.

setvId Sets the id for the object.

vId Returns the id of the object.

AWARD 123 System Design Document

5.4.2.6 Virtual Sensor (VSensor) Class

This class is designed to make configuration of AWARD to be straightforward. Specifically, each
radar sensor provides data for 2 virtual sensors. One for trains receding from the sensor, the other for
approaching trains. This class maintains a downstream list of crossings and other sensors and a summary
of any train the sensor is perceiving. After being provided current information from the sensor, it creates or
updates the train summary. This class is like the SensorIF class in that it implements a finite state
machine.

AWARD 124 System Design Document

VSensor

Start

NoTrain

Await Data

SInterpret
train data

MaybeTrain

Await Data

Interpret
train data S

SeeTrain

Await Data

SInterpret
train data

Update TrainSumry Instance

MaybeNoTrain

Await Data

S

Update TrainSumry Indicating Train Data Complete

Interpret
train data

Load configuartion data
for the virtual sensor

Data received Velocity <= 0

Velocity > 0

Data received

Velocity <= 0

Velocity > 0; post new Train and
TrainSumry instance (maintain a
pointer to theTrainSumry
instance for updating)

Data received

Velocity > 0

Velocity <= 0

Data received

Velocity > 0

Velocity <= 0

Figure 64. Virtual Sensor (Vsensor) Class State Diagram

AWARD 125 System Design Document

The VSensor class contains the following attributes:

PRIVATE:

connects List of downstream connections from the virtual sensor.

directed Which direction, with respect to sensor, belongs to this virtual
sensor.

id Virtual sensor identifier, s1..sM.

lastTime Time of previous update.

lastVel Value of previous velocity.

name Name of this sensor.

rules List of acceleration modification rules.

sensorId Identifier of associate actual sensor, a1..aN.

state Current state of the class, with respect to the finite state
machine.

sumry The train summary pointer.

The VSensor class contains the following operations:

PUBLIC:

connections Access routine that returns the list of downstream connections
from the virtual sensor.

direction Access routine that returns the sensor direction.

identifier Access routine that returns the virtual sensor ID.

AWARD 126 System Design Document

newValue Given current sensor values of velocity and acceleration, the
data applies to this virtual sensor, then update the train
summary.
The sequence diagram for this member function is given in
Figure 65.

Description

Update the velocity.

IF the direction of the virtual sensor is for negative velocity
THEN

IF velocity >= 0 THEN

Set velocity equal to 0.0

ELSE

Set velocity to positive, i.e. set it to its absolute value

ENDIF

ELSEIF the direction of the virtual sensor is for positive
velocity THEN

IF velocity < 0 THEN

Set velocity equal to 0.0

ENDIF

ELSE

Report an error and exit the program (This is highly
unlikely to occur because the direction must be set in order
for the program to start).

ENDIF

Update the acceleration

FOR EACH acceleration modification rule DO

Update the acceleration using the modification rule.

ENDFOR

SWITCH on the current state of the finite state machine

CASE No train DO

IF velocity > 0.0 THEN

Change state to Maybe a train

ENDIF

CASE Maybe a train DO

IF velocity <= 0.0 THEN

Change state to No train

ELSE

Change state Sensor sees a train

Create a new TrainSumry object setting its velocity and
time stamp to its previous reading

Create Train Sumry object

Set the new train sumry flag to TRUE

Update the new train sumry object with the current
velocity and time stamp

Update Train Sumry object

ENDIF

CASE Sensor sees a train DO

IF velocity <= 0.0 THEN

Change state to Maybe there is no train

ELSE

Update the train sumry object with the current velocity
and time stamp

Update Train Sumry object

ENDIF

CASE May be there is no train DO

IF velocity <= 0.0 THEN

Change state to No train

Update the train sumry object to indicate the end of the
train

Update Train Sumry object

ELSE

Change state to Sensor sees a train

Update the train sumry object with the current velocity
and time stamp

Update Train Sumry object

ENDIF

CASE An invalid state DO

Coninue, fall through to the DEFAULT state

DEFAULT DO

Report an error and exit the program (This is highly
unlikely to occur because the finite state machine will not
allow unknown states and the Invalid state is the startup
state).

ENDSWITCH

Set the last time stamp to the current time stamp

Set the last velocity to the current velocity

IF a new train sumry object was created THEN

Return a pointer to the new train sumry object

ELSE

Return NULL

ENDIF

VSensor

VSensor

TrainSumry

TrainSumry

AccelMod

AccelMod

newValue [VSensor.]

thruRule

newTrain

updateTrain

endTrain

updateTrain

TrainSumry

update

update

update

update

updateTrain

Figure 65. VSensor::newValue Sequence Diagram

AWARD 127 System Design Document

operator= Overloaded assignment operator to assign one virtual sensor
object to another.

operator== Overloaded equality operator used to detect that two instances
are identical.

sensorIdentifier Access routine that returns the actual sensor ID.

summary Access routine that returns the TrainSumry pointer.

vName Access routine that returns the virtual sensor name.

VSensor Default constructor.

VSensor;2 Constructor that takes a configuration file name, a list of
downstream connections, and a list of acceleration
modifications as its initializers.

VSensor;3 Constructor that takes a Virtual Sensor instance as an
initializer.

~VSensor Destructor.

PRIVATE:

endTrain Sets the end of the train through the variables.

newTrain Creates a new TrainSumry object.

ReadConfig Reads and loads the object with data from its configuration file.

updateTrain Updates the TrainSumry object associated with this virtual
sensor.

WriteConfig Write actual or example configuration data to a file.

5.4.2.7 Acceleration Modification (AccelMod) Class

This class contains acceleration modification rules. These rules are a way for known behavior to
be entered into the AWARD system, especially train behavior that occurs when trains are not being
observed by a sensor. Acceleration may be modified by setting the acceleration to some constant or
adjusting the measured acceleration. Adjustment may include adding and/or multiplying by some
constants. This class should be able to be used in an ordered list because it has an equality operator, a
copy constructor, an assignment operator, and a default constructor.

AWARD 128 System Design Document

The AccelMod class contains the following attributes:

PRIVATE:

constAccel Constant value to set acceleration to (or infinity).

constMult Constant multiplicand to apply to acceleration (after the offset).

constOffset The constant offset to apply.

dayOfWeek The day of week, 1..7, rule to apply, Sunday is 1.

endTime The time of day the rule stops applying.

maxA The maximum (absolute) acceleration after calculations.

minA The minimum (absolute) acceleration after calculations.

startTime The time of day the rule begins to apply.

vSensorId The associated virtual sensor ID, s1..sM.

The AccelMod class contains the following operations:

PUBLIC:

AccelMod Default constructor.
Note: The default constructor values are not really meaningful.
So the default constructor just provides a placeholder.
Assigning data requires using the other constructors.

AccelMod;2 Constructor that loads in configuration data from a supplied
data file.

AccelMod;3 Constructor that takes a AccelMod instance as an initializer.

ReadConfig Reads original configuration information.

WriteConfig Writes actual or example configuration data to a file.

compare Detects that another instance has overlapping conditions.
Returns TRUE if this instance and the other instance overlap.

operator= Overloaded assignment operator to assign one AccelMod object
to another.

operator== Overloaded equality operator used to detect that two instances
are identical.

AWARD 129 System Design Document

thruRule Applies the acceleration modification rule to the provided value,
returning a (potentially) modified value.
The sequence diagram for this member function is given in
Figure 66.

Description

Get the day seconds from the time stamp passed in

Get the day of the week from the time stamp passed
in

IF the day of the week from the time stamp is
EQUAL to the instance's day of the week AND
the day seconds from the time stamp >= the
instance's start time AND
the day seconds from the time stamp <= the
instance's end time THEN

IF the absolute value of the constAccel < 1000000
THEN

Set acceleration equal to constAccel

IF acceleration > the maximum acceleration AND
the absolute value of the maximum acceleration
< 1000000 THEN

Return the maximum acceleration

ENDIF

IF acceleration < the minimum acceleration AND
the absolute value of the minimum acceleration
< 1000000 THEN

Return the minimum acceleration

ENDIF

Return the current acceleration

ENDIF

IF the absolute value of the constant multiplyer <
1000000 THEN

Set acceleration equal to acceleration multiplied
by the constant multiplyer

ENDIF

IF acceleration > the maximum acceleration AND
the absolute value of the maximum acceleration <
1000000 THEN

Return the maximum acceleration

ENDIF

IF acceleration < the minimum acceleration AND
the absolute value of the minimum acceleration <
1000000 THEN

Return the minimum acceleration

ENDIF

ENDIF

Return the current acceleration

DateTime

DateTime

thruRule [AccelMod.]

val;2

wDay

Figure 66. AccelMod::thruRule Sequence Diagram

vSensorID Returns the associated virtual sensor ID.

~AccelMod Destructor.

AWARD 130 System Design Document

5.4.2.8 Crossing (Crossing) Class

This class is responsible for containing information about one railroad crossing. The data
contained in the class is simply a description of the distance between the crossing and where the signals
detect a train (under normal circumstances). The class also has a textual name of the railroad crossing.

The Crossing class contains the following attributes:

PRIVATE:

id The crossing item identifier, c1..cP.

majorAlarmTime Time when a major alarm was sent to ATMS.

name The textual name of the crossing.

nominalTime The nominal time from the train crossing to where the train is
sensed (0 if no signals at the crossing).

The Crossing class contains the following operations:

PUBLIC:

Crossing Default constructor.
Note: The default constructor is not really useful. It is just a
placeholder because assigning data requires using the other
constructors.

Crossing;2 Constructor that loads in configuration data from a supplied
data file.

Crossing;3 Constructor that takes a Crossing instance as an initializer.

ID Returns the crossing ID.

crossingName Returns textual crossing name.

majAlarmTime Returns the time when a major alarm was sent to ATMS.

nomTime Returns the nominal time from the train crossing to where the
train is sensed.

operator= Overloaded assignment operator to assign one crossing object
to another.

operator== Overloaded equality operator used to detect that two instances
are identical.

AWARD 131 System Design Document

setMajorAlarmTime Sets the time when a major alarm was sent to ATMS.

~Crossing Destructor.

PRIVATE:

ReadConfig Reads original configuration information.

WriteConfig Writes actual or example configuration data to a file.

5.4.2.9 Train Class

This class is responsible for maintaining (a unified summary of) a train and a list of Estimated
Time of Arrival (ETA) and Estimated Time unTil Arrival (ETTA) for all downstream connections. There
may be more than one sensor that perceives a particular train, so there may be multiple train summaries
that a train instance includes. Part of interfacing to other classes includes the ability to manipulate train
summaries without ever copying them so that the Virtual Sensors may be able to update the summaries
irrespective of this class's activities.

The Train class contains the following attributes:

PRIVATE:

acceleration The train’s acceleration.

atTime The timestamp when speed, acceleration., and length last
updated.

eta List of train ETAs and ETTAs for all downstream
connections. Downstream connections maybe crossings or
virtual sensors.

length The train’s length.

speed The train’s speed.

sumries List of train summary (TrainSumry object) pointers. The
train summary structure contains information regarding one
train that is seen by one (virtual) sensor.

The Train class contains the following operations:

PUBLIC:

cancelAlarm Cancel an alarm sent to ATMS.

AWARD 132 System Design Document

crossingExists Determines if a crossing is in the train's connection list.

currentAccl Return the train's acceleration.

currentLength Return the train's length.

currentSpeed Return the train's speed.

currentTime Return the train's timestamp.

majorAlarmSent Determines if a train sent a major alarm to ATMS.

merge Determining that two trains refer to the same actual train
and merge them (without interrupting train summary
memory locations) - the second train looses it's summaries,
but still needs to be discarded after return (only discard if
merge returns true).
The sequence diagram for this member function is given in
Figure 67.

AWARD 133 System Design Document

Description

IF the train's time stamp is invalid THEN

Report the error to the error handler and exit the
program

ENDIF

Check to see if this train instance is the same as the
instance passed in

IF the instances are the same THEN

Return a FALSE to indicate an error and exit this
function now

ENDIF

IF this instance's length < the length of the instance
passed in THEN

Reset the length using the value from the instance
passed in

ENDIF

IF this instance's time stamp < the time stamp of the
instance passed in THEN

Reset the time stamp, speed, and acceleration using
the values from the instance passed in

ENDIF

Get the number of entries in both instances
TrainSumry object list

IF this instance's number of entries is 1 AND the other
instance's number of entries is NOT 1 THEN

Set the use this instance flag to FALSE

ELSE IF this instance's number of entries is NOT 1
AND the other instance's number of entries is 1 THEN

Set the use this instance flag to TRUE

ELSE

Get the initial sensor reading time from both
instances

Cast both initial time to doubles for comparison

IF this instance's time stamp > the other instance's
time stamp THEN

Set the use this instance flag to FALSE

ELSE

Set the use this instance flag to TRUE

ENDIF

ENDIF

Remove the TrainSumry objects from the other
instance's TrainSumry object list and insert it at the
end of this TrainSumry object list

Go through both ConnectionETA list, if any are alike
then merge the ConnectionETA

FOR EACH of the ConnectionETAs in the passed in
instance's list DO

Set the match found flag to FALSE

FOR EACH of the ConnectionETAs in this instance's
list DO

Check if the first ConnetionETA is the same as this
one

IF the ConnectionETAs are the same THEN

Merge the two ConnectionETAs into one

Set the match found flag to TRUE and exit this
inner FOR loop

ENDIF

ENDFOR

IF a match was NOT found THEN

Add the Connection ETA into the end of the
ConnectionETA object list

ENDIF

ENDFOR

Remove all the ConnetionETAs from the passed in
instance's list

Return TRUE for a successful merge and exit this
function now

Train

Train

TrainSumry

TrainSumry

ConnectionETA

ConnectionETA

DateTime

DateTime

merge [Train.]

operator==

initialTime

double

operator==

merge

Figure 67. Train::merge Sequence Diagram

operator= Overloaded assignment operator to assign one train equal to
another.

operator== Overloaded equality operator to determine that two train
instances are identical.

pastAll Determine that a train has left all areas of interest.

Train Default constructor.
Note: the default constructor generates a runtime error if it is
used without an initializer.

AWARD 134 System Design Document

Train;2 Constructor that takes a Train summary pointer as an
initializer.

Train;3 Constructor that takes a Train object as an initializer.

updateETA Update internal data, list of ConnectionETA objects for all
downstream connections and generate appropriate events.
The sequence diagram for this member function is given in
Figure 68.

AWARD 135 System Design Document

Description

IF the current time stamp is invalid THEN

Report the error to the error handler and exit the
program

ENDIF

FOR EACH TrainSumry object in the TrainSumry list
DO

Get the train length from the TrainSumry object

IF the retrieved length > the current length THEN

Update the train's length

ENDIF

Check to see if the TrainSumry's sensor is still
sensing the train

IF the sensor still sees the train THEN

Get the TraimSumry object's virtual sensor ID

Find the sensor in the sensor status list and find
out if it is operational

IF the sensor is operating THEN

Get the time stamp when the TrainSumry object
was last updated

Cast the time stamps to doubles for comparison

Check to see if the train's speed, acceleration,
and time stamp need updating

IF the time from the TrainSumry object is later
than the trains time stamp THEN

Update the train's time stamp with the
TrainSumry object's time stamp

Update the train's speed with the TrainSumry
object's velocity

Update the train's acceleration with the
TrainSumry object's acceleration

Set the train still in view flag to TRUE

ENDIF

ENDIF

ENDIF

ENDFOR

IF the train is NOT in view THEN

Update the train's time stamp to the current time

ENDIF

FOR EACH ConnectionETA object in the train's
connection list DO

Update the ConnectionETAs with the current speed,
acceleration, length, and time stamp

ENDFOR

Set the downstream time flag to -1.0 for iteration
purposes

WHILE the downstream time < 0 THEN

Set the downstream time to the current time plus one
day

FOR EACH ConnectionETA object in the train's
connection list DO

Get the ConnectionETA object's ID

IF the ConnectionETA is a sensor THEN

Find the sensor in the sensor status list and find
out if it is operational

IF the sensor is operating THEN

Get the current ETA from the ConnectionETA

IF the current ETA < the downstream time
THEN

Set the upstream flag to FALSE

FOR EACH TrainSumry object in the
TrainSumry list DO

Check to see if the TrainSumry's sensor is
the same as the ConnectionETA's sensor

IF the sensors are the same THEN

Set the upstream flag to TRUE

Exit from this FOR loop

ENDIF

ENDFOR

IF the ConnectionETA is NOT upstream
THEN

IF the ConnectionETA is NOT in the
already done list THEN

Set the downstream time to the
ConnectionETA's current estimated time
until arrival (ETTA)

ENDIF

ENDIF

ENDIF

ENDIF

ENDIF

ENDFOR

IF the downstream time < 0 THEN
 increment the downstream items ETA and ETTA

Set the increment factor

FOR EACH ConnectionETA in the current
ConnectionETA's downstream items list DO

If the downstream item has created a Blockage
object THEN

Reset the alarm sent to ATMS flag so ATMS
can be updated with the new ETA

ENDIF

Get the current ETTA from the train's
ConnectionETA

Increment the ConnectionETA, in the train's list,
ETTA

ENDFOR

Add the ConnectionETA to the already done list

ENDIF

ENDWHILE

FOR EACH ConnectionETA object in the train's
connection list DO

Check the ConnectionETA's estimated time until
arrival

ENDFOR

Exit this function now

ConnectionETA

ConnectionETA

TrainSumry

TrainSumry

DateTime

DateTime

senseStatus

senseStatus

updateETA [Train.]

recentL

recentL

stillInView

vsensorID

isUp

now

update

now

ID

isUp

recentTime

double

recentTime

recentV

recentA

currentETA

isSameVid

currentETTA

incrementETTA

currentETTA

checkETTA

Figure 68. Train::updateETA Sequence Diagram

AWARD 136 System Design Document

~Train Destructor

5.4.2.10 Train Summary (TrainSumry) Class

This class is responsible for containing information regarding one train that is seen by one (virtual)
sensor. Only the virtual sensor is expected to update the data contained herein, however the data is
expected to be used by the Train class and is expected to handle deleting instances of TrainSumry objects.

The TrainSumry class contains the following attributes:

PRIVATE:

connects List of downstream connections from the virtual sensor.

currAcc Current train acceleration.

currSpd Current train speed.

currTime Time of current values.

estLngth Current estimate of the length.

initSpd Initial train speed.

initTime Time of initial train speed.

inView If true, sensor is still perceiving the train, otherwise it has
completed its passing. This also indicates that the virtual
sensor, which created this summary, is no longer referencing
this instance.

vId Virtual sensor ID that created this train summary.

The TrainSumry class contains the following operations:

PUBLIC:

connections Access routine to the list of downstream connections from the
virtual sensor.

initialA Access routine that returns the initial acceleration. Always
just returns 0.

initialTime Access routine that returns the initial time stamp.

initialV Access routine that returns the initial speed.

AWARD 137 System Design Document

isSameVid Returns TRUE if the vid passed in is the same as the instance
vId.

operator= Overloaded assignment operator to assign one TrainSumry
object to another.

operator== Overloaded equality operator used to detect that two instances
are identical.

recentA Access routine to the most recent acceleration.

recentL Access routine to the most recent length.

recentTime Access routine to the most recent time stamp.

recentV Access routine to the most recent speed.

stillInView Returns TRUE if the virtual sensor still detects a train.

TrainSumry Default constructor. Note: the default constructor generates a
runtime error if it is used without a vel (must be 0 or greater)
and atTime set.

TrainSumry;2 Constructor that takes a TrainSumry instance as an initializer.

update Update internal data using new sensor information if
stillInView is false, then vel and acc are ignored. vel must be
greater than 0.

vsensorID Access routine to the virtual sensor ID that created the
instance.

~TrainSumry Destructor.

5.4.2.11 Connection Description (ConnectionETA) Class

This class, part of the AWARD system, is responsible for containing information relating one
virtual sensor to all of its downstream components (include virtual sensors and crossings). Part of the data
contained in the class is simply a description of the distance between the sensor and the downstream item
and the maximum velocity the train will ever travel between the two locations. The remaining information
includes ETA and ETTA for a particular train. Creation and update of this data is the responsibility of
class Train. This class generates crossing blockages (information passed to MDI DataServer) and ATMS
alarm/incidents based on event scenarios for the crossing. This class assumes that whenever two different
lists of ConnectionETA are merged, that the merge function is called prior to any attempts to update
information. Otherwise, some data may become corrupted because some update functions and crossing
Blockage logic requires that only one crossing Blockage may be associated with a particular downstream
item.

AWARD 138 System Design Document

The ConnectionETA class contains the following attributes:

PRIVATE:

ETA Estimated Time of Arrival (ETA).

ETATime Time vel and acc acquired.

ETTA Estimated Time unTil Arrival (ETTA).

acc Acceleration used in ETA calculation.

blkg Crossing Blockage (event) associated with this downstream
item.

distTime Time distance last calculated (a 0 indicates distance not set).

distance Current distance to item (virtual sensor or crossing).

downstream If this ConnectionETA is a crossing, then this list is empty. If
it is a virtual sensor (and it is not a part of some other
ConnectionETA's downstream list), then this is a list of all the
downstream items.

events Conditions that cause creation of ATMS alarms and
associated alarm descriptors.

id Item identifier, s1..sM for virtual sensors or c1..cP for
crossings.

length Length of the train.

maxVel Either max velocity for this downstream sensor or max
velocity when 'near' crossing.

name Name of the downstream item by crossing guard.

nomTime Nominal time from the train crossing where train is sensed.

origDist Original distance to downstream item.

runLevel The program's execution level. 0 is normal operations, -3 is
simulation mode.

vSensorId The associated virtual sensor ID.

Vel Velocity used in the ETA calculation.

AWARD 139 System Design Document

The ConnectionETA class contains the following operations:

PUBLIC:

ConnectionETA Default constructor. Not really useful – just a placeholder because
assigning data requires using the other constructors.

ConnectionETA;2 This constructor should be used to first load in ALL downstream
crossings and put them in a list. Then, make a copy of the list and
pass that copy to each item in the original using the finishCreate()
function.

ConnectionETA;3 Constructor that takes a ConnectionETA instance as an initializer.

ID Returns the item identifier.

BlockageL Length used/reported in Blockage.

AWARD 140 System Design Document

checkETTA Check ETTA and scenarios and generate any appropriate crossing
Blockages and ATMS events.
The sequence diagram for this member function is given in Figure
69.

Description

IF this connection is a sensor THEN

Exit this function now

ENDIF

Calculate the distance to the rear of the train

IF the connection's ETTA is set so that the train will
make it to the crossing THEN

Calculate the ETTA for the rear of the train

Calculate the duration the train will block the
crossing

ELSE (the train will NOT make it to the crossing)

Set duration to infinity (means the train will not make
it to the crossing)

ENDIF

IF a Blockage object exist for this crossing THEN

IF the rear of the train has passed the crossing
THEN

Cancel the blockage for this crossing

ENDIF

ENDIF

IF a Blockage object does NOT exist for this crossing
THEN

IF the ETTA < the minimum blockage ETTA AND
the rear of the train has NOT passed the crossing
THEN

IF the duration > 0.0 and the length > 0 THEN

Create a new Blockage object for this crossing

ENDIF

ENDIF

ELSE

IF the rear of the train has passed the crossing AND
the ETTA > the minimum blockage ETTA THEN

Delete the Blockage object for this crossing

Set the Blockage object pointer equal to NULL

ENDIF

ENDIF

FOR EACH Event object in the Event object list DO

Check the ETTA for the Event object

ENDFOR

Exit this function now

Blockage

Blockage

Event

Event

checkETTA [ConnectionETA.]

cancelBlockage

Blockage;2

~Blockage

checkETTA

Figure 69. ConnectionETA::checkETTA Sequence Diagram

currentA Returns the acceleration used in ETA calculation.

currentBlockage Crossing Blockage (empty/real).
NOTE: May return an empty/invalid blockage. Use isBlockage()
to determine if valid.

currentDistance Returns the current distance to the downstream item.

currentETA Returns the Estimated Time of Arrival (ETA).

currentETTA Returns the Estimated Time unTil Arrival (ETTA).

currentV Returns the velocity used in ETA calculation.

downstreamList Returns a list of the downstream connections (none if it is a
crossing).

AWARD 141 System Design Document

eventsList Returns a list of Scenarios and ATMS events.

finishCreate This function is called after all the ConnectionETAs have been
loaded from the configuration file and made into a list. Make a
copy of the list and pass it to each of the items in the original list
using this function. The maximum velocity for this sensor or
connection must be provided (and be greater than 0).

incrementETTA Increases ETTA/ETA if greater than some length of time
(threshold) by a fixed amount (increment). Performs additional
logic on these items which have a crossing Blockage or ATMS
event (returns TRUE if the ETTA was
increased).
The sequence diagram for this member function is given in Figure
70.

Description

Cast the estimated time until arrival (ETTA) and the
increment threshold to doubles for comparison

IF the ETTA is larger than the threshold THEN
 increment the ETTAs and ETAs

Add the increment value to the ETTA

Add the increment value to the ETA

IF this ConnectionETA has a Blockage object
associated with it THEN

Update the Blockage object's ETA

ENDIF

FOR EACH Event object in the ConnectionETA's
Event object list DO

Update the Event object's ETA

ENDFOR

Return a TRUE for a successful increment and exit
this function now

ENDIF

Return a FALSE for no increment performed (not
necessary) and exit this function now

Blockage

Blockage

Event

Event

DateTime

DateTime

incrementETTA [ConnectionETA.]

double

double

double

newETA

newETA

Figure 70. ConnectionETA::incrementETTA Sequence Diagram

isBlockage Returns TRUE if Blockage is real. Must be used to know if
currentBlockage returned an actual blockage or an empty one.

isOverlappingTimes Determines if the two connections have the same overlapping
times.

lastETATime Returns the time vel and acc were acquired.

majAlarmSent Returns TRUE if a major alarm was sent to ATMS.

maxVelocity Returns the maximum velocity used in ETA calculation.

merge Determines that two connections refer to the same downstream
item and merge them together. Maintain any crossing Blockage
(complain if ther are two). May require Blockage updating as well.

AWARD 142 System Design Document

Use the maximum velocity from instance with shortest original
distance to downstream object.

operator= Overloaded assignment operator to assign one ConnectionETA
object to another.

operator== Overloaded equality operator used to detect that two instances are
identical.

origL Returns the configuration distance.

sendNormalAlarm Sends a normal (cancel) alarm to ATMS.

update Updates the internal data using new train information.
The sequence diagram for this member function is given in Figure
71.

AWARD 143 System Design Document

Description

IF this is the first pass into the update THEN initialize
all the objects variables

Calculate the estimated time until arrival (ETTA)

Calculate the estimated time of arrival (ETA)

Set the distance from the front of the train to this
connection to the original configuration distance

Set the train length, velocity, acceleration

Exit this function now

ENDIF

Calculate the delta time from the last update

Calculate the distance the train traveled since the last
update

Update the distance from the front of the train to the
connection

Next, update the ETTA and ETA (if necessary)

IF the train speed is constant (no acceleration) THEN

Update the ETTA for the connection. This is the
simple calculation of subtracting the delta time from
the current ETTA

ELSE (there is acceleration)

Calculate a new ETTA for the connection

Update the ETA using the new ETTA

IF this connection had created a Blockage object
THEN

Update the Blockage object's ETA

ENDIF

FOR EACH Event object in the Event object list DO

Update the Event object's ETA

ENDFOR

ENDIF

Calculate the distance from the connection to the rear
of the train

IF the ETTA is NOT infinity (meaning the train will
make it to the connection) THEN

Calculate the ETTA for the rear of the train

Calculate the duration of the train at the connection

ELSE (the train will NOT make it to the connection)

Set the duration of the train to be infinity

ENDIF

Update the velocity

Update the acceleration

IF the length passed in is NOT equal to the current
length THEN

Update the length

ENDIF

IF this connection had created a Blockage object
THEN

Update the Blockage object's length and duration

ENDIF

FOR EACH Event object in the Event object list DO

Update the Event object's length and duration

ENDFOR

Update the time stamps for the update

Exit this function now

Event

Event

Blockage

Blockage

DateTime

DateTime

update [ConnectionETA.]

double

double

double

newETA

newETA

newLength

newLength

Figure 71. ConnectionETA::update

vSensorID Returns the associated virtual sensor ID.

~ConnectionETA Destructor - Deletes any blockages created.

PRIVATE:

ReadConfig Reads the original configuration information.

WriteConfig Write configuration information.

AWARD 144 System Design Document

5.4.2.12 Event (Event) Class

This class holds information about when crossing blockage information should be provided to the
ATMS as an incident/alarm. It also maintains the blockage details. The class is responsible for
communicating to the ATMS (not the Data Server). This class inherits from the Blockage class, i.e. this
class is a child of the Blockage class.

The Event class contains the following attributes:

PRIVATE:

atmsEvent Set to TRUE if an ATMS incident.

cancelSent True if a normal alarm has been sent

crossingId Crossing identifier, c1..cP, associated with this event.

endTime The time before the end of the train to end the event.

eventId Event or other ATMS identifier.

lastDuration The duration of the train at the last sensor polling (this is used
due to a loss of communication with the sensor and the time to
reconnect could cause the event not to start or end).

lastLength The length of the train at the last sensor polling (this is used
due to a loss of communication with the sensor and the time to
reconnect could cause the event not to start or end).

lastTimeCheck The time of the last sensor polling (this is used due to a loss of
communication with the sensor and the time to reconnect
could cause the event not to start or end).

lastTrainETA The ETA of the train at the last sensor polling (this is used
due to a loss of communication with the sensor and the time to
reconnect could cause the event not to start or end).

majorAlarmSent Set to TRUE if ATMS major alarm has been sent.

name The event name.

preceed Set to TRUE if pretermination time means for the time to be
before the train begins the blockage, set to FALSE to indicate
time before train leaves the blockage.

AWARD 145 System Design Document

pretermination Time before crossing blockage starts or ends to initiate the
ATMS event or less than 0 to ignore.

startTime The time before the beginning of the train to start the event.

The Event class contains the following operations:

PUBLIC:

Event Default constructor. Not really useful, just a placeholder
because assigning data requires using the other constructors.

Event;2 Constructor that loads in configuration data from a supplied
data file.

Event;3 Constructor that takes an Event instance as an initializer.

atmsID Returns the event or other ATMS identifier.

cID Returns the crossing ID.

cancelAlarm Cancels an alarm sent to ATMS.

cancelSENT Returns TRUE if a normal alarm for the event has been sent to
ATMS.

checkETTA Check event and generate any appropriate events.
The sequence diagram for this member function is given in
Figure 72.

Description

Get the current time

IF the event is to occur before the train gets to the
crossing THEN

Calculate the time difference from the front of the
train

ELSE (the event occurs at the end of the train)

Calculate the time difference from the rear of the
train

ENDIF

IF an ATMS event has not been sent for this crossing
AND the duration AND length > 0.0 THEN

IF it is time for the event to occur THEN

Set the ATMS event sent flag to TRUE

Call the parent class's startup member function to
set the crossing data

Send the data to ATMS

ENDIF

ELSE

IF the train has passed the crossing THEN

Set the ATMS sent flag to FALSE

Call the parent class's conclude member function
to cancel the alarm

ENDIF

ENDIF

Exit this function now

Event

Event

Blockage

Blockage

DateTime

DateTime

checkETTA [Event.]

now

startUp

sendData

conclude

double

double

Figure 72. Event::checkETTA Sequence Diagram

AWARD 146 System Design Document

endTIME Returns the end time of the event.

hasEvent Returns TRUE if information has been sent to the ATMS.

majAlarmSent Returns TRUE if a major alarm has been sent to ATMS.

merge Determines that two events refer to the same downstream event
and merge them. Uses maximum velocity from instance with
the shortest original distance to the downstream object.

newETA Updates the object with a new ETA.

newLength Updates the object with a new length and estimated duration.

operator= Overloaded assignment operator to assign one Event object to
another.

operator== Overloaded equality operator used to detect that two instances
are identical.

preTime Returns the pretermination time.

setCancelSent Sets the cancelSent flag to TRUE indicating the normal alarm
has been sent to ATMS.

sName Returns the event name.

startTIME Returns the start time of the event.

~Event Destructor. Will cancel any events sent to ATMS except
Major Alarms.

PRIVATE:

ReadConfig Reads the original configuration information.

WriteConfig Write configuration information.

AWARD 147 System Design Document

PROTECTED:

sendData Sends/updates data to the destination.
Note: This member function is overloaded from its parent. The
overloaded function calls its parent’s function as well.
The sequence diagram for this member function is given in
Figure 73.

Description

IF the send data destination is invalid THEN

Report this to the error handler and exit the program
now

ENDIF

Invoke the parent class's sendData member function to
set all the necessary data

IF the destination is the DataServer THEN

Report this error to the error handler and exit this
function now

ELSE (destination is ATMS)

Convert the front ETA into seconds since 0:0:0 UTC,
Jan 1, 1970

Convert the rear ETA into seconds since 0:0:0 UTC,
Jan 1, 1970

IF this event is to occur before the train get to the
crossing THEN

IF the train will pass through the crossing THEN

Set the ATMS delay condition to a MINOR alarm

ELSE (the train will stop in the crossing)

Set the ATMS delay condition to a MAJOR alarm

ENDIF

ELSE

Set the ATMS delay condition to a NORMAL alarm

ENDIF

IF the process is not connected to ATMS THEN

Connect to the ATMS

ENDIF

IF connected to ATMS OR in simulation mode THEN

IF the delay condition is a MAJOR OR MINOR
alarm THEN

Send the crossing name, delay condition, train
length, duration, front ETA, and rear ETA data to
the ATMS

Set the success flag on whether the message
was sent

ELSE (a NORMAL alarm)

Send the NORMAL alarm condition to the ATMS

Set the success flag on whether the message
was sent

ENDIF

ENDIF

ENDIF

IF the original message had NOT been sent AND the
message was sent THEN

Set the original message sent flag to TRUE

ENDIF

IF the delay condition is a MAJOR alarm AND the
message was sent THEN

Set the major alarm sent flag to TRUE

ENDIF

Return the success flag and exit this function now

Blockage

Blockage

DateTime

DateTime

sendData [Event.]

sendData

UTC

UTC

Figure 73. Event::sendData Sequence Diagram

5.4.2.13 Blockage (Blockage) Class

This class is responsible for containing information summarizing the blockage of a railroad
crossing and communicating the information to either the DataServer or the ATMS. The data is primarily

AWARD 148 System Design Document

a summary of when a train is expected to be at a crossing and the length and duration of the blockage. This
class is the parent class of the Event class. Notice that this class should be able to be used in an ordered
list because it has an equality operator, a copy constructor, an assignment operator, and a default
constructor.

The Blockage class contains the following attributes:

PROTECTED:

ETA Estimated Time of Arrival (ETA).

blockId The unique blockage id.

blocks A global list of active blockages.
Note: This global list is only visible to the Blockage objects
and its children.

cancelSent Flag indicating that this blockage cancel notification has been
sent successfully (at least once) to the destination.

destination Destination for the data and updates provided to this class.

detail Communication details for talking to the ATMS.

duration Estimated duration of the crossing blockage.

eventFrontETA The calculated Estimated Time of Arrival (ETA) of the front
of the train.

eventRearETA The calculated Estimated Time of Arrival (ETA) of the rear of
the train.

id Crossing item identifier, c1..cP.

lastBlock Global value of the last block ID generated.
Note: This global ID is only visible to the Blockage objects
and its children.

length Length of the train.

name The name of the downstream item.

origSent Flag indicating that this blockage notification has been sent
successfully (at least once) to the destination.

runLevel The program's execution level. 0 is normal operations, -3 is
simulation mode.

AWARD 149 System Design Document

The Blockage class contains the following operations:

PUBLIC:

Blockage Default constructor. Note: the default constructor does
nothing useful, but allows for having the class as part of an
ordered list. Additionally initialization data may only be
entered into the class by utilizing a non-default constructor.

Blockage;2 Constructor where all values passed must be non-NULL and
have a valid function.

Blockage;3 Constructor that takes a Blockage instance as an initializer.

atETA Returns the ETA of the blockage.

blockID Returns the unique block ID.

cancelBlockage Train has disappeared or whatever, handle the situation
appropriately (based on the destination).

itemID Returns the item identifier.

itemName Returns the name of the downstream item.

newETA Updates the object with a new ETA.

newLength Updates the object with a new length and duration.

operator= Overloaded assignment operator to assign one Event object
to another.

operator== Overloaded equality operator used to detect that two
instances are identical.

trainDuration Returns the train duration of the item.

trainLength Returns the train length of the item.

~Blockage Destructor.

PROTECTED:

conclude Performs all the destructor operations.

NewBlockID Return a new valid block ID.

AWARD 150 System Design Document

sendData Sends and updates data to the destination.
The sequence diagram for this member function is given in
Figure 74.

Description

IF the destination for the send data is invalid THEN

Report the error to the error handler and exit the
program

ENDIF

Find the start and end for the the blockages for the
same crossing

Initialize the front ETA

Initialize (calculate) the rear ETA

FOR EACH blockage in the global list of blockages DO

Check to see if "this" blockage is the same as the
blockage in the list

IF the blockages are the same THEN

Calculate the rear ETA for the blockage in the list

IF the ETA for the blockage in the list arrives first
THEN

Reset the front ETA (for the send data) for the
blockage

ENDIF

IF the rear ETA for the blockage in the list arrives
last THEN

Reset the rear ETA (for the send data) for the
blockage

ENDIF

ENDIF

ENDFOR

IF the send destination is DataServer THEN
 (prepare and send data to the DataServer)

Prepare the front ETA in seconds since 0:0:0 UTC,
Jan 1, 1970

Prepare the rear ETA in seconds since 0:0:0 UTC,
Jan 1, 1970

IF the program is NOT connected to the DataServer
THEN

Connect to the DataServer

ENDIF

IF a cancel has NOT been sent to the DataServer
THEN

IF connected to DataServer OR in simulation mode
THEN

Send the crossing address, train length, duration,
front ETA, and rear ETA to the DataServer

Set the success flag on whether the the data was
successfully sent

ENDIF

ELSE

Set the success flag to TRUE to continue on

ENDIF

ELSE (prepare the data to send to ATMS)

Save the front and rear ETA for sending the data to
ATMS

ENDIF

IF the is the first time sending the data AND a
successful transmission occured THEN

Set the flag for the original sent to TRUE

ENDIF

Return the success flag and exit this function now

Blockage

Blockage

DateTime

DateTime

sendData [Blockage.]

operator=

double

operator==

double

operator=

operator=

UTC

UTC

operator=

Figure 74. Blockage::sendData Sequence Diagram

startUp Performs all the constructor operations.

AWARD 151 System Design Document

5.4.2.14 Date and Time (DateTime) Class

This class is used to manipulate and store time and to time short events.

The DateTime class contains the following attributes:

PRIVATE:

jday Julian day (i.e. days since) since the start of year 0..364 (365
in a leap year).

sec The seconds into the jday 0..86399 (may be fractional).

yr The year A. D. 0...

The DateTime class contains the following operations:

PUBLIC:

DateTime The default constructor.

DateTime;2 The constructor function given normal date and time data.

DateTime;3 The constructor function given Julian date and time data.

DateTime;4 The constructor function given time data (seconds since time
0).

DateTime;5 Constructor that takes a DateTime instance as an initializer.

UTC Returns seconds since 0:0:0 UTC, Jan 1, 1970.

double Convert to seconds since 0. This is most appropriate for a
delta time.

now Sets the current DateTime instance to be the local date and
time on the computer.

operator+ Overloaded addition operator that uses another DateTime
instance to add to this DateTime instance.

operator+;2 Overloaded addition operator that uses a double to add to this
DateTime instance.

operator- Overloaded subtractor operator that uses another DateTime
instance to subtract from this DateTime instance.

AWARD 152 System Design Document

operator-;2 Overloaded subtractor operator that uses a double to subtract
from this DateTime instance.

operator= Overloaded assignment operator to assign one DateTime
object to another.

val Provides the date and time in the current instance in standard
format.

val;2 Overloaded function that provides the date and time in the
current instance in Julian date format.

wDay Returns the day of the week (1..7 - Sunday..Saturday) as long
as the year is greater than 1900.

~DateTime Destructor.

PRIVATE:

cvt_jday Returns the Julian day for the provided month and day and
year.
Note: This includes the affects of leap years.

cvt_mo_da Returns the month and day of the month for the current
instance.
Note: This includes the affects of leap years.

5.4.2.15 Utility Functions

The following functions are utility routines that are used by many different classes in the AWARD
system. These routines were made generic so that any class can use them and it won’t be necessary to
remake these as member functions in the classes.

calcDistance Calculate the distance traveled by an object given the velocity,
acceleration, and a time (the delta time from the start and end
times).
The sequence diagram for this member function is given in
Figure 75.

AWARD 153 System Design Document

Description

Calculate the distance
 (distance = (the delta time * velocity) +
 (0.5 * acceleration *
 (the delta time * the delta time)))

Return the calculated distance and exit this function
now

calcDistance [util.]

Figure 75. calcDistance Sequence Diagram

calcETTA Calculate the Estimated Time unTil Arrival (ETTA) by an
object given the velocity, acceleration, and distance the object
has traveled.
The sequence diagram for this member function is given in
Figure 76.

AWARD 154 System Design Document

Description

Initialize the return ETTA to (representation of) infinity

Initialize the minimum velocity to 0.0

Get the absolute value of the acceleration

IF the velocity is close to 0.0 THEN

Return the (representation of) infinity and exit this
function now

ELSE

Calculate the approximate time (distance / velocity)

Calculate the approximate velocity (velocity +
 (acceleration * time
approximate))

ENDIF

IF the time approximate is less than zero THEN
 the object will never cover the distance will
never be
 traversed

Return the (representation of) infinity and exit this
function now

ELSE IF the accelleration is or near zero THEN
 the ETTA will be distance / velocity

Return the calculated time approximate

ELSE IF the (velocity + accelleration * time
approximate) is
 between the minimum velocity and maximum
velocity THEN
 calculate ETTA using the quadratic formula: t =
 (-v +|- square root of (v squared +
4(1/2acc*dist)))/
 2(1/2a).
 Other checks are necessary before the square
root is
 taken

Calculate the value the square root will be performed
on
 square_root_of =
 (velocity * velocity) + (2 * acceleration *
distance)

IF acceleration > 0.0 THEN

Set the return ETTA = -velocity +
 sqare root of (square_root_of)

IF the return ETTA < 0.0 THEN

Set the return ETTA = -velocity -
 sqare root of (square_root_of)

ENDIF

Set the return ETTA = the return ETTA /
acceleration

ELSE (the train is decelerating)

IF the square_root_of < 0.0 THEN

Return the (representation of) infinity and exit this
function now

ELSE

Calculate the first time (t1) =
 (-velocity + square root of (square_root_
of)) /
 acceleration

Calculate the first time (t2) =
 (-velocity - square root of (square_root_
of)) /
 acceleration

IF the first time (t1) < 0.0 THEN

Set return ETTA to the second calculated time
(t2)

ELSE IF the second time (t2) < 0.0 THEN

Set return ETTA to the first calculated time (t1)

ELSE

IF the first calculated time (t1) < the second
calculated time (t2) THEN

Set return ETTA to the first calculated time
(t1)

ELSE

Set return ETTA to the second calculated
time (t2)

ENDIF

ENDIF

ENDIF

ENDIF

ELSE IF the aproximate velocity < the minimum
velocity THEN
 the object will never traverse the distance given

Return the (representation of) infinity and exit this
function now

ELSE (the object's current accelleration will cause the
object
 to exceed its maximum velocity. Calculate the
time
 and place when the train will reach its
maximum
 velocity and assume constant velocity from
there to
 the destination)

Calculate the time the object will reach its maximum
velocity
 (t_maxv = (maxvel - vel) / acceleration)

Calculate the distance the object will traveled at its
maximum velocity
 (dist = distance -
 calcDistance(t_maxvel, vel,
acceleration))

Calculate the time the object will travel at its
maximum velocity
 (time_prime = dist / maxvel)

Set the return ETTA to the calculated value
 (return ETTA = t_maxv + time_prime)

ENDIF

Return the calculated value of the return ETTA and exit
this function now

util

util

calcETTA [util.]

calcDistance

Figure 76. calcETTA Sequence Diagram

AWARD 155 System Design Document

ConnectToATMS This connects to the ATMS process for sending crossing
delay data.

ConnectToDataServer This connects to the DataServer process for sending
sensor and crossing data.

ConnectToHeartBeat This connects to the HeartBeat process for sending
heartbeats informing it that AWARD is still running.

ConnectToStatusLogger This connects to the status logger process for sending
status messages about AWARD.

SendCrDataToATMS This sends crossing delay information to ATMS.

SendCrDataToDS This sends crossing delay information to the DataServer.

SendHeartBeat This sends a heartbeat to the HeartBeat process.

SendMessageToStatusLogger This sends message information to the status logger.

SendSensorDataToDS This sends sensor information to the DataServer.

AWARD 156 System Design Document

6. Traceability Matrix

The traceability matrix for the Railroad Delay Advance Warning System (AWARD) is presented
in this section. It lists the requirements of the system that were presented in Section 3.0 of this document.
Along with each requirement is the source of the requirement, the design element it was assigned to, the
level at which it will be tested, and the method that will be used to verify the requirement.

Table 69, shown on the following pages, will be used throughout the design, development, and test
of the system to ensure that the requirements have been met. It will continually be updated as requirements
and design elements are refined. During development of the Acceptance Test Plan (ATP), sections of the
test plan will be referenced in the TEST LEVEL column of this table to cross-reference to the ATP.

The requirements in the traceability matrix are organized by requirement number. Each
requirement in the matrix has a unique requirements identification (ID) label which maps the particular
requirement to a subsystem with the AWARD System. The ID labels are defined as:

RR-GEN-XX AWARD General (Programmatic) Requirements
RR-SYS-XX AWARD System Requirements
RR-SNS-XX AWARD Sensor Subsystem Requirement
RR-COM-XX AWARD Communications Subsystem Requirement
RR-MEC-XX AWARD Mechanical Subsystem Requirement
RR-RRS-XX AWARD-Railroad Software Subsystem Requirement
RR-TGS-XX AWARD-TransGuide Operational Software Subsystem Requirement

AWARD 157

Table 69. AWARD System Traceability Matrix

REQUIREMENT
ID

REQUIREMENT DESCRIPTION
REQUIREMENT

SOURCE
P - PROPOSAL
T - TXDOT RFO

DESIGN DOCUMENT
PARAGRAPH

RR-GEN-01 An 80% System design document shall be
delivered on February 14, 1997.

P-2.1.2.8.3

RR-GEN-02 A 100% design document shall be delivered on
December 31, 1997

P-2.1.2.8.3

RR-GEN-03 A Software Acceptance Test Plan shall be
delivered

P-2.1.2.8.3

RR-GEN-04 A Version Description Document shall be
delivered.

P-2.1.2.8.3

RR-GEN-05 Monthly status reports shall be provided via a
presentation with the customer.

P-2.1.2.8.3
(revised)

RR-GEN-06 A training program shall be presented P-2.1.2.8.3
RR-GEN-07 A videotape of the training program shall

be delivered.
P-2.1.2.8.3

RR-GEN-08 A final report shall be delivered. P-2.1.2.8.3
RR-SYS-01 The system shall deliver advance warning to

motorists of expected delays at railroad crossings
T-28 4.1, 4.7.2.2

RR-SYS-02 The system shall determine the speed and length
of a train engine and attached railroad cars.

T-28 4.7.1.3, 4.7.2.1

RR-SYS-03 The system shall determine expected delay times
at selected grade crossings.

T-28 4.7.1.3, 4.7.2.1

RR-SYS-04 The system shall transmit an expected delay to
TransGuide Operators as an alarm through a
software interface with the existing TransGuide
ITS system.

T-28 4.7.2.2

AWARD 158

REQUIREMENT
ID

REQUIREMENT DESCRIPTION
REQUIREMENT

SOURCE
P - PROPOSAL
T - TXDOT RFO

DESIGN DOCUMENT
PARAGRAPH

RR-SYS-05 Expected railroad delays shall be transmitted to
the traveling public by use of existing variable
message signs and also to the MDI Data Server.

T-28 4.7.2.3

RR-SYS-06 The system shall provide warnings for grade
crossings at IH 10 and Fredricksburg Road, IH
10 and Hildebrand Road, and IH 410 and Vance
Jackson Road.

T-29.1.3 4.2

RR-SYS-07 The field equipment shall be mounted on a
suitable structure at some location along the
railroad line in advance of the crossing for which
warnings are to be given.

T-29.2.1 4.2

RR-SYS-08 Field equipment shall be located in TxDOT or
the City of San Antonio right-of-way.

T-29.2.1 4.2, 4.3.3

RR-SYS-09 The field equipment shall determine length and
speed of trains through observation only. No
connection to the railroad tracks or controlling
equipment will be used.

T-29.2.2 4.3.2

RR-SNS-01 The train speed sensor shall have a range to
allow measurement of the train speed from a
location outside the railroad right-of-way. This
distance is normally 50 feet on either side of the
track center line but may vary in some locations

RR-SYS-04 4.3.2

RR-SNS-02 The detector unit shall measure locomotive speed
within 2 miles per hour (+/-) at the maximum
train speeds allowed for the section of track
where sensors are installed.

T-29.2.4 4.3.2

RR-COM-01 The field unit shall communicate to the
TransGuide equipment using a non-proprietary
protocol.

T-29.1.2 2.1, 2.4.1.1

AWARD 159

REQUIREMENT
ID

REQUIREMENT DESCRIPTION
REQUIREMENT

SOURCE
P - PROPOSAL
T - TXDOT RFO

DESIGN DOCUMENT
PARAGRAPH

RR-ELC-01 The field unit shall operate on standard line
power. (nominal 120 VAC)

RR-545-07 4.5

RR-MEC-01 The equipment will be designed to operate within
an ambient temperature range of -12°C to 49°C
(10°F to 120°F) and will not allow condensation
accumulations which would interfere with its
operation.

RR-SYS-07 4.6.1.1

RR-MEC-02 The system enclosure will be able to be mounted
to a pole or other suitable structure.

RR-SYS-07 and
RR-SYS-08

4.6.1.3

RR-MEC-03 The system will provide an internal mechanism
for accurate pointing of the sensor.

RR-SNS-01 4.6.1.2.1

RR-RRS-01 The RR-Delay Master Computer shall calculate
the length of the train from measured train speed
integrated over time.

P-2.4.1 4.7.1.3

RR-RRS-02 The RR-Delay Master Computer shall calculate
the expected time of arrival of the first element
of the train and the last element of the train at
selected downrail crossings.

P-2.4.1 4.7.1.3

RR-RRS-03 The RR-Delay Master Computer shall determine
expected delay times at railroad crossings. The
RR-Delay Master Computer shall estimate delay
time within ±30 seconds.

T-29.3.3 4.7.1.3

RR-RRS-04 The RR-Delay Master Computer shall transmit
the railroad delay data to the existing
TransGuide ITS system.

T-29.3.3 4.7.1.5

RR-TGS-01 The TransGuide Operational Software shall
interface with and receive railroad delay data
from the Railroad Operational Software.

RR-RRS-04 4.7.2

AWARD 160

REQUIREMENT
ID

REQUIREMENT DESCRIPTION
REQUIREMENT

SOURCE
P - PROPOSAL
T - TXDOT RFO

DESIGN DOCUMENT
PARAGRAPH

RR-TGS-02 The TransGuide Operational Software shall
transmit expected delay information to
TransGuide operators as an alarm.

T-28 4.7.2.2

RR-TGS-03 The TransGuide Operational Software shall be
capable of performing a scenario search for a
RR delay incident.

P-2.4.1 4.7.2.3

RR-TGS-02.01 The AIH shall accept a RR delay alarm from the
RSS.

RR-TGS-02 4.7.2.2

RR-TGS-02.02 The AIH shall indicate the RR delay alarm as an
update alarm if the RR delay alarm is related to
a current RR delay incident.

RR-TGS-02 4.7.2.2

RR-TGS-02.03 The AIH shall create a new AIH RR incident if
the RR delay alarm is not related to a current RR
delay incident.

RR-TGS-02 4.7.2.2

RR-TGS-02.04 The AIH RR incident shall contain data from the
railroad delay information contained in the RR
delay alarm.

RR-TGS-02 4.7.2.2

RR-TGS-02.05 The AIH shall build the AIH RR incident screen
for new RR delay alarms.

RR-TGS-92 4.7.2.2

RR-TGS-02.06 The AIH shall display the AIH RR incident
screen, as an icon, on the workstation of the
manager responsible for the sector containing the
RR incident.

RR-TGS-02 4.7.2.2

RR-TGS-02.07 The AIH shall generate an audio notification of
new RR incident alarms at the workstation of the
manager responsible for the sector containing the
RR incident.

RR-TGS-02 4.7.2.2

AWARD 161

REQUIREMENT
ID

REQUIREMENT DESCRIPTION
REQUIREMENT

SOURCE
P - PROPOSAL
T - TXDOT RFO

DESIGN DOCUMENT
PARAGRAPH

RR-TGS-02.08 The AIH shall update the railroad delay
information for an existing incident using the
railroad delay information contained in the
associated RR delay update alarm.

RR-TGS-02 4.7.2.2

RR-TGS-02.09 The AIH RR incident screen shall provide the
same actions currently provided by the AIH-
NewIncidentScreen.

RR-TGS-02 4.7.2.2

RR-TGS-03.01 The SCM-ScenarioSearchScreen shall contain
the RR incident type for selection by a
TransGuide operator.

RR-TGS-03 4.7.2.3

AWARD 162

