
Automated Vehicle Identification

Model Deployment Initiative

System Design Document
Version 1.0

January 23, 1998

SwRI Project No. 10-8684
P.O. No. 7-70030

Req. No. 60115-7-70030

Prepared For:
Texas Department of Transportation

TransGuide
3500 NW Loop 410

San Antonio, Texas 78229

Prepared by:
Southwest Research Institute

P.O. Drawer 28510
San Antonio, Texas 78228

Automated Vehicle Identification System Design Documentii

Approval Page

________________________________ ______________________

MDI AVI Project Manager Date

________________________________ ______________________

SwRI MDI Project Manager Date

________________________________ ______________________

Software Engineering Director Date

Automated Vehicle Identification System Design Documentiii

Acronyms and Abbreviations

AC Alternating Current
ADP Automatic Data Processing
AT&T American Telephone and Telegraph
ATIS Advanced Traveler Information System
ATMS Advanced Traffic Management System
AWG American Wire Gauge
bps Bits Per Second
C Celsius
CD Compact Disc
COTS Commercial Off-The-Shelf
DCIC Data Collection and Monitoring Component
DFD Data Flow Diagram
DPFC Data Processing and Filtering Component
DS Data Server
FWHA Federal Highway Administration
GB Gigabyte
GUI Graphical User Interface
Hz Hertz
ICD Interface Control Document
IRD Interface Requirements Document
ITS Intelligent Transportation Systems
IVN In-Vehicle Navigation
K 1024
MB Megabyte
MDI Model Deployment Initiative
MHz Megahertz
PCC Process Coordination Component
RAM Random Access Memory
RF Radio Frequency
RFO Request For Offer
ROM Read Only Memory
SCSI Small Computer System Interface
SGUIC Status/Configuration GUI Component
SwRI Southwest Research Institute
TBD To Be Determined
TTI Texas Transportation Institute
TxDOT Texas Department of Transportation
V Volts
VAC Volts AC

Automated Vehicle Identification System Design Documentiv

Table of Contents

1. SCOPE... 1
1.1 Identification ...1

1.2 System Overview ...1

1.3 Purpose of the System..2

1.4 Operational Concept ...3

1.5 Goals and Objectives...3

1.6 Referenced Documents..3

2. EXTERNAL INTERFACES... 5
2.1 Model Deployment Initiative Data Server ..5

2.2 Automated Vehicle Identification Operator ...5

2.3 Automated Vehicle Identification Reader Field Site..5

3. SYSTEM REQUIREMENTS ... 6
3.1 General Requirements ..7

3.2 System Level Requirements ..7
3.2.1 Automated Vehicle Identification System Interface Requirements ..7
3.2.2 Automated Vehicle Identification System Functional Requirements ...8
3.2.3 Automated Vehicle Identification System Physical Characteristic Requirements8
3.2.4 Automated Vehicle Identification System Miscellaneous Requirements....................................8

3.3 Subsystem Level Requirements...9
3.3.1 AVI Master Computer System Requirements ...9

3.3.1.1 AVI Master Computer System Interface Requirements..9
3.3.1.2 AVI Master Computer System Physical Characteristic Requirements9

3.3.2 AVI Modem Server System Requirements..10
3.3.2.1 AVI Modem Server System Interface Requirements ..10

3.3.3 AVI Data Processing Software Requirements ...10
3.3.3.1 AVI Data Processing Software Interface Requirements ...10
3.3.3.2 AVI Data Processing Software Functional Requirements ..10

4. SYSTEM DESIGN.. 12
4.1 System Architecture ..12

4.1.1 Hardware Architecture ...12
4.1.1.1 AVI Data Processing System...13
4.1.1.2 AVI Reader Field Site System...13
4.1.1.3 AVI Tags..14

4.1.2 Software Architecture ..14

4.2 System Level Design..16
4.2.1 Data Model ..16

Automated Vehicle Identification System Design Documentv

4.2.1.1 Site Table..16
4.2.1.2 Link Table ..18
4.2.1.3 Site-Link Table ...20

4.2.2 Data Flow Design ..20
4.2.2.1 AVI Data Processing Software ..24
4.2.2.2 Monitor Reader Field Sites..27
4.2.2.3 Process and Filter Tag Reads ..30
4.2.2.4 Dispatch Data Server Messages...36
4.2.2.5 Show Detailed Status ..37

4.2.3 Structure Chart Design...37
4.2.3.1 Data Collection and Monitoring (DCM)..39
4.2.3.2 Data Processing and Filtering (DPF)...71
4.2.3.3 Data Server Interface (AVI DSIF)...105
4.2.3.4 AVI DSIF Library Routines ..117
4.2.3.5 AVI GUI...121
4.2.3.6 AVI Common Libraries ..121
4.2.3.7 AVI Interface..121
4.2.3.8 AVI Configuration..124
4.2.3.9 AVI Heartbeat...125
4.2.3.10 AVI Data ..126
4.2.3.11 AVI File..130
4.2.3.12 AVI Util..131
4.2.3.13 CRC..134

5. TRACEABILITY MATRIX... 138

Automated Vehicle Identification System Design Documentvi

List of Tables

Table 1. General Requirements ..7
Table 2. Automated Vehicle Identification System Interface Requirements8
Table 3. Automated Vehicle Identification System Functional Requirements8
Table 4. Automated Vehicle Identification System Physical Characteristic Requirements8
Table 5. Automated Vehicle Identification System Miscellaneous Requirements............................8
Table 6. AVI Master Computer System Interface Requirements..9
Table 7. AVI Master Computer System Physical Characteristic Requirements9
Table 8. AVI Modem Server System Interface Requirements ..10
Table 9. AVI Data Processing Software Interface Requirements ...10
Table 10. AVI Data Processing Software Functional Requirements ..11
Table 11. AVI Site Spacing Guidelines ..17
Table 12. TransGuide AVI Site Identifier Fields...18
Table 13. AVI Link Identifier Fields...19
Table 14. Site-Link Record Definition..20
Table 15. Data Flow Diagram Legend..21
Table 16. AVI Data Processing Software Context Diagram External Entities..............................22
Table 17. AVI Data Processing Software Context Diagram Data Flows......................................23
Table 18. AVI Data Processing Software Data Processes ...25
Table 19. AVI Data Processing Software Data Flows...26
Table 20. Monitor Reader Field Sites Data Processes ...27
Table 21. Monitor Reader Field Sites Data Flows...28
Table 22. Process and Filter Tag Reads Data Processes..31
Table 23. Process and Filter Tag Reads Data Flows ...32
Table 24. Tag Match Table for link IN0035I-RANDO-WALZE ..34
Table 25. AVI Data Processing Software Archives...36
Table 26. Structure Chart Legend ..38
Table 27. Routines called by AVI DCM main ..41
Table 28. Routines called by avi dcm cfg ...42
Table 29. Routines called by avi dcm init log ...43
Table 30. Routines called by exit handler...43
Table 31. Routines called by avi dcm init shm..44
Table 32. Routines called by update status data in shm..45
Table 33. Routines called by avi dcm init port data..46
Table 34. Routines called by dcm read modem data ...47
Table 35. Routines called by init modem data ..48
Table 36. Routines called by dcm main loop ..49
Table 37. Routines called by modem connected..50
Table 38. Routines called by process rfs msgs..52
Table 39. Routines called by refresh time...53
Table 40. Routines called by build msg ..54
Table 41. Routines called by swap hdr data ...54
Table 42. Routines called by purify msg...55
Table 43. Routines called by write rfs ..55
Table 44. Routines called by read rfs ...56
Table 45. Routines called by confirm msg ..58

Automated Vehicle Identification System Design Documentvii

Table 46. Routines called by confirm body...58
Table 47. Routines called by eom check ...59
Table 48. Routines called by confirm xlat ..60
Table 49. Routines called by nak rfs...60
Table 50. Routines called by eval msg..61
Table 51. Routines called by reset rfs...62
Table 52. Routines called by init modem ..64
Table 53. Routines called by OpenPort ..65
Table 54. Routines called by ConfigurePort...66
Table 55. Routines called by handle config changes...67
Table 56. Routines called by get config changes ..68
Table 57. Routines called by process config request...69
Table 58. Routines called by disconnect cfg socket...70
Table 59. Routines called by update status data ...71
Table 60. Routines called by DPF main ...73
Table 61. Routines called by avi dpf cfg ...75
Table 62. Routines called by avi dpf init log ..76
Table 63. Routines called by exit handler...76
Table 64. Routines called by avi dpf init archive ..77
Table 65. Routines called by init dpf sites ..77
Table 66. Routines called by hash init..78
Table 67. Routines called by hash free ...78
Table 68. Routines called by dpf crypt init ...79
Table 69. Routines called by init dpf links..79
Table 70. Routines called by read xref data ...80
Table 71. Routines called by insert TGLinkID node ...82
Table 72. Routines called by avi dpf init shm ...83
Table 73. Routines called by dpf main loop..84
Table 74. Routines called by receive tag ..86
Table 75. Routines called by disconnect socket ..87
Table 76. Routines called by process tag..88
Table 77. Routines called by add tag ...89
Table 78. Routines called by conv to unix time ...90
Table 79. Routines called by hash insert ..91
Table 80. Routines called by hash calc...91
Table 81. Routines called by dpf crypt ...91
Table 82. Routines called by match tag ..92
Table 83. Routines called by hash find ...92
Table 84. Routines called by hash find idx ...92
Table 85. Routines called by insert match ..93
Table 86. Routines called by hash remove..94
Table 87. Routines called by perform periodic updates ..95
Table 88. Routines called by update averages ..97
Table 89. Routines called by calc avg speed ...98
Table 90. Routines called by update link status ..99
Table 91. Routines called by update speed data ...100
Table 92. Routines called by update archive averages..101
Table 93. Routines called by archive speed data ..102
Table 94. Routines called by archive quantity data ..103

Automated Vehicle Identification System Design Documentviii

Table 95. Routines called by purge data ..104
Table 96. Routines called by hash purge ..105
Table 97. Routines called by purge match ..105
Table 98. Routines called by AVI DSIF main...106
Table 99. Routines called by avi dsif cleanup...108
Table 100. Routines called by send heartbeat pulse ...109
Table 101. Routines called by sigalrm handler...110
Table 102. Routines called by initialize avi dsif ...110
Table 103. AVI DSIF configuration items ..111
Table 104. Routines called by respond to read sockets ...112
Table 105. Routines called by disconnect receive socket ..113
Table 106. Routines called by receive dsif message..114
Table 107. Routines called by process Data Server message ..115
Table 108. Routines called by send write link message...116
Table 109. Routines called by send ds return status ...117
Table 110. Routines called by send ds return message ...117
Table 111. Routines called by avi dsif send link write request ..118
Table 112. Routines called by avi dsif is socket connected ...119
Table 113. Routines called by avi dsif disconnect...120
Table 114. Routines called by avi dsif connect ...120
Table 115. Routines called by avi dsif read status ..121
Table 116. Routines called by avi alloc site status..122
Table 117. Routines called by avi dealloc site status ..122
Table 118. Routines called by avi get detailed site status ...123
Table 119. Routines called by avi get site status...123
Table 120. Routines called by send dcm command ...124
Table 121. Routines called by load cfg data ...125
Table 122. Routines called by avi send heartbeat ...126
Table 123. Routines called by avi get avi data ...126
Table 124. Routines called by avi get link identifiers..127
Table 125. Routines called by avi get site data...128
Table 126. Routines called by avi read site data file ..129
Table 127. Routines called by lookup TGLinkID idx ..129
Table 128. Routines called by lookup site by name...129
Table 129. Routines called by avi file fopen file ...130
Table 130. Routines called by avi file get num entries ..131
Table 131. Routines called by avi create segment...132
Table 132. Routines called by avi sock write ..133
Table 133. Routines called by catch signal...133
Table 134. Routines called by signal setup...134
Table 135. Routines called by crc init ..135
Table 136. Routines called by crc msg ccitt..136
Table 137. Routines called by crc msg rev ccitt..136
Table 138. Routines called by crc msg crc16..137
Table 139. Routines called by crc msg rev crc16..137

Automated Vehicle Identification System Design Documentix

List of Figures

Figure 1. Automated Vehicle Identification System Concept Diagram ...2
Figure 2. AVI Data Processing System External Interfaces ...5
Figure 3. Automated Vehicle Identification System Block Diagram...12
Figure 4. AVI Reader Field Site System Block Diagram...14
Figure 5. Automated Vehicle Identification Software Block Diagram ..15
Figure 6. Simple AVI Link Definition...18
Figure 7. Complex AVI Link Definition ...19
Figure 8. Data Flow Diagram Legend...21
Figure 9. AVI Data Processing Software Context Diagram...22
Figure 10. AVI Data Processing Software Data Flow Diagram...25
Figure 11. Monitor Reader Field Sites Data Flow Diagram...27
Figure 12. Tag Read Message Protocol ..29
Figure 13. Clock Set Command Message Protocol..29
Figure 14. Retry Message Protocol...30
Figure 15. Failed Message Protocol..30
Figure 16. Process and Filter Tag Reads Data Flow Diagram ...31
Figure 17. Show Detailed Status Data Flow Diagram ...37
Figure 18. Structure Chart Legend ...37
Figure 19. AVI DSIF main structure chart ...41
Figure 20. avi dcm cfg structure chart ..42
Figure 21. avi dcm init log structure chart..43
Figure 22. avi dcm init shm structure chart ..44
Figure 23. update status data in shm structure chart ..45
Figure 24. avi dcm init port data structure chart ..46
Figure 25. dcm read modem data structure chart..47
Figure 26. dcm main loop structure chart ...49
Figure 27. process rfs msgs structure chart ..52
Figure 28. refresh time structure chart ...53
Figure 29. build msg structure chart...54
Figure 30. write rfs structure chart ...55
Figure 31. read rfs structure chart..56
Figure 32. RFS Message Acquisition State Machine...57
Figure 33. confirm msg structure chart...58
Figure 34. eom check structure chart ..59
Figure 35. confirm xlat structure chart ...59
Figure 36. nak rfs structure chart ...60
Figure 37. eval msg structure chart ..61
Figure 38. reset rfs structure chart ...62
Figure 39. Modem initialization state machine ..63
Figure 40. init modem structure chart...64
Figure 41. OpenPort structure chart...65
Figure 42. ConfigurePort structure chart ...66
Figure 43. handle config changes structure chart ...67
Figure 44. get config changes structure chart..68

Automated Vehicle Identification System Design Documentx

Figure 45. process config request structure chart ...69
Figure 46. disconnect cfg socket structure chart ...70
Figure 47. AVI DPF main structure chart ..73
Figure 48. avi dpf cfg structure chart ...75
Figure 49. avi dpf init log structure chart ...75
Figure 50. avi dpf init archive structure chart...76
Figure 51. init dpf sites structure chart ...77
Figure 52. hash init structure chart ..78
Figure 53. init dpf links structure chart ..79
Figure 54. read xref data structure chart ..80
Figure 55. insert TGLinkID node structure chart ..82
Figure 56. avi dpf init shm structure chart ..83
Figure 57. dpf main loop structure chart ..84
Figure 58. receive tag structure chart ...86
Figure 59. disconnect socket structure chart ...87
Figure 60. process tag structure chart ..88
Figure 61. add tag structure chart ..89
Figure 62. conv to unix time structure chart ...90
Figure 63. insert match structure chart...93
Figure 64. hash remove structure chart ..94
Figure 65. perform periodic updates structure chart...95
Figure 66. update averages structure chart...97
Figure 67. calc avg speed structure chart ...98
Figure 68. update link status structure chart...99
Figure 69. update speed data structure chart ..100
Figure 70. update archive averages structure chart ..101
Figure 71. archive speed data structure chart ...102
Figure 72. archive quantity data structure chart ...103
Figure 73. purge data structure chart ...104
Figure 74. hash purge structure chart...104
Figure 75. purge match structure chart...105
Figure 76. AVI DSIF main structure chart ...106
Figure 77. avi dsif cleanup structure chart ...108
Figure 78. send heartbeat pulse structure chart ..109
Figure 79. respond to read sockets structure chart ...112
Figure 80. disconnect receive socket structure chart ...113
Figure 81. process Data Server message structure chart...114
Figure 82. send write link message structure chart ...116
Figure 83. send ds return status structure chart..117
Figure 84. avi dsif send link write request structure chart...118
Figure 85. avi dsif is socket connected structure chart ..119
Figure 86. avi dsif connect structure chart..120
Figure 87. avi dsif read status structure chart...121
Figure 88. avi alloc site status structure chart ..122
Figure 89. send dcm command structure chart..123
Figure 90. load cfg data structure chart ...124
Figure 91. avi send heartbeat structure chart ...125
Figure 92. avi get avi data structure chart ..126
Figure 93. avi get link identifiers structure chart ..127

Automated Vehicle Identification System Design Documentxi

Figure 94. avi get site data structure chart ...128
Figure 95. avi read site data file structure chart ...128
Figure 96. avi file fopen file structure chart..130
Figure 97. avi file get num entries structure chart...131
Figure 98. avi create segment structure chart ...132
Figure 99. avi sock write structure chart...133
Figure 100. signal setup structure chart ...134
Figure 101. crc init structure chart ...135

 1

1. SCOPE
This System Design Document (SDD) is developed to provide the requirements and system design
for the Automated Vehicle Identification (AVI) Project of the Model Deployment Initiative (MDI).
This SDD is based on the Automated Vehicle Identification Model Deployment Initiative
Preliminary Design Document Version 1.0.

1.1 Identification
The AVI System consists of the AVI Data Processing System, the AVI Reader Field Site Systems,
and the AVI Tags. The AVI Reader Field Site Systems and the AVI Tags are being supplied by
Amtech Systems Corporation and are documented elsewhere. This document focuses on the AVI
Data Processing System, Version 1.0.

1.2 System Overview
The AVI System is one of several systems being developed for the MDI program. The system will
be an important source of real-time traffic data for other MDI systems as well as the TransGuide
Advanced Traffic Management System (ATMS) and the TransGuide Advanced Traveler
Information System (ATIS).

ATMS systems rely on real-time traffic data to detect incidents, monitor traffic flow, and inform
the public. Data is traditionally collected by placing sensors in the road to measure the point speed
of vehicles as they travel past the sensor. This point speed data is very useful in determining traffic
conditions and detecting incidents.

A more comprehensive measurement of traffic conditions is the travel time between two
instrumented points. The travel time data considers not only the speed at the endpoints of a link,
but also the conditions between the endpoints. The AVI System will provide travel time data which
can be used as a source of real-time traffic data in the TransGuide ATMS system, the TransGuide
ATIS system, and other MDI systems such as the In-Vehicle Navigation (IVN) system and
Traveler Information Kiosk system.

The AVI System involves the deployment of thousands of vehicle tags, referred to as AVI Tags,
the installation of multiple AVI Reader Field Site Systems, and the development of a computer
system, the AVI Data Processing System, to collect and process data to calculate travel times. An
overview of the system concept is presented in Figure 1.

 2

The figure shows several vehicles that have been equipped with AVI Tags. As the vehicles pass by
the AVI Reader Field Sites, the AVI Antennas recognize the tags and report the tag reads to the
AVI Data Processing System, located at the TransGuide Operations Center. The AVI Data
Processing System processes this data and reports travel times, travel speeds, and equipment status
to the MDI Data Server.

The AVI System is based on Electronic Toll Collection (ETC) technology that is used to automate
toll collection at toll facilities. These systems have been adapted in other cities to provide travel
time data. The MDI AVI System differs from existing ETC systems in that it does not rely on an
existing ETC infrastructure (i.e., existing readers and tags), and it instruments arterial roadways as
well as traditional freeways. Also, the MDI In-Vehicle Navigation System and Traveler
Information Kiosk System will use the information obtained from the MDI AVI System in unique
ways.

Section 1 of this SDD provides introductory information describing the purpose, operational
concept, and goals and objectives of the system. Section 2 defines the external interfaces of the
system. Section 3 lists the system requirements. Section 4 contains the system design. Finally,
Section 5 contains the requirements traceability matrix that will be used throughout the project.

1.3 Purpose of the System
The purpose of the AVI Data Processing System is to collect tag read data from AVI Reader Field
Sites, computes vehicle travel times and speeds along instrumented sections of roadway, and make
this data available to other systems within the TransGuide and MDI environment.

Figure 1. Automated Vehicle Identification System Concept Diagram

 3

1.4 Operational Concept
When vehicles equipped with AVI Tags pass by AVI Reader Field Sites, the readers contact the
AVI Data Processing System to report the tag read information. The AVI Data Processing System
receives the tag and determines if any other readers in the system have read the tag. If the AVI
Data Processing System determines that another reader has read the tag, it calculates the time that
it took the tag to travel between the two readers. From this value, it is able to derive the travel
speed of the vehicle.

The roadways that are instrumented by the AVI System are divided into links. The AVI Data
Processing System correlates tag matches into average travel times and travel speeds and assigns
these values to the appropriate links. This data is reported to the MDI Data Server System so that
it may be used by other systems.

The AVI Data Processing System maintains the status of each of the AVI Reader Field Sites as
well as its own status and reports this data to the MDI Data Server and to the TransGuide
operations staff.

1.5 Goals and Objectives
The AVI System has the following goals. The system should:

• provide real-time traffic condition information,
• provide data that can be used by traffic management personnel to manage traffic,
• provide data that can be used by the traveling public,
• be flexible to allow additional sensors in the future,
• provide easy system diagnosis and configuration, and
• process data in a timely manner to make the data available in a real-time fashion.

1.6 Referenced Documents
 Campbell, Joe. C Programmer’s Guide to Serial Communications, 2nd Edition. Sams Publishing,
1994.

 Department of Planning, City of San Antonio Metropolitan Planning Organization. Travel Rate
Study Technical Memorandum. 1995.

 Mitretek Systems. Review of ITS Benefits: Emerging Successes. Report FHWA-JPO-97-0001,
FHWA, U.S. Department of Transportation.

 Lomax, T., S. Turner, and G. Shunk. Quantifying Congestion: User’s Guide. Draft NCHRP,
TRB, NRC, 1996.

 Ogle, Jennifer, and Joseph Baumgartner. Considerations in the Development and Implementation
of a Travel Speed Database Integrating ATMS, AVI, GPS, and Theoretical Data. Paper No.
981104, Proceedings of the 77th Annual Transportation Research Board, January, 1998.

 Southwest Research Institute. Automated Vehicle Identification Model Deployment Initiative
Preliminary Design Document, Version 1.0. February, 1997.

 Southwest Research Institute. Data Server Model Deployment Initiative System Design
Document, Version 1.0. January, 1998.

 Southwest Research Institute. In Vehicle Navigation Model Deployment Initiative System Design
Document. January, 1998.

 4

 Southwest Research Institute. Proposal for the Model Deployment Initiative System Integration.
SwRI Proposal No. 10-20342, November, 1996.

 Texas Department of Transportation. Request for Offer (RFO) for the Model Deployment
Initiative System Integration, 60115-7-70030. Specification No. TxDOT 795-SAT-01, October,
1996.

 5

2. EXTERNAL INTERFACES
 The AVI Data Processing System has three external interfaces: the MDI Data Server, The AVI
Reader Field Sites, and the AVI Operator. Figure 2 shows the interfaces between the AVI Data
Processing System and the external systems. Each of these is discussed in more detail in the
following sections.

2.1 Model Deployment Initiative Data Server
 The MDI Data Server is a data repository of real-time travel data. The AVI Data Processing
System acts as a data generator to the Data Server, providing travel time, travel speed, and
equipment status data to the Data Server. The Data Server distributes the AVI data to data
consumer clients that use the data in a variety of ways.

2.2 Automated Vehicle Identification Operator
 The AVI Data Processing System interfaces with the TransGuide operations staff. The operations
staff oversee the operation of the AVI System by monitoring the travel time and travel speed data,
monitoring the status of the equipment in the system, and monitoring the status of the software
components of the system.

2.3 Automated Vehicle Identification Reader Field Site
 The AVI Data Processing System interfaces with the AVI Reader Field Sites by collecting data
from the readers. The readers detect AVI Tags and report the tag identifiers to the AVI Data
Processing System. The AVI Data Processing System sends commands to the AVI Reader Field
Sites.

 Figure 2. AVI Data Processing System External
Interfaces

 6

3. SYSTEM REQUIREMENTS
 The following sections contain the system requirements for the AVI Data Processing System. The
requirements are organized by level and category. The levels that are defined in this document are
general, system and subsystem. General requirements are non-technical requirements that apply to
the program in general. System requirements apply to the system level of the AVI Data Processing
System and subsystem requirements apply to the subsystem design elements.

 The categories of requirements that are defined are general, interface, functional, performance,
physical, and miscellaneous. If there are no requirements of a particular category at a particular
level, there is no reference to that category at that level. Each of these categories are described
below.

• General requirements describe a requirement that applies to the overall program (e.g.,
documentation).

• Interface requirements describe the interface between the system and external systems
(e.g., the user interface).

• Functional requirements describe the operations that the system must perform (e.g.,
initialize, acquire data).

• Performance requirements describe performance constraints of the system (e.g., CPU
utilization, minimum throughput).

• Physical characteristic requirements describe physical constraints of the system (e.g.,
maximum size, and minimum weight).

• Miscellaneous requirements describe other constraints of the system (e.g.,
maintainability).

 In addition to the categories described above, there are three types of requirements presented in
these sections: MDI RFO requirements, SwRI MDI proposal requirements, and derived
requirements. Where a conflict exists, the SwRI MDI Proposal requirements supersede the MDI
RFO requirements. In these cases, only the SwRI MDI Proposal requirements are documented.
Derived requirements are generated by analysis of the existing requirements.

 Several notations are used in the following tables. The requirement number is a three-part number
that is used to uniquely identify each requirement. The number consists of the following fields:

 <System Mnemonic>-<Requirement Category Mnemonic>-<Requirement Number>

 System Mnemonic

 The system mnemonic uniquely identifies the AVI Data Processing System to distinguish
its requirements from the requirements of the other MDI systems. The system mnemonic
for the AVI Data Processing System is AVI.

 Requirement Category Mnemonic

 A mnemonic has been created for each of the requirement categories. They are GN -
general, IF - interface, FN - functional, PF - performance, PY - physical, and MS -
miscellaneous.

 Requirement Number

 7

 The requirements are numbered sequentially within a given category. The requirements at
the system level each have a single requirement number. As requirements are derived at the
subsystem level, additional numbers are added to show the relationship between
requirements. For example, requirement AVI-IF-1 at the system level may have two
children and the subsystem level, AVI-IF-1.1 and AVI-IF-1.2. With this numbering scheme
it is easy to determine a requirement’s parent and the level of the requirement.

 Each of these requirements are further documented in Section 5 in the traceability matrix. For each
requirement, the matrix contains traceability information to show the relationship between the
requirement and other requirements, design elements, and the Acceptance Test Plan (ATP).

3.1 General Requirements
 This section contains the general requirements for the system. These requirements are non-technical
and involve such things as deliverable documentation. The general requirements for the AVI Data
Processing System are listed in Table 1.

 Table 1. General Requirements

 REQUIREMENT
 NUMBER

 REQUIREMENT RATIONAL

 AVI-GN-1 The program shall have its developmental
progress documented every four weeks.

 Required by TxDOT RFO and SwRI proposal.

 AVI-GN-2 The program shall have a final report prepared at
the end of the project.

 Required by SwRI proposal.

 AVI-GN-3 The program shall have its status reported in
interim reports, as necessary.

 Required by SwRI proposal.

 AVI-GN-4 The program shall have a Software Development
Plan.

 Required by SwRI proposal.

 AVI-GN-5 The program shall have a Software
Requirements Specification.

 Required by SwRI proposal.

 AVI-GN-6 The program shall have a Software Design
Document.

 Required by TxDOT RFO and SwRI proposal.

 AVI-GN-7 The program shall have a Software Acceptance
Test Plan.

 Required by TxDOT RFO and SwRI proposal.

 AVI-GN-8 The program shall have a Software User
Manual.

 Required by TxDOT RFO and SwRI proposal.

 AVI-GN-9 The program shall have a Software Version
Description Document.

 Required by SwRI proposal.

 AVI-GN-10 The program shall have training provided on
AVI Reader Field Sites.

 Required by TxDOT RFO and SwRI proposal.

 AVI-GN-11 The program shall have training provided on the
AVI Data Processing System.

 Required by TxDOT RFO and SwRI proposal.

 AVI-GN-12 The program shall have a Tag specification
developed.

 Required by TxDOT RFO and SwRI proposal.

3.2 System Level Requirements
 The following sections contain the system level requirements for the MDI AVI Data Processing
System.

3.2.1 Automated Vehicle Identification System Interface Requirements

 The interface requirements for the AVI Data Processing System are listed in Table 2.

 8

 Table 2. Automated Vehicle Identification System Interface Requirements

 REQUIREMENT
 NUMBER

 REQUIREMENT RATIONAL

 AVI-IF-1 The system shall interface to the MDI Data
Server.

 The MDI Data Server will be the repository for
travel data generated by the AVI Data
Processing System.

 AVI-IF-2 The system shall interface to the Reader Field
Site.

 The Reader Field Site will be the source of AVI
Tag read data for the AVI Data Processing
System.

 AVI-IF-3 The system shall interface with the user. The user will configure the system, monitor its
status, and monitor both AVI Tag read data and
travel speed and time data.

3.2.2 Automated Vehicle Identification System Functional Requirements

 The functional requirements for the AVI Data Processing System are listed in Table 3.

 Table 3. Automated Vehicle Identification System Functional Requirements

 REQUIREMENT
 NUMBER

 REQUIREMENT RATIONAL

 AVI-FN-1 The AVI Data Processing System shall gather
AVI Tag read data from Reader Field Sites.

 The AVI Tag read data must be acquired to
calculate travel speed and time.

 AVI-FN-2 The AVI Data Processing System shall process
AVI Tag read data.

 The AVI Data Processing System will use
(process) the AVI Tag read data to generate the
travel speed and time.

 AVI-FN-3 The AVI Data Processing System shall process
status data.

 The AVI Data Processing System will gather
process data internally to control itself as well as
reporting its status to the user.

 AVI-FN-4 The AVI Data Processing System shall allow for
configuration of system components.

 The AVI Data Processing System will be able to
be easily reconfigurable. This includes remote
reconfiguration of field sites.

 AVI-FN-5 The AVI Data Processing System shall handle
errors.

 The AVI Data Processing System will be able to
detect, report, and recover (in some cases) from
error conditions.

3.2.3 Automated Vehicle Identification System Physical Characteristic Requirements

 The physical characteristic requirements for the AVI Data Processing System are listed in Table 4.

 Table 4. Automated Vehicle Identification System Physical Characteristic Requirements

 REQUIREMENT
 NUMBER

 REQUIREMENT RATIONAL

 AVI-PY-1 The AVI Data Processing System shall have a
dedicated master computer.

 A dedicated computer is required to assure
adequate computer system response.

 AVI-PY-2 The AVI Data Processing System shall have a
modem pool.

 A modem pool is required to simulate leased
line performance.

3.2.4 Automated Vehicle Identification System Miscellaneous Requirements

 The miscellaneous requirements for the AVI Data Processing System are listed in Table 5.

 Table 5. Automated Vehicle Identification System Miscellaneous Requirements

 REQUIREMENT REQUIREMENT RATIONAL

 9

 NUMBER
 AVI-MS-1 The AVI Data Processing System shall have

software designed using either structured or
object-oriented methodologies.

 A good design approach is desirable.

 AVI-MS-2 The AVI Data Processing System shall have
software written in C or C++.

 This is necessary to be compatible with the
target platform and existing TxDOT computer
tools.

 AVI-MS-3 The AVI Data Processing System shall have
software tested at the unit and system integration
levels, as appropriate.

 These levels of testing are necessary to enhance
confidence in the software produced.

3.3 Subsystem Level Requirements

 The subsystem level requirements for the AVI Data Processing System are described in the
following sections. The AVI subsystems include the AVI Master Computer System, the AVI
Modem Server System, and the AVI Data Processing Software.

3.3.1 AVI Master Computer System Requirements

 The following sections contain the requirements for the AVI Master Computer System.

3.3.1.1 AVI Master Computer System Interface Requirements

 The interface requirements for the AVI Master Computer System are listed in Table 6.

 Table 6. AVI Master Computer System Interface Requirements

 REQUIREMENT
 NUMBER

 REQUIREMENT RATIONAL

 AVI-IF-1.1 The AVI Master Computer System shall
interface with the MDI Data Server.

 The MDI Data Server will be the repository for
travel data generated by the AVI Data
Processing System.

3.3.1.2 AVI Master Computer System Physical Characteristic Requirements

 The physical characteristic requirements for the AVI Master Computer System are listed in Table
7.

 Table 7. AVI Master Computer System Physical Characteristic Requirements

 REQUIREMENT
 NUMBER

 REQUIREMENT RATIONAL

 AVI-PY-1.1 The AVI MC shall be a Sun Microsystems Ultra
SPARCStation or better

 A computer of this capability can meet the
expected processing requirements of the AVI
MC.

 AVI-PY-1.2 The AVI MC shall have, at a minimum, the
following items:
• 167mhz SPARC CPU
• 4.2 GB Hard Disk
• 128 MB RAM
• Floppy Disk Drive
• Sun CD-ROM drive
• Turbo GX+ Graphics card

 Required by TxDOT RFO and SwRI proposal.

 10

• 20” Sun color monitor
• 2 Ethernet cards
• 2 SCSI channels
• 2 RS-232 ports
• Keyboard
• 2-Button mouse
• 64 serial ports (SCSI attached)
• 1 modem/phone line

3.3.2 AVI Modem Server System Requirements

 The requirements for the AVI Modem Server System are listed in the following sections.

3.3.2.1 AVI Modem Server System Interface Requirements

 The interface requirements for the AVI Modem Server System are listed in Table 8.

 Table 8. AVI Modem Server System Interface Requirements

 REQUIREMENT
 NUMBER

 REQUIREMENT RATIONAL

 AVI-IF-2.1 The AVI Modem Server System shall interface
with the AVI Reader Field Sites.

 The AVI Reader Field Site will be the source of
AVI Tag read data for the AVI Data Processing
System.

3.3.3 AVI Data Processing Software Requirements

 The requirements for the AVI Data Processing Software are listed in the following sections.

3.3.3.1 AVI Data Processing Software Interface Requirements

 The interface requirements for the AVI Data Processing Software are listed in Table 9.

 Table 9. AVI Data Processing Software Interface Requirements

 REQUIREMENT
 NUMBER

 REQUIREMENT RATIONAL

 AVI-IF-1.2 The AVI Data Processing Software shall
interface with the MDI Data Server.

 The MDI Data Server will be the repository for
travel data generated by the AVI Data
Processing Software.

 AVI-IF-2.2 The AVI Data Processing Software shall
interface with the AVI Reader Field Sites.

 The Reader Field Sites will be the source of AVI
Tag read data for the AVI Data Processing
Software.

 AVI-IF-3.1 The AVI Data Processing Software shall
interface with the user.

 The user will configure the system, monitor its
status, and monitor both AVI Tag read data and
travel speed and time data.

3.3.3.2 AVI Data Processing Software Functional Requirements

 The functional requirements for the AVI Data Processing Software are listed in Table 10.

 11

 Table 10. AVI Data Processing Software Functional Requirements

 REQUIREMENT
 NUMBER

 REQUIREMENT RATIONAL

 AVI-FN-1.1 The AVI Data Processing Software shall gather
AVI Tag read data from the AVI Reader Field
Site.

 The AVI Tag read data must be acquired to
calculate travel speed and time.

 AVI-FN-2.1 The AVI Data Processing Software shall store
the AVI Tag read data collected from the Reader
Field Sites .

 The AVI Tag read data must be archived.

 AVI-FN-2.2 The AVI Data Processing Software shall provide
travel time and speed data to the MDI Data
Server.

 The MDI Data Server will be the repository for
AVI Tag read data.

 AVI-FN-2.3 The AVI Data Processing Software shall process
tag read data gathered from the Reader Field
Sites.

 The AVI Data Processing Software will use
(process) AVI Tag read data to generate the
travel speed and time.

 AVI-FN-3.1 The AVI Data Processing Software shall
determine AVI Reader Field Site status.

 The AVI Data Processing Software will gather
external status data to control itself and to report
to the user.

 AVI-FN-3.2 The AVI Data Processing Software shall monitor
its own status.

 The AVI Data Processing Software will gather
internal status data to control itself and to report
to the user.

 AVI-FN-4.1 The AVI Data Processing Software shall accept
configuration data.

 The AVI Data Processing Software will get new
configuration information from the user.

 AVI-FN-4.2 The AVI Data Processing Software shall store
configuration data.

 The AVI Data Processing Software will maintain
its configuration information.

 AVI-FN-4.3 The AVI Data Processing Software shall perform
configuration operations.

 The AVI Data Processing Software will be able
to apply its configuration information.

 AVI-FN-5.1 The AVI Data Processing Software shall detect
communications errors between itself and the
AVI Reader Field Site.

 The AVI Data Processing Software will be able
to detect some communications errors.

 AVI-FN-5.2 The AVI Data Processing Software shall log
communications errors between itself and the
AVI Reader Field Site.

 The AVI Data Processing Software will record
detectable communications errors.

 AVI-FN-5.3 The AVI Data Processing Software shall report
communications errors between itself and the
AVI Reader Field Site.

 The AVI Data Processing Software will report
detectable communications errors.

 12

4. SYSTEM DESIGN
 The system design is presented in two forms: system architecture and software design. The system
architecture defines the framework of the major hardware and software components of the AVI
System and the methods used to communicate between the components. The software design
focuses on the software components of the AVI System using data flow analysis and structure
charts. More attention is paid to the software components of the AVI System because the software
components have been custom-developed. Less attention is paid to the hardware components,
which are off-the-shelf systems.

 Because Amtech Systems Corporation has supplied the AVI Reader Field Sites and AVI Tags
under a separate contract, this document discusses these systems only briefly. The primary focus of
this document is the AVI Data Processing System.

4.1 System Architecture
 Two views of the AVI System
architecture are presented: the
hardware architecture and the
software architecture. Both views
utilize block diagrams to illustrate the
components of the architecture and
the methods of communication
between the components.

4.1.1 Hardware Architecture

 The hardware architecture of the AVI
System is presented in Figure 3. This
figure shows the three main
components of the AVI System: the
AVI Data Processing System, the
AVI Reader Field Site Systems, and
the AVI Tags. The AVI Reader Field
Sites and AVI Tags are being
supplied by Amtech Systems
Corporation and are discussed only
briefly in this document.

 The AVI Data Processing System is connected to the Data Server Master Computer via Ethernet.
This Ethernet connection is the TransGuide Ethernet network. Though not shown, the TransGuide
Ethernet network consists of a collection of cables, routers, and bridges that serve many computer
systems, including the AVI Master Computer and the Data Server Master Computer.

 The AVI Data Processing System is connected to the AVI Reader Field Sites via plain old
telephone system (POTS) lines. There are two POTS lines installed for each AVI Reader Field Site
– one for the AVI Master Computer and one for the AVI Reader Field Site. The AVI Reader Field
Sites and the AVI Data Processing System are both designed to maintain a constant connection,
thus ensuring the most timely data collection possible. It is the responsibility of the AVI Reader
Field Sites to initiate and maintain communication with the AVI Data Processing System.

 Figure 3. Automated Vehicle Identification System
Block Diagram

 13

 The AVI Reader Field Sites communicate with the AVI Tags via a RF signal that is emitted by the
AVI Reader Field Site. This signal excites the transponder of a passing AVI Tag, causing the tag
to emit a RF signal. The AVI Reader Field Site reads the signal emitted by the AVI Tag, which
contains the unique AVI Tag identifier.

 The three major components of the AVI System are discussed in more detail in the following
sections.

4.1.1.1 AVI Data Processing System

 Figure 3 shows the three major components of the AVI Data Processing System, which consists of
the AVI Master Computer, the AVI Modem Server, and several PCMCIA modems. Drawing
8684-5003, which is included in the In Vehicle Navigation System Design Document, contains
detailed drawings of the physical characteristics of these systems and wiring diagrams illustrating
the physical installation of the system.

 The AVI Master Computer communicates with the AVI Modem Server via a SCSI interface. A
special vendor-supplied software driver executes on the AVI Master Computer to allow the master
computer to access the AVI Modem Pool serial ports through the SCSI interface. This vendor-
supplied software driver creates one logical serial port for each of the available modem slots in the
AVI Modem Server.

 The AVI Modem Server contains slots for PCMCIA modems. These modems contain connection
points where POTS telephone lines can be attached. The number of PCMCIA modems installed in
the AVI Modem Server is equal to the number of telephone lines installed for communicating with
the AVI Reader Field Sites.

 The AVI System telephone lines are installed in a hunt configuration. Each of the AVI Reader
Field Sites uses the same base telephone number to access the AVI Data Processing System. The
telephone service provider assigns incoming calls to the next available line in the system.
Therefore, the POTS line to which the call is assigned determines which modem and serial port will
service an incoming call.

4.1.1.2 AVI Reader Field Site System

 The AVI Reader Field Site Systems are being supplied by Amtech Systems Corporation and are
discussed only briefly in this document. The reader field sites consist of a number of components
including an automatic data processor (ADP), reader modules, RF modules, antennas, a cabinet,
and a modem. A block diagram of the AVI Reader Field Site System is shown in Figure 4 and the
components of the system are described below.

 14

 The ADP is the central processing unit of
the AVI Reader Field Site System. It
initializes the system, controls the reader
modules, and communicates via the modem
with the AVI Data Processing System. The
ADP can contain up to four Reader
Modules.

 The Reader Modules are connected via
specialized cable to the RF Modules and can
accommodate up to two RF Modules. The
Reader Module controls the RF Module and
receives the data that is read by the module
in response to the RF Module signal.

 The field modem is connected to a POTS
line and is controlled by the ADP unit,
which initiates communication with the AVI
Data Processing System. The ADP is
programmed to dial the AVI Data
Processing System base telephone number to
initiate communication. The modem
communication can be configured in one of
two ways. The default configuration, shown
in the figure in black, is to connect the ADP
directly to the field modem. The second
configuration, shown in the figure in gray, is
to connect the ADP to a wireless modem,
which communicates with another wireless
modem to pass the information along to the
field modem. This configuration is used in

locations where telephone service cannot be supplied directly to the ADP cabinet.

4.1.1.3 AVI Tags

 The AVI Tags are being supplied by Amtech Systems Corporation and are discussed only briefly
in this document. The AVI Tags are passive read-only tags that are used in Electronic Toll
Collection (ETC) systems. These tags contain a transponder, which emits a RF signal containing a
tag identifier whenever the Reader Module energizes the transponder. This tag identifier uniquely
identifies the tag.

4.1.2 Software Architecture

 The software architecture is presented in Figure 5 and shows the major software components of the
AVI System and the method of communication between them. This diagram corresponds very
closely to the hardware architecture diagram presented in Section 4.1.1. The software architecture
shows two main components: the AVI Data Processing Software and the AVI Reader Field Site
Software. Each of the AVI Data Processing System components shown in the diagram represents a
UNIX process.

 Figure 4. AVI Reader Field Site System Block
Diagram

 15

 The AVI Data Processing Software communicates with the Data Server at the network layer using
the TCP/IP protocol. This protocol provides a standardized mechanism for two software
applications running on two different host computers to communicate with each other. At the
application layer, the two applications communicate using a proprietary protocol defined by the
Data Server itself. This protocol is documented in the Model Deployment Initiative Data Server
System Design.

 The AVI Data Processing Software communicates with the AVI Reader Field Site Software at the
network layer using RS-232. This protocol is a standard protocol for serial devices. At the
application layer, the applications communicate using a proprietary protocol defined by Amtech
Systems Corporation. This protocol defines the data messages and the sequencing of the messages
between the reader and the host software.

 Within the AVI Data Processing Software there are several components. These components
communicate using one of two methods: TCP/IP or shared memory. The decision to use one

 Figure 5. Automated Vehicle Identification Software Block Diagram

 16

method over the other is based primarily on ease of implementation and the potential for software
components to be distributed to other host systems in the future.

 The Subsystem Master Process communicates with the Process Status GUI and the Subsystem
Heartbeat Process using shared memory. The shared memory is created by the Subsystem Master
Process and accessed by the Process Status GUI and the Subsystem Heartbeat Process.

 The Data Collection and Monitoring process communicates with the Data Processing and Filtering
process and the Data Server Interface process at the network layer using TCP/IP. In both cases,
the Data Collection and Monitoring process acts as the client. The application layer protocol
between each of the processes is a proprietary protocol that is shared by these processes. The Data
Collection and Monitoring process also communicates with the Detailed Status GUI via shared
memory. The shared memory is created by the Data Collection and Monitoring process and
accessed by the Detailed Status GUI.

 The Data Processing and Filtering process communicates with the Detailed Status GUI via shared
memory. The Data Processing and Filtering process creates the shared memory, which is accessed
by the Detailed Status GUI.

 Each of the AVI Data Processing Software processes communicates with the Subsystem Heartbeat
Process and the Status Logger process at the network layer using TCP/IP. The application layer
protocol for communicating with each of these processes is defined by the process itself. These
protocols are defined in the documentation for the Subsystem Heartbeat Process and the Status
Logger Process.

4.2 System Level Design
 The system level design focuses on the AVI Data Processing Software. Three views of the software
design are presented: the data model, data flow model, and structure charts. The data model
discusses some of the more important data structures that are used by the AVI Data Processing
System. The data flow model describes the data that flows through the system and the logical
processes that transform the data as it flows from input to output. The structure charts provide a
physical road map of the software source code, describing the functions that compose the software.

4.2.1 Data Model

The AVI Data Processing Software uses several data tables to perform its functionality. These
include the site table, the link table, and the site-link cross-reference table. This section describes
the methodology used to create these tables and provides a definition of the format of each table.

4.2.1.1 Site Table

The site table contains a record for each site in the AVI System. In order to collect the data to
populate this table, the site locations were determined and a site naming convention was
established. Detailed information about this process is presented in the following sections and in
the paper Considerations in the Development and Implementation of a Travel Speed Database
Integrating ATMS, AVI, GPS, and Theoretical Data by Jennifer Ogle and Joseph Baumgartner.

4.2.1.1.1 AVI Site Selection

Sites were selected by consulting several information sources including: Quantifying Congestion
User’s Guide produced by the Texas Transportation Institute, Travel Rate Study Technical
Memorandum produced by the San Antonio Metropolitan Planning Organization, and Review of
ITS Benefits: Emerging Successes produced by Mitretek Systems.

 17

The Mitretek report indicated that the majority of AVI System benefits could be obtained by
locating sites in the most congested locations in an urban area. Specifically, this report concluded
that reporting travel times for the most congested links provides 90% of the system benefit at a
lower cost. The Travel Rate Study Technical Report was used as an initial guideline for the
determination of San Antonio's most congested roadways.

After earmarking the sites mentioned in the Travel Rate Study Technical Memorandum, traffic
volumes from the TxDOT 1995 District Highway Traffic Map of the San Antonio area were
correlated with the proposed AVI site locations. These traffic volumes were representative of the
annual average daily traffic (AADT) volume for a 24-hour period. In order to determine the peak
hour traffic volume, peak hour percentages of AADT were taken from the TxDOT 1995
Permanent Automatic Traffic Recorder Stations Data and applied to the daily volumes. The
determination of relative congestion was based on the ratio of peak hour traffic volume of the
roadway versus capacity of the roadway. Capacity was estimated for each AVI site using
information on the total number of lanes in the roadway, and the occurrence of traffic signals, if
any. As the peak hour volume approaches hourly capacity, the volume to capacity ratio (V/C)
approaches one, signifying increasing congestion. The resultant V/C ratios represent a macroscopic
view showing relative estimates of congestion in the San Antonio area.

Although V/C ratios were the primary factor in placing the AVI sites, other factors were
considered. To maximize the ability of the TransGuide system to collect data, the AVI sites were
not placed in areas that were served by the TransGuide ATMS. Also, consideration was given to
place sites in all parts of the city. Site cost, which was influenced by the availability of existing
infrastructure (e.g., mechanical structure, telephone service, and electrical service), was also
considered.

Lastly, the Quantifying Congestion User’s Guide was used to determine the appropriate linear
spacing of the sites. Table 11 shows the spacing guidelines there were applied based on road
classification (i.e., expressway/arterial) and volume (i.e., high/low access).

 Table 11. AVI Site Spacing Guidelines

EXPRESSWAYS ARTERIALS
HIGH ACCESS 1 - 3 miles 1 - 2 miles
LOW ACCESS 3 - 5 miles 2 - 3 miles

4.2.1.1.2 Site Naming Convention

Each AVI Reader Field Site has two identifiers. The Amtech identifier is a unique identifier
assigned by Amtech Systems Corporation at the time of installation. This identifier is stored
electronically in the reader and is used to uniquely identify the reader when it connects to the AVI
Data Processing System.

The second identifier is the TransGuide AVI Site Identifier which is a unique identifier that names
the site and allows the TransGuide operations staff to determine the location of a site based on its
name. The TransGuide identifier is created using a standard methodology based on the location and
type of reader installation.

The format of the TransGuide AVI Site Identifier closely resembles the format of the TransGuide
Link Identifiers. It is a 19-character string broken into fields with the format RDAAAAA-BBBBB-
CCCCC, which is described in Table 12.

 18

Table 12. TransGuide AVI Site Identifier Fields

FIELD NAME WIDTH VALUES DESCRIPTION
R Identifier Type 1 R Specifies the type of identifier so that it

is clear that this identifier is for an AVI
reader site.

D Direction 1 B, N, S, E, W Specifies the direction that the reader
serves. “B” is used for bi-directional.

AAAAA Road Name 5 Alphanumeric Identifies the name of the road that the
reader serves.

- Separator 1 - Field separator.
BBBBB Cross Street 5 Alphanumeric Identifies the name of the closest major

cross street.
- Separator 1 - Field separator.

CCCCC Support Structure 5 OSB__
WIRE_
SPOLE
BRIDG

Indicates the type of structure on which
the reader antennas are mounted. Can
be an overhead sign bridge (OSB), span
wire, service pole, or traffic bridge.

4.2.1.1.3 Site Table Definition

The site table contains a record for each AVI Reader Field Site. Each record consists of the
TransGuide AVI Site Identifier and the associated Amtech reader identifier.

4.2.1.2 Link Table

The link table contains a record for each link in the AVI System. In order to collect the data to
populate this table, the roadways were divided into a network of links and a naming convention for
the links was established. Detailed information about this process is presented in the following
sections and in the paper Considerations in the Development and Implementation of a Travel
Speed Database Integrating ATMS, AVI, GPS, and Theoretical Data by Jennifer Ogle and Joseph
Baumgartner.

4.2.1.2.1 AVI Link Selection

The most logical way to define the links is to use the AVI Reader Field Sites as endpoints for the
links. In the simplest case, a single link is sufficient to define the roadway between two reader sites.
This case occurs when a reader has a single adjacent reader to which a vehicle can travel. This case
is illustrated in Figure 6.

A more complicated case arises when there are
multiple readers to which a vehicle can travel
after leaving a reader, and the paths between
the two readers share a common path for a
portion of the distance. Figure 7 illustrates this
case. A vehicle leaving Site A can travel to

either Site B or Site C. Regardless to which reader the vehicle travels, there is a section of roadway
that is common to both paths. To resolve this situation, a virtual node is created where the two
paths diverge and three links are created.

Figure 6. Simple AVI Link Definition

 19

4.2.1.2.2 Link Naming Convention

The TransGuide AVI Link Identifier is a unique identifier that names a link and allows the
TransGuide operations staff to determine the location of a link based on its name. The identifier is
created using a standard methodology based on the location of the link.

The format of the TransGuide AVI Link is a 19-character string broken into fields with the format
IDAAAAA-BBBBB-CCCCC, which is described in Table 13.

Table 13. AVI Link Identifier Fields

FIELD NAME WIDTH VALUES DESCRIPTION
I Identifier Type 1 I Specifies the type of identifier so that it

is clear that this identifier is for an AVI
link.

D Direction 1 N, S, E, W Specifies the direction of travel along
the link.

AAAAA Road Name 5 Alphanumeric Identifies the name of the road that the
link follows.

- Separator 1 - Field separator.
BBBBB North or East Cross

Street
5 Alphanumeric Identifies the northern or eastern

(depending on the Direction) cross
street.

- Separator 1 - Field separator.
CCCCC South or West

Cross Street
5 Alphanumeric Indicates the southern or western

(depending on the Direction) cross
street.

4.2.1.2.3 Link Table Definition

The link table contains an entry for each TransGuide AVI Link Identifier. No other data is
contained in the table.

Figure 7. Complex AVI Link Definition

 20

4.2.1.3 Site-Link Table

In order to calculate travel times from tag reads, the AVI Data Processing software must know the
relationship between AVI Reader Field Sites and TransGuide AVI Link Identifiers. The software
must also know the length of each of the links so that the travel speed can be computed. The site-
link table provides this data.

The AVI Reader Field Sites are organized as a set of source-destination pairs. One or more link
identifiers connect each source-destination pair. The site-link table contains one record for each
source-destination pair in the AVI System.

A record in the site-link table has the following fields:

<source site id> <destination site id><threshold> < <link id> <length> <nominal value> >*

The asterisk indicates that these fields are repeated as necessary. The fields of the site-link record
are described in Table 14.

Table 14. Site-Link Record Definition

FIELD VALUES DESCRIPTION
source site id A valid TransGuide AVI Site

Identifier
The source site in a source-destination pair.

destination site id A valid TransGuide AVI Site
Identifier

The destination site in a source-destination
pair.

threshold (0.0 - 1.0) A value indicating the threshold that should be
used for filtering.

link id A valid TransGuide AVI Link
Identifier

A link identifier that is part of the path
connecting the source site with the destination
site.

length Numeric The length of the link.
nominal value Numeric The nominal speed of the link.

4.2.2 Data Flow Design

The data flow design is presented in a series of data flow diagrams. These diagrams use several
symbols to represent data flows, data stores, and logical processes that manipulate the data. A
legend is presented in Figure 8 and a description of each of the symbols is presented in Table 15.

 21

Table 15. Data Flow Diagram Legend

 SYMBOL DESCRIPTION
 Control Flow A flow that passes control data from one process to another.
 Data Flow Data element that is passed from one process to another. The flows can

represent single data items or collections of data.
 Data Store Storage mechanism for data (e.g., disk file, shared memory segment).
 Demultiplexor Symbol used to split an aggregate data flow into its individual data flows.
 External Entity An external process that provides or receives data from the system.
 Logical Process An entity that transforms data. In most cases this corresponds to a UNIX

process, but it can also represent the logical transformation of data within
a UNIX process.

 Multiplexor Symbol used to combine several data flows into an aggregate data flow.
 Periodic Data Flow A data flow that occurs on a periodic basis (e.g., once a minute).

The data flow design begins at the highest level with the context diagram and is decomposed
hierarchically to reveal increasing levels of detail. The design is presented in depth-first order,
meaning that a process will be expanded to its lowest level before the next process is discussed.

 The context diagram for the AVI Data Processing Software is presented in Figure 9. The figure
shows the AVI Data Processing Software process in the center, surrounded by each of the external
entities that the system interfaces with. The Subsystem Process Control, Subsystem Heartbeat
Management, Subsystem Status Logger, and Process Status GUI are shown as external entities
because they are documented elsewhere. In reality, these processes are an integral part of the AVI
Data Processing Software.

External
Entity

1
Logical
Process

Data Store

Data Flow

Control Flow

Periodic Data
Flow

DemultiplexorMultiplexor

Figure 8. Data Flow Diagram Legend

 22

The external entities and data flows of the AVI Data Processing Software context diagram are
described in Table 16 and Table 17.

Table 16. AVI Data Processing Software Context Diagram External Entities

ITEM DESCRIPTION
AVI Operator The AVI Operator represents the operations and system

administration personnel assigned to the AVI System. These are
end-users of the AVI Data Processing Software and will interact
with the system via graphical user interfaces associated with the
detailed status GUI.

AVI Reader Field Sites The AVI Reader Field Sites are the AVI readers which are located
in the field. The readers represent several pieces of equipment
including a modem, a data processing computer, an RF module, and
one or more antennas.

0

AVI
Data
Processing
Software

AVI
Operator

MDI
Data
Server

AVI
Reader
Field
Sites

Process
Status
GUI

Subsystem
Process
Control

Subsystem
Heartbeat
Management

Subsystem
Status
Logger

Subsystem
HeartbeatProcess

Heartbeat

GUIs

Link Data

Display Detailed
Status

Equipment
Status Data

Status Log
Message

Start Process

Most Severe
Process Status

Stop Process

User Commands

Reader Data
Message

Reader Command
Message

Figure 9. AVI Data Processing Software Context Diagram

 23

ITEM DESCRIPTION
MDI Data Server The MDI Data Server is the central repository of information

generated and maintained by the MDI subsystems. The AVI Data
Processing Software sends link data and equipment status data to
the Data Server. The Data Server also receives the subsystem-level
heartbeat which includes the overall status of the AVI Data
Processing Software.

Process Status GUI The Process Status GUI is the graphical user interface providing
the visual description of each of the processes within the subsystem.
The user has the ability to stop and start processes as configured by
the status GUI. The user can also invoke the detailed status GUI of
the subsystem from the Process Status GUI. The detailed status
GUI can provide information about field equipment associated with
the subsystem or other information of importance.

Subsystem Heartbeat
Management

Subsystem Heartbeat Management receives all the process-level
heartbeat messages and maintains the current status information for
the subsystem. The most severe process-level status is sent
periodically to the Data Server through the subsystem's Data Server
Interface.

Subsystem Process Control Subsystem Process Control is responsible for starting and
automatically restarting the processes associated with the AVI Data
Processing Software.

Subsystem Status Logger Subsystem Status Logger is the process responsible for logging
status information to a log file. A log file for each day of the week
is maintained. These log files are kept only for the current week.

Table 17. AVI Data Processing Software Context Diagram Data Flows

ITEM DESCRIPTION
Equipment Status Data Equipment Status Data are the status of the AVI Reader Field

Sites.
GUIs GUIs are graphical user interfaces. These interfaces are used to

communicate information from the subsystem to the user and to
allow the user to control certain aspects of the execution of the
subsystem.

Link Data Link Data are data about the AVI Links. The data includes the
travel time, speed, and status of each link.

Most Severe Process Status Most Severe Process Status is the value of the process status being
managed by the Subsystem Heartbeat Management that represents
the worst status of all the processes. For example if all processes
indicated an ok status except one process indicated a warning
status then the Most Severe Process Status would be warning.

Process Heartbeat Process Heartbeat is the heartbeat pulse sent from each process
within the subsystem. The Process Heartbeat contains the status
information for the process along with the process identifier.

 24

ITEM DESCRIPTION
Reader Data Message Reader Data Messages are data sent from the reader. These

messages follow the proprietary protocol and format of the AVI
Reader and include tag read messages as well as acknowledgement
messages.

Status Log Message Status Log Message contains information to be logged to the
subsystem log file. Typical Status Log Messages include error
messages such as memory allocation errors or data being logged
from field equipment associated with the subsystem.

Subsystem Heartbeat Subsystem Heartbeat is the heartbeat message containing the
overall status of the AVI Data Processing subsystem. This
message is generated by the Subsystem Heartbeat Management
process and is passed on to the Data Server by the subsystem's
Data Server Interface process.

4.2.2.1 AVI Data Processing Software

 The AVI Data Processing Software data flow diagram is presented in Figure 10. This figure shows
the major processes of the AVI Data Processing Software. The input and output data flows that are
shown on the context diagram have been carried down to this level. The processes are described in
Table 18 and the data flows are described in Table 19.

 25

Table 18. AVI Data Processing Software Data Processes

ITEM DESCRIPTION
Dispatch Data Server Messages Dispatch Data Server Messages receives messages to be sent

to the Data Server and sends these messages on to the Data
Server. This process represents the subsystem's single
interface point to the Data Server. This process periodically
sends a heartbeat message indicating the status of the process.

Monitor Reader Field Sites The Monitor Reader Field Sites process communicates with
the AVI Readers. It collects data from the readers and
forwards it to the appropriate processes and data stores. It
also sends command messages to the AVI Readers.

Process and Filter Tag Reads The Process and Filter Tag Reads process is responsible for
collecting the raw tag read data, locating tag matches between
source and destination AVI Reader Field Sites, and updating
the AVI Link Data. The process also updates a shared
repository of tag read data that is used to display tag reads to
the user. A heartbeat is sent periodically indicating the status
of the process.

2

Dispatch
Data
Server
Messages

1

Monitor
Reader
Field
Sites

Tag Read Data

3
Process
and
Filter
Tag
Reads

4

Show
Detailed
Status

Site Status Data

Subsystem
Heartbeat

Stop Process
Start Process

Start Process

Stop Process

Start Process
Stop Process

Status Log
Message

Status Log
Message

Status Log
Message

Most Severe
Status

Reader Data
Message

Reader Command

Process
Heartbeat

Process
Heartbeat

Process
Heartbeat

Equipment
Status Data

Link Data

Equipment
Status Data

GUIs

Display Detailed
Status

User Commands

Site Status
Data

Site Status
Data

Tag Read
Message

Link Data

Tag Read

Tag Read

Reader Command
Message

Figure 10. AVI Data Processing Software Data Flow Diagram

 26

ITEM DESCRIPTION
Show Detailed Status Show Detailed Status is the graphical user interface providing

the TransGuide personnel with the ability to view the current
status and data for the AVI Reader Field Sites and to send
commands to the readers.

Table 19. AVI Data Processing Software Data Flows

ITEM DESCRIPTION
Equipment Status Data Equipment Status Data are the status of the AVI Reader Field Sites.
GUIs GUIs are graphical user interfaces. These interfaces are used to

communicate information from the subsystem to the user and to allow
the user to control certain aspects of the execution of the subsystem.

Link Data Link Data are data about the AVI Links. The data includes the travel
time, speed, and status of each link.

Most Severe Status Most Severe Status is the value of the process status being managed by
the Subsystem Heartbeat Management that represents the worst status
of all the processes. For example if all processes indicated an ok status
except one process indicated a warning status then the Most Severe
Status would be warning.

Process Heartbeat Process Heartbeat is the heartbeat pulse sent from each process within
the subsystem. The Process Heartbeat contains the status information
for the process along with the process identifier.

Reader Data Message Reader Data Messages are data sent from the reader. These messages
follow the proprietary protocol and format of the AVI Reader and
include tag read messages as well as acknowledgement messages.

Site Status Data Data indicating the current status of reader field sites.
Status Log Message Status Log Message contains information to be logged to the subsystem

log file. Typical Status Log Messages include error messages such as
memory allocation errors or data being logged from field equipment
associated with the subsystem.

Subsystem Heartbeat Subsystem Heartbeat is the heartbeat message containing the overall
status of the AVI Data Processing subsystem. This message is
generated by the Subsystem Heartbeat Management process and is
passed on to the Data Server by the subsystem's Data Server Interface
process.

Tag Read Tag Reads are the internal representation of the tag read data sent by
the AVI Reader. The data contains the time the tag was read and the tag
identifier.

Tag Read Message Tag Read Messages are tag reads that are sent by the AVI Reader. The
messages follow the proprietary format and protocol of the AVI Reader
and contain the time the tag was read, the AVI Reader Field Site
number, and the tag identifier.

 27

4.2.2.2 Monitor Reader Field Sites

The Monitor Reader Field Sites process communicates and controls the AVI Reader Field Sites.
Figure 11 shows the data flow diagram for this process.

The processes shown in the data flow diagram are logical processes and are described in more
detail in Table 20. The data flows are described in Table 21.

Table 20. Monitor Reader Field Sites Data Processes

ITEM DESCRIPTION
Dispatch Reader Commands Dispatch Reader Commands receives commands that are to be

sent to the readers and updates the site table to indicate that a
command should be issued to a reader.

Dispatch Reader Data The Dispatch Reader Data process communicates with the
readers. It receives messages from the readers and sends
commands to the readers. The process implements the protocol
defined by the Amtech reader.

Generate Process Heartbeat Generate Process Heartbeat periodically sends the Process
Heartbeat to the Subsystem Heartbeat Management process. The
Heartbeat Interval determines how frequently the heartbeat is
sent.

1.3

Generate
Process
Heartbeat

1.1

Dispatch
Reader
Data

1.4

Dispatch
Reader
Commands

Site Table

AVI Configuration

Reader Command

Reader Command
Message

Status Log
Message

Status Log
Message

Reader Data
Message

Heartbeat
Interval

Enable Status

Process
Heartbeat

Equipment
Status Data

Status Log
Message

Tag Read
Message

Site Status
Data

Process Status

Process Status

Reset Status

Reset Status Enable Status

Acknowledgement
Message

Tag Read
Message Acknowledgement

Command Message

Clock Set
Command Message

Reset Command
Message

Enable Command

Reset Command

Figure 11. Monitor Reader Field Sites Data Flow Diagram

 28

Table 21. Monitor Reader Field Sites Data Flows

ITEM DESCRIPTION
Acknowledgement Message Acknowledgement Messages are messages sent by the AVI Reader

indicating a successful (ACK) or unsuccessful (NAK) data
transmission. These message follow the proprietary protocol and
format of the AVI Reader.

Enable Status The Enable Status indicates the current disposition of an AVI
Reader Field Sites enable/disable status. This status indicates
whether or not data from a reader should be ignored.

Equipment Status Data Equipment Status Data are the status of the AVI Reader Field
Sites.

Heartbeat Interval The frequency with which process heartbeats should be sent.
Process Heartbeat Process Heartbeat is the heartbeat pulse sent from each process

within the subsystem. The Process Heartbeat contains the status
information for the process along with the process identifier.

Process Status Process Status contains the current value associated with the
execution status of the process. This status can indicate an OK
condition, a warning condition, or an error condition.

Reader Data Message Reader Data Messages are data sent from the reader. These
messages follow the proprietary protocol and format of the AVI
Reader and include tag read messages as well as acknowledgement
messages.

Reset Status The Reset Status indicates the current disposition of an AVI
Reader Field Sites' reset status. This status indicates whether or
not a reset command should be sent to the reader at the next
opportunity.

Site Status Data Data indicating the current status of reader field sites.
Status Log Message Status Log Message contains information to be logged to the

subsystem log file. Typical Status Log Messages include error
messages such as memory allocation errors or data being logged
from field equipment associated with the subsystem.

Tag Read Message Tag Read Messages are tag reads that are sent by the AVI Reader.
The messages follow the proprietary format and protocol of the
AVI Reader and contain the time the tag was read, the AVI
Reader Field Site number, and the tag identifier.

4.2.2.2.1 Dispatch Reader Data

The Dispatch Reader Data process communicates with the AVI Reader Field Sites. Several types
of messages are received from the readers including tag reads and acknowledgment messages.
Although there are other messages that can be sent by the reader, they are not used by the AVI
Data Processing Software and are ignored. Tag reads contain data indicating a tag identifier, time,
and location of a tag read. This data is forwarded to other processes. Acknowledgment messages
are sent by the readers to indicate a successful transaction has occurred.

Several types of command messages are sent to the reader by the Dispatch Reader Data process.
These include reset commands, clock set commands, and acknowledgment commands. Clock set

 29

commands are sent periodically to update the system clock of the reader so that it remains
synchronized with the rest of the system. Acknowledgment commands are sent as part of the
protocol with the Amtech reader to indicate that a transaction was successfully completed. Reset
commands are sent to cause the reader to perform an internal reset. The reset command is
generated whenever the Dispatch Reader Commands process indicates in the Site Table that a
reader should be reset.

The Dispatch Reader Data process also has the ability to enable or disable a reader. This function
is initiated when the Dispatch Reader Commands process indicates in the Site Table that a reader
should be enabled or disabled. Disabling a reader is an internal operation performed by the
Dispatch Reader Data process that has no effect on the reader itself. It simply means that the data
received by the reader will not be processed.

The Dispatch Reader Data process implements the protocol defined by the Amtech reader. This
protocol is illustrated in the following figures. Figure 12 shows the protocol between the reader and
the Dispatch Reader Data process when the reader
sends a Tag Read Message.

Figure 13 shows the protocol for the Dispatch
Reader Data process sending a message to set the
clock of a reader. The protocol for the reset
command is identical.

The Amtech reader uses the acknowledgment
(ACK) and negative acknowledgment (NAK) to
indicate the status of a transaction. If a transaction
fails, the reader will attempt to execute the
transaction again. Figure 14 shows the protocol for
this scenario.

Finally, the Amtech reader has an upper limit on
the number of retransmissions that it will attempt.
After three failed attempts to send a message, the
Amtech reader will stop attempting to send the
message. This protocol is shown in Figure 15.

4.2.2.2.2 Dispatch Reader Commands

The Dispatch Reader Commands process is a
logical process. It receives commands that are
intended to alter the operation of the Monitor
Reader Field Sites process. These commands
include commands to reset a reader and commands
to enable or disable a reader.

AVI Reader
Field
Site

3

Dispatch
Reader
Data

AVI Reader
Field
Site

Tag Read
Message

ACK

Figure 12. Tag Read Message Protocol

AVI Reader
Field
Site

4

Dispatch
Reader
Data

5

Dispatch
Reader
Data

ACK

Clock Set
Command Message

Figure 13. Clock Set Command
Message Protocol

 30

The process updates the Site Table based on the commands that it receives. The Dispatch Reader
Data process accesses the Site Table to determine when a command should be sent to a reader.

4.2.2.3 Process and Filter Tag Reads

The Process and Filter Tag Reads process transforms tag reads into link data. This is
accomplished by searching the list of current tag reads to find a matching tag at an adjacent reader
site. The process updates the link data by keeping a rolling average of travel time and travel speed
for each link. The process also archives various types of data and generates a heartbeat and log
messages. Figure 16 shows the data flow diagram for the Process and Filter Tag Reads process.

AVI Reader
Field
Site

AVI Reader
Field
Site

AVI Reader
Field
Site

6

Dispatch
Reader
Data

7

Dispatch
Reader
Data

Tag Read
Message

NAK

ACK

Tag Read
Message

Figure 14. Retry Message Protocol

AVI Reader
Field
Site

AVI Reader
Field
Site

AVI Reader
Field
Site

8

Dispatch
Reader
Data

9

Dispatch
Reader
Data

11

Dispatch
Reader
Data

AVI Reader
Field
Site

Tag Read
Message

NAK

NAK

Tag Read
Message

Tag Read
Message

NAK

Figure 15. Failed Message Protocol

 31

The logical processes and data flows of the Process and Filter Tag Reads data flow diagram are
described in Table 22 and Table 23.

Table 22. Process and Filter Tag Reads Data Processes

ITEM DESCRIPTION
Archive Data The Archive Data process receives archive data and maintains

archive files. A new archive file is created each day. The archive
file for a given day is overwritten each week.

Generate Process Heartbeat Generate Process Heartbeat periodically sends the Process
Heartbeat to the Subsystem Heartbeat Management process. The
Heartbeat Interval determines how frequently the heartbeat is sent.

3.1

Scramble
Tag

3.2

Match
Tags

3.3

Update
Link
Data

3.4

Receive
Tag Read
Data

3.5

Archive
Data

Read Qty Archive Scrambled Tag Archive Average Link Archive

Site Data Site-Link Data Link DataSite Tag Data

3.6

Generate
Process
Heartbeat

AVI Configuration

Site ListTag Read

Read Qty Data

Match Data

Scrambled Tag
Read

Tag Read
Message

Tag Read

Average Link
Data

Status Log
Message

Status Log
Message Status Log

Message

Tag Read

Process Status

Site-Link
Cross Reference Link List

Link Data

Link Length

Status Log
Message

Process Status

Process Status

Status Log
Message

Status Log
Message

Process Status

Status Log
Message

Tag Read

Process
Heartbeat

Heartbeat
Interval

Tag Read

Figure 16. Process and Filter Tag Reads Data Flow Diagram

 32

ITEM DESCRIPTION
Match Tags Locates tag read matches between adjacent reader field sites. The

process maintains a history of tag reads for each reader. When a
new tag arrives, the process searches adjacent readers looking for
a tag match. If it finds one, it records the match so that the travel
time can be calculated.

Receive Tag Read Data Receives tag read data packets from the Data Communication and
Monitoring process and keeps track of the number of reads that
have been received from each reader field site. This data is
periodically logged to a data file.

Scramble Tag Scramble Tag is responsible for encrypting tag identifiers to
ensure the privacy of the users of the AVI System.

Update Link Data

Table 23. Process and Filter Tag Reads Data Flows

ITEM DESCRIPTION
Average Link Data Average Link Data contains the average travel time and travel

speed for each link for a specified period of time. The period of
time for which the average is calculated is a configuration item.

Heartbeat Interval The frequency with which process heartbeats should be sent.
Link Data Link Data are data about the AVI Links. The data includes the

travel time, speed, and status of each link.
Link Length The Link Length is the length of a link in feet.
Link List
Match Data Match Data is data related to a tag match. The data contains the

two timestamps representing the time that the tag passed the source
and destination readers respectively as well as the link(s) that are
defined between the two readers.

Process Heartbeat Process Heartbeat is the heartbeat pulse sent from each process
within the subsystem. The Process Heartbeat contains the status
information for the process along with the process identifier.

Process Status Process Status contains the current value associated with the
execution status of the process. This status can indicate an OK
condition, a warning condition, or an error condition.

Read Qty Data A count of the number of reads over the previous time period for
each reader.

Scrambled Tag Read The Scrambled Tag Read is a tag read which has had its tag
identifier encrypted.

Site List A list of the sites that are defined in the AVI System.
Site-Link Cross Reference Site-Link Cross Reference is an association between a source site

identifier and a destination site identifier.
Status Log Message Status Log Message contains information to be logged to the

subsystem log file. Typical Status Log Messages include error
messages such as memory allocation errors or data being logged
from field equipment associated with the subsystem.

 33

ITEM DESCRIPTION
Tag Read Tag Reads are the internal representation of the tag read data sent

by the AVI Reader. The data contains the time the tag was read and
the tag identifier.

Tag Read Message Tag Read Messages are tag reads that are sent by the AVI Reader.
The messages follow the proprietary format and protocol of the
AVI Reader and contain the time the tag was read, the AVI Reader
Field Site number, and the tag identifier.

4.2.2.3.1 Match Tags

The Match Tags logical process accepts tag reads and produces match data. The tag read contains
a TransGuide AVI Site Identifier, which the process assumes is the destination site of a potential
source-destination pair. The process uses the site-link table to locate potential source sites for the
destination. If potential source sites exist, the process determines if one or more of the potential
source sites have received the tag identifier. If the tag identifier is found, a match is created.

4.2.2.3.2 Update Link Data

The Update Link Data process is a logical process that represents the transformation of match data
into link data. The link data represents a rolling average of tag matches over a pre-defined period
of time. This section describes the algorithm that is used to calculate the rolling average travel time
and gives some examples of the calculation.

4.2.2.3.2.1 Rolling Average Algorithm

Let l be a link between two reader field sites with attributes lth, the link threshold for link l, ltt, the
current rolling average travel time for link l, and ls, the current rolling average speed for link l. Let
tc be the current time and tw be the duration of the rolling average window in seconds.

Let Ml be the set of all tag matches, m, received for link l. Let each match m have the following
attributes: mt, the time that match m was received, mtt, the travel time measured by match m, and
ms, the speed measured by match m.

Let the current set of valid tag matches, Ml′, be defined by the following:

)}()(|{ thttttttthttttctwc lllmllltmttmlM ×+<<×−<<−=′ and

 34

The rolling average travel time for link l, ltt′, and the rolling average speed, ls′, can be calculated by
the following equations:

lM

lM
m

s

lM

lM
m

tt

m

s

m

tt

l

l

′

′

=′

′

′

=′

∑

∑

=

=

1

1

4.2.2.3.2.2 Rolling Average Examples

A tag match is produced whenever a tag is received by an adjacent pair of reader sites that are
defined as a source-destination pair in the configuration file. Tag matches are stored in a table
along with the time that they were received and the travel time and speed measured for the tag as it
passed between the two readers. Table 24 shows an example of a table for link identifier IN0035I-
RANDO-WALZE, which is one (1) mile in length.

Table 24. Tag Match Table for link IN0035I-RANDO-WALZE

MATCH
NUMBER

TAG IDENTIFIER TIME TRAVEL TIME
(SEC)

SPEED (MPH)

1 189 10:05:00 65 55
2 94 10:05:02 54 53
3 256 10:05:10 66 40
4 343 10:05:11 64 59
5 984 10:05:19 62 68
6 598 10:05:25 56 67
7 501 10:05:28 60 62
8 402 10:05:35 69 67
9 639 10:05:39 59 55

10 54 10:05:42 68 56
11 798 10:05:44 90 58
12 603 10:05:52 61 64
13 402 10:06:03 53 60
14 609 10:06:09 54 52
15 799 10:06:20 58 61

Periodically, the average travel time and speed for each link are calculated using a rolling-average
algorithm. Two parameters are used to control the function of this algorithm: the rolling-average
window and the link threshold.

The rolling-average window is used to determine the period of time that should be considered when
calculating the rolling-average. For example, if the rolling-average window is 60 seconds, only the
tag matches received in the past 60 seconds will be used to calculate the rolling average. The

 35

average that is produced from this calculation would be referred to as a 60-second rolling-
average.

The second parameter, the link threshold, is used to filter tag matches. For example, if the link
threshold is 20%, any match which is 20% greater or less than the previous rolling-average travel
time will not be included in the calculation.

The rolling-average is calculated by taking the sum of all tag matches which were recorded within
the past rolling-average window and which have travel time values that fall within the link
threshold. This sum is then divided by the number of matches that were included in the sum.

Example 1

Assume that the current time is 10:05:20, the tag match table for link IN0035I-RANDO-WALZE
is as presented in Table 24, and the previous calculation for the rolling-average travel time was 59
seconds. Using a rolling-average window of 20 seconds and a threshold of 20%, all matches
received since 10:05:00 with a travel time between 47.2 seconds and 70.8 seconds will be
considered. This produces the following equation:

{ }

2.62
5

5

5} 4, 3, 2, 1,{
15 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1,

5

1 ==

=′
=′
=

∑
=m

tt

tt

m
l

lM

lM
Ml

Equation 1. Calculation of Rolling-Average Travel Time for Example 1

The link rolling-average speed, ls, can be calculated in a similar fashion by replacing the match
travel time, mtt, with the match speed, ms. This would produce a rolling-average speed of 58.2 mph.

Example 2

Assume that the current time is 10:06:10, the tag match table for link IN0035I-RANDO-WALZE
is as presented in Table 24, and the previous calculation for the rolling-average travel time was 62
seconds. Using a rolling-average window of 30 seconds and a threshold of 20%, all matches
received since 10:05:40 with a travel time between 49.6 seconds and 74.4 seconds will be
considered. This produces the following calculation:

{ }

0.59
4

4

14} 13, 12, 10,{
15 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1,

4

1 ==

=′
=′
=

∑
=m

tt

tt

m
l

lM

lM
Ml

Equation 2. Calculation of Rolling-Average Travel Time for Example 2

 36

Note that in Equation 2, tag match number 11 is not included in the current match set, Ml′, because
its travel time value, 90, falls outside the valid range of travel times. The link rolling-average
speed, ls, can be calculated in a similar fashion by replacing the match travel time, mtt, with the
match speed, ms. This would produce a rolling-average speed of 61.75 MPH.

4.2.2.3.3 Scramble Tag

The Scramble Tag process is a logical process that transforms tag read data into scrambled, or
encrypted, tag read data. The tag data is encrypted to ensure the privacy of the users of the AVI
System.

The tag identifier is scrambled using the UNIX crypt function. This function uses a one-way
encryption algorithm to uniquely encrypt a text string. The function accepts the string that is to be
encrypted and a salt value, which is used to alter the encryption. The encryption algorithm is
deterministic in that it will always produce the same encrypted string for a given input string and
salt value.

To reduce the possibility that the encrypted tag identifiers could be decrypted, two steps are taken.
First, the salt value is changed on a daily basis. As a result, the same tag identifier will have a
different encrypted value from one day to the next. Second, the salt value is assigned based on the
current value of the system clock. Although the salt value is set shortly after midnight each
morning, the system clock is measured in total seconds since January 1, 1970. As a result, the salt
value is rarely the same from day to day and the actual value that was used cannot be determined.

4.2.2.3.4 Archive Data

The Archive Data process is responsible for archiving various types of data. Each archive is stored
separately and the archives are organized by day. The archives are valid for one week, at which
time they are overwritten to make room for the new archive. Table 24 describes each of the
archives.

Table 25. AVI Data Processing Software Archives

ARCHIVE NAME DESCRIPTION
Average Link For each link in the AVI System, the average travel time and travel speed

are periodically archived.
Number of Reads For each AVI Reader Field Site in the AVI System, the total number of tag

reads received from the site is periodically archived.
Tag For each AVI Reader Field Site in the AVI System, the total number of tag

reads received from the site is periodically archived.

4.2.2.4 Dispatch Data Server Messages

The Dispatch Data Server Messages process is the interface between the AVI Data Processing
Software and the MDI Data Server. This process handles requests to write link data, heartbeat, and
equipment status messages to the Data Server.

 37

4.2.2.5 Show Detailed Status

Figure 17. Show Detailed Status Data Flow Diagram

4.2.3 Structure Chart Design

The structure chart design is presented in a series of structure chart diagrams. These diagrams use
several symbols to represent functions and library functions. A legend of symbols is presented in
Figure 18.

The structure charts define the functions that are called by each function. The functions that are
called are listed once per chart, even if the function is called more than once. The symbols
presented in the legend are described in Table 26.

4.1

Update
Detailed
Status

4.2

Build
Detailed
Status

4.3

Delete
Detailed
Status

AVI Configuration

Tag Read

Site Status
Data

User Commands

Display Detailed
Status

GUIs

Reader Command

Display Detailed
Status

Detailed Status
Update Rate

GUIs

Tag Read

Site Status
Data

Function
Iterative
Function

Decision
Function

Library
Function

Called
Function

Inside
Loop

Outside
Loop

Inside
Branch

Outside
Branch

Function Call Indirect
Function Call

Figure 18. Structure Chart Legend

 38

Table 26. Structure Chart Legend

 SYMBOL DESCRIPTION
 Decision Function A function that contains a significant decision or branch. The functions

that are called inside the branch are attached to the bottom of the
function. The functions that are called outside the branch are attached to
the side of the function.

 Function A source code function. Each function will be shown only once per chart,
even though it may be called more than once.

 Function Call Indicates that one function calls another.
 Indirect Function Call A call that is not made directly but occurs indirectly. For example, a

function that is called as a result of a signal.
 Iterative Function A function that contains an iterative loop. The functions that are called

inside the loop are attached to the bottom of the function. The functions
that are called outside the loop are attached to the side of the function.

 Library Function A function that is part of an external library of source code.

The AVI Data Processing Software consists of the following processes:

• AVI Master - starts and monitors the processes of the AVI Data Processing System,
• AVI Status GUI - provides an interface for the user to monitor the status of the AVI

Data Processing System and to manually control the execution of the system,
• AVI Detailed Status GUI - provides an interface for the user to monitor the status of

the AVI field equipment,
• AVI Heartbeat - collects and monitors heartbeats from the processes within the AVI

Data Processing System,
• AVI Status Logger - provides a mechanism to collect and log status information from

the AVI Data Processing System processes,
• AVI Data Server Interface - provides an interface between the AVI Data Processing

System and the MDI DataServer,
• AVI Data Collection and Monitoring - communicates with the AVI readers, and
• AVI Data Processing and Filtering - processing tag reads and determines the current

conditions of the AVI links.

Like other parts of the MDI system, the Master, Heartbeat, Status GUI, and Status Logger
processes are instances of common programs. The Data Server Interface (DSIF), Data Collection
and Monitoring (DCM), Data Processing and Filtering (DPF), and Detailed Status GUI programs
are unique to AVI. The remaining programs are MDI common programs that are customized for
each subsystem through the use of configuration files. They are described in other MDI
documents. The programs that are unique to AVI are described in detail in the following sections.
In addition, several libraries that are unique to the AVI system are described.

Each function that makes up the AVI Data Processing Software is described. Three components
are included: textual description, structure chart, and a table of called functions (including macros).
AVI project, MDI project, and system calls are included in the charts; however, some functions are
considered so basic that they add little value to the charts. These functions are the printf family,
memxxx family, sizeof, and exit, and they are not included in the charts, tables, or descriptions.

 39

4.2.3.1 Global Data Structures

There are several data structures that are maintained globally so that they may be accessed by
more than one of the AVI Data Processing System processes. These are discussed in more detail in
the following sections.

4.2.3.1.1 Site Status Table

The site status table is an array of data structures located in shared memory. There is one data
structure for each site in the AVI System, which contains current information about the status of
each site. This table and the data that is included in each structure is depicted graphically in Figure
19.

4.2.3.1.2 Site Tag Data Table

The site tag data table is located in shared memory and contains the most recent tag reads for each
of the sites. The table and its fields are depicted graphically in Figure 20. The site tag data table is
a linear table containing one block of data for each site in the AVI System. Each block contains a
fixed number of slots for tag data. The number of slots available is configurable at runtime. Each
entry in the table is a data structure containing a tag identifier and the time that the tag was read.

4.2.3.2 Data Collection and Monitoring (DCM)

The Data Collection and Monitoring (DCM) process controls the modem data pool to accept data
from the reader field sites. The data is sent to the DPF process. DCM handles such details as
modem initialization, connection, and error handling. It also maintains the status of the field units
and sends them time updates in order to keep the entire system synchronized. The following
sections describe the data structures that are specific to the DCM process and the functions that

Figure 19. Site Status Table Data Structure

Figure 20. Site Tag Data Table Data Structure

 40

make up the DCM process, which are listed in depth-first order beginning with the main entry
point.

4.2.3.2.1 Data Structures

This section describes the primary data structure
used by DCM, the modem port table. This table is
depicted graphically in Figure 21.

There is one entry in the table for each modem port
in the system. Each entry contains several fields
including the file descriptor of the port, the
pathname, the current state of the port, and a count
of errors associated with the port.

4.2.3.2.2 main

The main routine is responsible for setting up the clean up routines, configuring the appropriate
signals to catch and ignore, etc. Virtually all the actual initialization operations occur in
subroutines that are detailed later in the document. The structure chart for the main routine is
shown in Figure 22. Descriptions of the routines called by the main routine of DCM are provided
in Table 27.

Figure 21. Modem Port Table Data
Structure

 41

Table 27. Routines called by AVI DCM main

ITEM DESCRIPTION
atexit C Library Function used to register routines to be called on normal

termination of a program.
avi dcm cfg Load MDI and AVI configuration data and AVI specific data.
avi dcm init log Initialize status logging for DCM.
avi dcm init port data Allocate and initialize the DCM physical modem port data.
avi dcm init shm Attach/create shared memory used by DCM.
crc init This function builds tables for the CCITT and CRC-16 CRCs and their

reverses.
dcm main loop This function polls each enabled port in turn, processing received data. It

also performs other periodic update functions including heartbeat, shared
memory update and configuration change processing.

exit handler Perform exit operations.
main (DCM) This is the main entry point for the Data Collection and Monitoring

process.

main
(DCM)

crc
init

avi
dcm
cfg

avi
dcm
init
log

atexit

exit
handler

signal
setup

avi
dcm
init
shm

sock
listen
with
reuse

avi
dcm
init
port
data

dcm
main
loop

Figure 22. AVI DSIF main structure chart

 42

ITEM DESCRIPTION
signal setup This function sets up the signal handler for all signals that are not

currently handled within the calling process.
sock listen with reuse MDI Common Socket routine used to set up a socket to listen for

connections and to make the socket address reusable.

4.2.3.2.3 avi dcm cfg

avi dcm cfg loads the AVI configuration data and
AVI specific data files. It is passed the MDI and
AVI configuration pathnames that are passed to the
AVI configuration utility function load cfg data.
The AVI site data and site/link cross-reference data
files are loaded using the avi get avi data utility
funciton. The structure chart for avi dcm cfg is
shown in Figure 23. Descriptions of the routines
called by avi dcm cfg are provided in Table 28.

Table 28. Routines called by avi dcm cfg

ITEM DESCRIPTION
avi dcm cfg Load MDI and AVI configuration data and AVI specific data.
avi get avi data This function loads the AVI link and site data from files into dynamically

allocated data structures.
load cfg data This function loads the MDI and AVI configuration data. Data is obtained

from configuration files and system function calls.

4.2.3.2.4 avi dcm init log

This routine determines from the configuration data on which host the AVI status logger is
running. Once the host name is determined, the routine connects to the AVI status logger process.
The structure chart for avi dcm init log is shown in Figure 24. Descriptions of the routines called
by avi dcm init log are provided in Table 29.

avi
dcm
cfg

load
cfg
data

avi
get
avi data

Figure 23. avi dcm cfg structure chart

 43

Table 29. Routines called by avi dcm init log

ITEM DESCRIPTION
avi dcm init log Initialize status logging for DCM.
gethostname C library function to get the hostname on which the calling

process is running.
process status config with logr This routine is sets up the connection to the status logger used by

the calling program.
strncpy C Library Function to copy a specified number of characters

from a source string to a destination string.

4.2.3.2.5 exit handler

This routine performs exit functions for DCM. It is registered with the system using the system
atexit function and is called automatically when a program exit condition occurs. The function
logs a message to the status log indicating that DCM exited. The exit handler routine calls only
process status message routine, so no structure chart is provided. Descriptions of the routines
called by exit handler are provided in Table 30.

Table 30. Routines called by exit handler

ITEM DESCRIPTION
exit handler Perform exit operations.
process status message MDI Process Status routine used to log a status message for the

specified status type. If the process status library was configured to use
a status logger then the message is forwarded to the status logger.
Otherwise the message is written to the configured status log file.

avi
dcm
init log

strncpy gethostname
process
status config
with logr

Figure 24. avi dcm init log structure chart

 44

4.2.3.2.6 avi dcm init shm

DCM maintains the status data in shared memory for DPF and the Detailed Status GUI. DPF uses
the information to mark the link status in the link speed and time messages sent to Data Server.
The Detailed Status GUI uses the information to update the user interface. This function first
creates or attaches to the shared memory depending on whether or not it already exists. Next, it
allocates a copy of the status data that is global to DCM. The DCM copy will be periodically
updated and written to the shared memory. The structure chart for avi dcm init shm is shown in
Figure 25. Descriptions of the routines called by avi dcm init shm are provided in Table 31.

Table 31. Routines called by avi dcm init shm

ITEM DESCRIPTION
avi create segment This function connects to or creates a shared memory segment with

error checking.
avi dcm init shm Attach/create shared memory used by DCM.
config shm mgr MDI Shared Memory Manager routine used to initialize and configure

the shared memory manager library routines for the calling program.
init dcm status Initialize the passed DCM status structure.
malloc C library function to allocate memory on the heap.
process status message MDI Process Status routine used to log a status message for the

specified status type. If the process status library was configured to
use a status logger then the message is forwarded to the status logger.
Otherwise the message is written to the configured status log file.

update status data in shm Update global site status information in shared memory.

avi
dcm
init shm

config
shm
mgr

avi
create
segment

process
status
message

malloc

init
dcm
status

update
status
data in shm

Figure 25. avi dcm init shm structure chart

 45

4.2.3.2.7 update status data in shm

This function writes the site status data maintained by
DCM in a global array to the status data shared memory
using the write segment utility. The structure chart for
update status data in shm is shown in Figure 26.
Descriptions of the routines called by update status
data in shm are provided in Table 32.

Table 32. Routines called by update status data in shm

ITEM DESCRIPTION
process status message MDI Process Status routine used to log a status message for the

specified status type. If the process status library was configured to
use a status logger then the message is forwarded to the status logger.
Otherwise the message is written to the configured status log file.

update status data in shm Update global site status information in shared memory.
write segment This function writes the passed data into the identified shared memory

segment.

4.2.3.2.8 avi dcm init port data

This routine allocates a global data structure for the port data then loads it from file. It begins by
building the pathname and reading the number of entries in the file in order to size the data
structure. Next, it allocates it. Then it calls dcm read modem data to read the data from the file
into the data structure. The structure chart for avi dcm init port data is shown in Figure 27.
Descriptions of the routines called by avi dcm init port data are provided in Table 33.

update
status
data in shm

write
segment

process
status
message

Figure 26. update status data in shm
structure chart

 46

Table 33. Routines called by avi dcm init port data

ITEM DESCRIPTION
avi dcm init port data Allocate and initialize the DCM physical modem port data.
avi file get num entries Get the number of entries in a configuration file from the first record of

the file.
dcm read modem data Read the modem data file and initialize the affected global modem port

data control structure fields appropriately.
getenv C library function which returns a pointer to the value of the passed

environment variable.
malloc C library function to allocate memory on the heap.
process status message MDI Process Status routine used to log a status message for the specified

status type. If the process status library was configured to use a status
logger then the message is forwarded to the status logger. Otherwise the
message is written to the configured status log file.

strcat C library function which concatenates a copy of the second argument to
the first.

strlen C library function to return the length of the passed string.

4.2.3.2.9 dcm read modem data

This routine reads the modem data file to get the configuration information for the modems. The
file is opened and the first record is skipped. The first record contains the count of remaining
records in the file and was previously used to size the array of structures that was passed to the this
routine to be initialized. Each line of the data file is read until the number of records equivalent to
the number of ports is reached. Each line contains an enable field (“enable” or “disable”) and the
port pathname (for example, “/dev/sts/ttyD40”). Each entry in the data structure is initialized by

avi dcm
init port
data

getenv

strlen

process
status
message

strcat

avi file
get num
entries

malloc

dcm read
modem
data

Figure 27. avi dcm init port data structure chart

 47

calling init modem data passing the enable flag and pathname for the port. Errors are detected and
reported and cause file processing to stop. The structure chart for dcm read modem data is shown
in Figure 28. Descriptions of the routines called by dcm read modem data are provided in Table
34.

Table 34. Routines called by dcm read modem data

ITEM DESCRIPTION
close C library function to close a file or device.
dcm read modem data Read the modem data file and initialize the affected global modem port

data control structure fields appropriately.
feof C library function to check for end of file on a stream.
fgets C library function to read a string from an input stream.
fopen C library function to open a stream file.
init modem data Initialize the passed modem data structure.
process status message MDI Process Status routine used to log a status message for the specified

status type. If the process status library was configured to use a status
logger then the message is forwarded to the status logger. Otherwise the
message is written to the configured status log file.

sscanf C library function to scan a string into the referenced variables according
to the specified format string.

strstr Locate the first occurrence of the second string in the first string.

dcm read
modem
data

fopen close

fgets

feof

process
status
message

sscanf

strstr

init
modem
data

Figure 28. dcm read modem data structure chart

 48

4.2.3.2.10 init modem data

This function initializes a port data structure. The fields of the structure are initialized with the
option of preserving the port pathname, file descriptor, and enabled and opened flags. init modem
data calls only strcpy so no structure chart is provided. Descriptions of the routines called by init
modem data are provided in Table 35.

Table 35. Routines called by init modem data

ITEM DESCRIPTION
init modem data Initialize the passed modem data structure.
strcpy C Library Function used to copy a source string to a destination string.

4.2.3.2.11 dcm main loop

This function performs the main operational processing for DCM. Once started, it operates
continuously until terminated by external means. The routine begins by doing some initialization
of the socket descriptor sets used in later select calls. Next, it enters a while loop when only exits
when the program is terminated. The loop consists of two parts: an inner loop that processes data
for each modem port and a section of code that performs periodic updates (for example, send
heartbeat).

The inner loop processes each physical port in turn. First, the port enable is checked. If disabled,
no further processing occurs. Otherwise, if the port is in the connected state, then data received on
the port is processed. If the port is not connected, then modem initialization and reconnection are
performed. Each time through the loop, the configuration change socket is checked for input from
the user via the AVI GUI. The user may enable or disable a site or reset a site. These actions may
occur out-of-sequence when handle config changes is called.

Each time through the outer loop the DCM copy of the site status data is updated, then the shared
memory status is updated from DCM’s internal status. If the time-out has occurred to send the
next heartbeat, then the summary status sent with the heartbeat is updated, the heartbeat sent, and
the heartbeat timer reinitialized.

The structure chart for dcm main loop is shown in Figure 29. Descriptions of the routines called
by dcm main loop are provided in Table 36.

 49

Table 36. Routines called by dcm main loop

ITEM DESCRIPTION
avi send heartbeat This function sends the heartbeat to the AVI heartbeat process with

automatic reconnection and error checking.
dcm main loop This function polls each enabled port in turn, processing received

data. It also performs other periodic update functions including
heartbeat, shared memory update and configuration change
processing.

FD SET C library macro to set a file descriptor in a file descriptor set.

dcm
main
loop

getrlimit

FD
ZERO

FD
SET

modem
connected

process
rfs
msgs

init
modem

handle
config
changes

update
status
data

update
status
data in
shm

time

process
status
set status
...

avi
send
heartbeat

process
status
message

Figure 29. dcm main loop structure chart

 50

ITEM DESCRIPTION
FD ZERO C library macro to zero a file selector set used with select().
getrlimit C library function to get the specified system limit from the system.
handle config changes Handle configuration changes which arrive on the configuration

change socket.
init modem Manage the state of a modem from initialization through a

connection.
modem connected Check the serial port status lines to see if the modem on the passed

file descriptor is still connected.
process rfs msgs This function performs data collection and monitoring for one modem

port.
process status message MDI Process Status routine used to log a status message for the

specified status type. If the process status library was configured to
use a status logger then the message is forwarded to the status logger.
Otherwise the message is written to the configured status log file.

process status set status ... This function is used to set the value associated with the specified
process status status type.

time C library function to get the current system time in Unix format.
update status data Update global site status information.
update status data in shm Update global site status information in shared memory.

4.2.3.2.12 modem connected

This function uses an ioctl call to check the status (connected or not connected) of the passed
modem port. modem connected calls only ioctl, so no structure chart is provided. Descriptions of
the routines called by modem connected are provided in Table 37.

Table 37. Routines called by modem connected

ITEM DESCRIPTION
ioctl C library function to perform I/O control operations on devices and streams.
modem connected Check the serial port status lines to see if the modem on the passed file

descriptor is still connected.

4.2.3.2.13 process rfs messages

This routine processes input from the reader field sites for one port. Actions are not performed on
the port if it is undefined (the file descriptor is invalid). First, the routine checks to see if it is time
to update the clock for the RFS. Second, data is read from the port. A loop is entered where the
received data is processed. Once all data in the input stream has been processed, the loop exits.
Third, the port is reset if the reset command has been received from the AVI GUI. Fourth, the port
status is changed “warning” if the inactivity time-out has expired.

For each pass of the loop, the received data is passed to confirm msg, which examines the data to
determine if a message has been received. Its processing is significantly controlled by the status of
the message being accumulated that is returned by confirm msg. The message status may be one
of the following:

 51

• incomplete - the input data does not make up a message
• incomplete with error - the input data has an error but does not form a complete

message
• complete with error - the input data is a complete message, but has an error
• complete - a complete message without any errors was received from the RFS

A status of incomplete indicates that the message, which may be received through multiple calls to
process rfs messages, is incomplete or is not present in the data at all. Incomplete with error
indicates that the start of message code was received and processed, but the CRC for the header
failed. Complete with error indicates that the message was received but had an error in the CRC
for the body of the message. Finally, complete indicates that a complete message was received
without errors.

A status value of incomplete results in no action in process rfs messages. A status value of
incomplete with error causes the error status for the site to be updated, if the site index is valid. A
status value of complete with error causes a negative acknowledge (NAK) to be sent to the RFS. A
status value of complete causes the message to be processed. If this is the first valid message from
the RFS since the last reconnection, then the site status data is updated. eval msg is called to
process the message further. Finally, regardless of status returned by confirm msg, the loop is
repeated until all input data is consumed by confirm msg. This means that multiple messages may
be processed while within this loop.

The structure chart for process rfs messages is shown in Figure 30. Descriptions of the routines
called by process rfs messages are provided in Table 38.

 52

Table 38. Routines called by process rfs msgs

ITEM DESCRIPTION
confirm msg Confirm that the input data stream contains a valid message. This routine

may have to be called multiple times to assemble an entire message.
eval msg Determine what type of message was received (e.g., tag data) and perform the

appropriate processing.
lookup site by num Lookup the site index for a site using its hardware "source number".
nak rfs Send a NAK to the RFS.
process rfs msgs This function performs data collection and monitoring for one modem port.
read rfs Read data from an RFS.
refresh time Refresh the data/time for an RFS if the time-out has expired.
reset rfs Reset an RFS if the unit is non-responsive or the user has requested a reset.
strncpy C Library Function to copy a specified number of characters from a source

string to a destination string.
swap hdr data Swap the integer fields within the header: source address, destination address

and data byte count.
time C library function to get the current system time in Unix format.

process
rfs
msgs

time

refresh
time

read
rfs

reset
rfs

confirm
msg

nak
rfs

swap
hdr
data

lookup
site
by
num

strncpy

eval
msg

Figure 30. process rfs msgs structure chart

 53

4.2.3.2.14 refresh time

This function gets the current time from the host computer, assembles a time update message, and
sends it to the RFS. The structure chart for refresh time is shown in Figure 31. Descriptions of the
routines called by refresh time are provided in Table 39.

Table 39. Routines called by refresh time

ITEM DESCRIPTION
build msg Construct an RFS message from its constituent parts.
localtime C library function to convert a standard Unix time value into the Unix broken down

structure form. This function accounts for local time variations such as daylight
savings time.

refresh time Refresh the data/time for an RFS if the time-out has expired.
write rfs Send data to an RFS.

4.2.3.2.15 build msg

This function takes the passed information (message code, sequence number, destination address,
and message body) and assembles a message in the correct format for the RFS. Operations include
assigning data to the correct fields within the message, swapping integer data bytes, calculating the
CRCs for the header and body of the message, and performing zero byte insertion on the message.
The structure chart for build msg is shown in Figure 32. Descriptions of the routines called by
build msg are provided in Table 40.

refresh
time

localtime
build
msg

write
rfs

Figure 31. refresh time structure chart

 54

Table 40. Routines called by build msg

ITEM DESCRIPTION
build msg Construct an RFS message from its constituent parts.
crc msg rev ccitt This function calculates the reverse CCITT CRC on the passed message.
process status message MDI Process Status routine used to log a status message for the specified

status type. If the process status library was configured to use a status
logger then the message is forwarded to the status logger. Otherwise the
message is written to the configured status log file.

purify msg Convert SOM (0xF1) and XLAT (0xF2) characters in the passed
message into <XLAT (0xF2) XLAT (0xF2)> and <XLAT (0xF2)
XLAT_B (0xF3)>, respectively.

swap hdr data Swap the integer fields within the header: source address, destination
address and data byte count.

4.2.3.2.16 swap hdr data

This function swaps the integer fields (source address, destination address, and byte count) in the
header. This is necessary due to byte order differences between the host computer and the RFS.
swap hdr data calls only the SWAP macro, so no structure chart is provided. Descriptions of the
routines called by swap hdr data are provided in Table 41.

Table 41. Routines called by swap hdr data

ITEM DESCRIPTION
SWAP Macro to swap the bytes of an 16 bit integer in place.
swap hdr data Swap the integer fields within the header: source address, destination address and

data byte count.

4.2.3.2.17 purify msg

This function performs a process generically called zero byte insertion. The purpose of zero byte
insertion is to exclude special characters from the body of a message. In this case there are two

build
msg

swap
hdr
data

crc
msg
rev ccitt

purify
msg

process
status
message

Figure 32. build msg structure chart

 55

special characters: the start of message (SOM [F116]) and the translate (XLAT [F216]) character.
Each SOM except for the one that starts the message is translated to “F216 F216”. Each XLAT
except the ones inserted to replace an SOM is translated to “F216 F316”. These translations can
cause the message to grow beyond the maximum size of the work buffer. This condition is
checked, and an error is returned if the buffer size is inadequate. purify msg calls only process
status message, so no structure chart is provided. Descriptions of the routines called by purify
msg are provided in Table 42.

Table 42. Routines called by purify msg

ITEM DESCRIPTION
process status message MDI Process Status routine used to log a status message for the

specified status type. If the process status library was configured to use
a status logger then the message is forwarded to the status logger.
Otherwise the message is written to the configured status log file.

purify msg Convert SOM (0xF1) and XLAT (0xF2) characters in the passed
message into <XLAT (0xF2) XLAT (0xF2)> and <XLAT (0xF2)
XLAT_B (0xF3)>, respectively.

4.2.3.2.18 write rfs

This function writes a message to the RFS. If an
error occurs, a message is sent to the log process.
The structure chart for write rfs is shown in
Figure 33. Descriptions of the routines called by
write rfs are provided in

Table 43.

Table 43. Routines called by write rfs

ITEM DESCRIPTION
process status message MDI Process Status routine used to log a status message for the specified

status type. If the process status library was configured to use a status
logger then the message is forwarded to the status logger. Otherwise the
message is written to the configured status log file.

write C library function to write data to a file or device.
write rfs Send data to an RFS.

write
rfs

write
process
status
message

Figure 33. write rfs structure chart

 56

4.2.3.2.19 read rfs

This function reads data from the RFS. It reads as much
data as is available, up to the destination buffer size. The
data read does not have to be a complete message. If an
error occurs, a message is sent to the log process. The
structure chart for read rfs is shown in Figure 34.
Descriptions of the routines called by read rfs are
provided in

Table 44.

Table 44. Routines called by read rfs

ITEM DESCRIPTION
process status message MDI Process Status routine used to log a status message for the specified

status type. If the process status library was configured to use a status
logger then the message is forwarded to the status logger. Otherwise the
message is written to the configured status log file.

read C library function to read data from a file or device.
read rfs Read data from an RFS.

4.2.3.2.20 confirm msg

This function acquires a message from an RFS. It is designed so that it can be passed partial
information and process as much data as is available. Each time it is called, the current state is
passed in, including newly received data. The message status (incomplete, incomplete with error,
complete with error, or complete) is returned by this function. These status values are described
in detail in the section for the function process rfs message. The message acquisition occurs
through the use of a state machine that is shown in Error! Reference source not found.. The
state machine has the following states:

• Wait for SOM - Wait for the Start of Message (SOM [F116]) character
• Body of Header - Process characters which make up the body of the header
• XLAT in Header - Process an XLAT (F216) character in the header
• Body of Message - Process characters which make up the body of the message
• XLAT in Body - Process an XLAT character in the body of the message

read
rfs

read
process
status
message

Figure 34. read rfs structure chart

 57

The Wait for SOM state is the initial state and is used to synchronize message acquisition with
received data. Every message starts with an SOM character. The program stays in this state until
the an SOM is seen in the input data stream. The Body of Header state is used to acquire the
characters that make up the header of the message. The header size is fixed and the program
transitions to the Body of Message state when all of the header characters are received. If an
XLAT character is received in the header, Body of Header changes to XLAT in Header, which
processes the character after the XLAT. XLAT in Header evaluates the next character received
and transitions back to Body of Header, unless the end of the header has been reached, in which
case it transitions to Body of Message. Body of Message and XLAT in Body work similar to
Body of Header and XLAT in Header except that the message size is not fixed and comes from the
header. Also, when the message is complete, the status is marked as complete and the state is
changed to Wait for SOM. If an error occurs, then the next state will always be Wait for SOM.

confirm msg implements the states by calling the confirm body (for Body of Header and Body of
Message) and confirm xlat (for XLAT in Header and XLAT in Message) functions that perform
the actions required by the passed state information. The structure chart for confirm msg is shown
in Figure 36. Descriptions of the routines called by confirm msg are provided in Table 45.

Wait
for
SOM

Body
of
Header

XLAT
in
Header

Body
of
Message

XLAT
in
Body

Received SOM
Received XLAT

Received
Character

End of Header

End of Header

Received XLAT

Received
Character

Received
Character

Received
Character

Received SOM

Received SOM

End of Message
or Error

End of Message
or Error

Error in
Message

Error in
Message

Received
Character

Figure 35. RFS Message Acquisition State Machine

 58

Table 45. Routines called by confirm msg

ITEM DESCRIPTION
confirm body Process the receipt of characters in the header or message body.
confirm msg Confirm that the input data stream contains a valid message. This routine may

have to be called multiple times to assemble an entire message.
confirm xlat Process the receipt of characters in the header or message body following the

receipt of an XLAT.
process status
message

MDI Process Status routine used to log a status message for the specified status
type. If the process status library was configured to use a status logger then the
message is forwarded to the status logger. Otherwise the message is written to the
configured status log file.

SWAP Macro to swap the bytes of an 16 bit integer in place.

4.2.3.2.21 confirm body

This function evaluates the current input character to determine the next state in the message
acquisition process. If the received character is an SOM (F116), the new state is set unconditionally
to Body of Header with a data index of one. If the received character is an XLAT (F216), then the
state is changed to the passed XLAT state and no character is stored. If any other character is
received, then it is stored. eom check is called to determine if the header/message is complete.
confirm body calls only eom check, so no structure chart is provided. Descriptions of the routines
called by confirm body are provided in Table 46.

Table 46. Routines called by confirm body

ITEM DESCRIPTION
confirm body Process the receipt of characters in the header or message body.
eom check Check to see if the end of a message has been reached.

confirm
msg

confirm
body SWAP

confirm
xlat

process
status
message

Figure 36. confirm msg structure chart

 59

4.2.3.2.22 eom check

This function checks to see if the end of the header or
message has been reached. It checks the received character
count against the header/message size and if it has been
reached, then the CRC for the header/message is calculated.
The final value should be zero; if it is, and the header is
complete, then the state is set to Body of Message;
otherwise, the message is complete and the return status is
set accordingly. If the CRC did not agree, then the return
status is set to incomplete with error or complete with error
depending on whether the header or message is being
processed. The structure chart for eom check is shown in
Figure 37. Descriptions of the routines called by eom check
are provided in Table 47.

Table 47. Routines called by eom check

ITEM DESCRIPTION
crc msg rev
ccitt

This function calculates the reverse CCITT CRC on the passed message.

eom check Check to see if the end of a message has been reached.
process status
message

MDI Process Status routine used to log a status message for the specified status
type. If the process status library was configured to use a status logger then the
message is forwarded to the status logger. Otherwise the message is written to the
configured status log file.

4.2.3.2.23 confirm xlat

This function evaluates the current input character, which
was “escaped” by the preceding XLAT (F216). If a SOM
(F116) is received, the next state is set to Body of Header,
and the data index is set to one. If an XLAT is received,
then an SOM is inserted into the data. If an XLAT_B
(F316) is received, then an XLAT is inserted into the data.
If any other character is received it is stored, although this
is probably an error. If it is an error, the error should be
detected by the CRC. eom check is called to determine if
the header/message is complete. The structure chart for
confirm xlat is shown in Figure 38. Descriptions of the
routines called by confirm xlat are provided in Table 48.

eom
check

crc
msg
rev ccitt

process
status
message

Figure 37. eom check structure
chart

confirm
xlat

eom
check

process
status
message

Figure 38. confirm xlat structure
chart

 60

Table 48. Routines called by confirm xlat

ITEM DESCRIPTION
confirm xlat Process the receipt of characters in the header or message body following the

receipt of an XLAT.
eom check Check to see if the end of a message has been reached.
process status
message

MDI Process Status routine used to log a status message for the specified status
type. If the process status library was configured to use a status logger then the
message is forwarded to the status logger. Otherwise the message is written to the
configured status log file.

4.2.3.2.24 nak rfs

This function assembles a Negative Acknowledge (NAK)
message and sends it to the RFS. The structure chart for
nak rfs is shown in Figure 39. Descriptions of the
routines called by nak rfs are provided in

Table 49.

Table 49. Routines called by nak rfs

ITEM DESCRIPTION
build msg Construct an RFS message from its constituent parts.
nak rfs Send a NAK to the RFS.
write rfs Send data to an RFS.

4.2.3.2.25 eval msg

This function takes a complete valid message and determines its disposition. If the message is
neither an acknowledge (ACK) nor a negative acknowledge (NAK), then an ACK is built and sent
to the RFS. The most common message is tag read data. When this message is received, it is
written to DPF over the tag data socket. The message time and count are updated. Event
messages are also received frequently. No processing is associated with them and they are ignored.
If the received message is an ACK, then it should be for the most recent reset or time update
command. The ACK flag associated with the appropriate message is updated, or the received

nak
rfs

build
msg

write
rfs

Figure 39. nak rfs structure chart

 61

ACK is ignored if it does not match a transmitted command. A NAK may also be received. If the
NAK is for either a reset or time update command, then the appropriate command is resent (up to
three times). Otherwise, the function updates the error counts and ignores the NAK. Finally, if
any other message type is received, it is ignored and a warning message is logged, since no other
message types are expected. The structure chart for eval msg is shown in Figure 40. Descriptions
of the routines called by eval msg are provided in Table 50.

Table 50. Routines called by eval msg

ITEM DESCRIPTION
avi sock write Write to a socket with retry.
build msg Construct an RFS message from its constituent parts.
eval msg Determine what type of message was received (e.g., tag data) and perform

the appropriate processing.
process status message MDI Process Status routine used to log a status message for the specified

status type. If the process status library was configured to use a status
logger then the message is forwarded to the status logger. Otherwise the
message is written to the configured status log file.

strncpy C Library Function to copy a specified number of characters from a
source string to a destination string.

write rfs Send data to an RFS.

eval
msg

build
msg

write
rfs

avi
sock
write

strncpy

process
status
message

Figure 40. eval msg structure chart

 62

4.2.3.2.26 reset rfs

If the reset rfs flag is set, then this function assembles a
reset rfs message, and sends it to the RFS. The structure
chart for reset rfs is shown in Figure 41. Descriptions of
the routines called by reset rfs are provided in

Table 51.

Table 51. Routines called by reset rfs

ITEM DESCRIPTION
build msg Construct an RFS message from its constituent parts.
reset rfs Reset an RFS if the unit is non-responsive or the user has requested a reset.
write rfs Send data to an RFS.

4.2.3.2.27 init modem

This function implements a state machine that drives modem operations. Each time the function is
called the modem initialization can proceed to the next step. A master time-out mechanism is
implemented outside of the state machine and is checked prior to evaluating the current state. It
can be disabled. The state machine is shown in Figure 42 and has the following states:

• Wait - Wait the minimum period for a command to be executed by the modem
• Initial - Starting state for modem initialization
• Hangup - Send the modem the hangup command
• Reset - Send the modem the reset command
• Init - Send the modem the initialization command
• Answer - Waif for the modem to responded to the initialization command
• Answer2 - Wait for a modem connection to occur
• Connected - The modem is connected

The wait state is used to delay a minimum amount of time for a modem command to be executed
and a response sent to DCM. The initial state closes and reopens the serial port and sends the
modem attention command, and sets the next state to hangup. The hangup state flushes the input
port, writes the hangup command to the modem, and sets the next state to reset. The reset state

reset
rfs

build
msg

write
rfs

Figure 41. reset rfs structure chart

 63

reads the modem’s response to the hangup command. If the response indicates success, then it
sends the reset command and sets the next state to init. The init state reads the modem’s response
to the reset command. If the response indicates success, then it sends the modem initialization
string and sets the next state to answer. The answer state reads the modem’s response to the
initialization command. If the response indicates success, then it sets the next state to answer2.
The answer2 state waits for the modem to connect. When the modem connects, it sets the next
state to connected. The connected state monitors the modem connection. If the connection is
dropped, it sets the next state to initial. All states except answer and answer2 used wait to delay
before checking for a modem response. All states except connected have a maximum time-out,
which is checked at the beginning of the function, and will cause the process to begin again. The
connected state starts over when it detects that the line has been dropped.

The structure chart for init modem is shown in Figure 43. Descriptions of the routines called by
init modem are provided in Table 52.

Initial

Wait

Hangup Reset

Init Answer Answer2

Connected

Next State:
Hangup

Master Timeout

Min Cmd Time:
Init Next State:

Answer

Master Timeout
Next State:
Reset

Min Cmd Time:
Hangup

Master Timeout

Master Timeout

Min Cmd Time:
Reset

Next State:
Init

Min Cmd Time:
Answer

Next State:
Answer2

Min Cmd Time:
Answer2

Next State:
Connected

Master Timeout

Master Timeout

Line Dropped

Figure 42. Modem initialization state machine

 64

Table 52. Routines called by init modem

ITEM DESCRIPTION
close C library function to close a file or device.
init modem Manage the state of a modem from initialization through a connection.
init modem data Initialize the passed modem data structure.
modem connected Check the serial port status lines to see if the modem on the passed file

descriptor is still connected.
OpenPort This function opens and configures a serial port.
process status message MDI Process Status routine used to log a status message for the specified

status type. If the process status library was configured to use a status
logger then the message is forwarded to the status logger. Otherwise the
message is written to the configured status log file.

read rfs Read data from an RFS.
strlen C library function to return the length of the passed string.
strstr Locate the first occurrence of the second string in the first string.

init
modem

time

process
status
message

init
modem
data

close

OpenPort

write
rfs strlen

read
rfs

strstr

modem
connected

Figure 43. init modem structure chart

 65

ITEM DESCRIPTION
time C library function to get the current system time in Unix format.
write rfs Send data to an RFS.

4.2.3.2.28 OpenPort

This function opens and configures a serial port. The port is opened and the BAUD rate is passed
to CofigurePort, which will configure the port attributes. The structure chart for OpenPort is
shown in Figure 44. Descriptions of the routines called by OpenPort are provided in Table 53.

Table 53. Routines called by OpenPort

ITEM DESCRIPTION
close C library function to close a file or device.
ConfigurePort Configure a port for AVI use including BAUD rate and other settings.
open C library function to open a file or device.
OpenPort This function opens and configures a serial port.

4.2.3.2.29 ConfigurePort

This function gets the current settings for the port attributes, determines the code for the requested
BAUD rate, and sets the revised settings required for the AVI ports. The port configuration
parameters are unchanged except that the following are set explicitly:

• Ignore break condition and parity errors
• Do not post-process output
• Set bits per character to 8 and stop bits to 2
• Enable inbound and outbound flow control
• Disable terminal functions
• Set read time-out to 1 second

OpenPort

open ConfigurePort close

Figure 44. OpenPort structure chart

 66

The structure chart for ConfigurePort is shown in Figure 45. Descriptions of the routines called
by ConfigurePort are provided in Table 54.

Table 54. Routines called by ConfigurePort

ITEM DESCRIPTION
ConfigurePort Configure a port for AVI use including BAUD rate and other settings.
SerialBaud This function returns the BAUD code used by tcgetattr and tcsetattr when passed

an integer representing a BAUD rate (e.g., 9600).
tcgetattr C library function to get the attributes associated with asynchronous

communications ports (serial ports).
tcsetattr C library function to set the attributes associated with asynchronous

communications ports (serial ports).

4.2.3.2.30 SerialBaud

This function converts a numeric BAUD rate (for example, 9600) into its appropriate code for the
tcsetattr function. Supported BAUD rates include: 1200, 2400, 4800, 9600 and 19200. Neither a
structure chart nor a description of routines called table is provided as SerialBaud calls no
subroutines.

4.2.3.2.31 handle config changes

This function handles configuration changes that are received on the configuration changes socket.
If data is received and the site index is in the valid range, then the request is processed. The
request may be to reset a site, enable a site, or disable a site. To reset a site, the current port
number on which the site is connected is checked. If it is valid, then the flag to send a reset to the
site is set and process rfs msgs is called to perform out-of-turn processing on the required port.
For an enable or disable the appropriate value is set in the dcm_status structure. Invalid sites or
codes are ignored. Completion status is written to the requester and the socket is disconnected if an
error occurred. The structure chart for handle config changes is shown in Figure 46.
Descriptions of the routines called by handle config changes are provided in Table 55.

ConfigurePort

tcgetattr SerialBaud tcsetattr

Figure 45. ConfigurePort structure chart

 67

Table 55. Routines called by handle config changes

ITEM DESCRIPTION
disconnect cfg socket Disconnect from a socket.
get config changes Look for data arriving on the configuration changes socket. Read the

data when it is present.
handle config changes Handle configuration changes which arrive on the configuration change

socket.
lookup port by site num Lookup the current port number for a site using its site number.
process rfs msgs This function performs data collection and monitoring for one modem

port.
sock writen MDI Socket routine used to write a specified number of bytes to a

specified socket.

4.2.3.2.32 get config changes

This function sets up and performs a select on the configuration change socket. If the select
indicates a request, then it is processed. The structure chart for get config changes is shown in
Figure 47. Descriptions of the routines called by get config changes are provided in Table 56.

handle
config
changes

get
config
changes

lookup
port by
site num

process
rfs
msgs

sock
writen

disconnect
cfg socket

Figure 46. handle config changes structure chart

 68

Table 56. Routines called by get config changes

ITEM DESCRIPTION
get config changes Look for data arriving on the configuration changes socket. Read the

data when it is present.
process config request Read the configuration change from the socket with error checking.
process status message MDI Process Status routine used to log a status message for the

specified status type. If the process status library was configured to use
a status logger then the message is forwarded to the status logger.
Otherwise the message is written to the configured status log file.

select C Library Function used to multiplex synchronous I/O. The list of file
descriptors for reading, writing, and receiving exceptions are examined
and any file descriptors that are ready for reading, writing, or have an
exceptional condition pending are identified.

4.2.3.2.33 process config request

This function processes the requests received on the configuration change socket. Requests may be
of two types: a connection request or a change request. If the request is on the connect socket, then
unless there are errors, the connection is accepted and the new socket is set to be non-blocking.
Errors may cause the socket to be disconnected. If the request is not on the listen socket, then read
the configuration change data. If an error occurs then the socket may be disconnected. Otherwise,
return the configuration change data to the caller. The structure chart for process config request is
shown in Figure 48. Descriptions of the routines called by process config request are provided in
Table 57.

get
config
changes

select
process
config
request

process
status
message

Figure 47. get config changes structure chart

 69

Table 57. Routines called by process config request

ITEM DESCRIPTION
disconnect cfg socket Disconnect from a socket.
FD ISSET C library macro to check to see if a given socket descriptor in a set is set

(requires processing).
FD SET C library macro to set a file descriptor in a file descriptor set.
process config request Read the configuration change from the socket with error checking.
process status message MDI Process Status routine used to log a status message for the specified

status type. If the process status library was configured to use a status
logger then the message is forwarded to the status logger. Otherwise the
message is written to the configured status log file.

sock accept MDI Socket routine that accepts connections on the specified listen
socket.

sock readn MDI Socket routine that reads a specified number of bytes from the
specified socket.

sock set nonblocking MDI Socket routine that sets the specified socket to be a non-blocking
socket.

process
config
request

FD
ISSET

disconnect
cfg socket

sock
accept

process
status
message

FD
SET

sock
set
nonblocking

sock
readn

Figure 48. process config request structure chart

 70

4.2.3.2.34 disconnect cfg socket

This function clears the a socket descriptor from a
descriptor set and closes the socket. The structure chart for
disconnect cfg socket is shown in Figure 49. Descriptions
of the routines called by disconnect cfg socket are provided
in

Table 58.

Table 58. Routines called by disconnect cfg socket

ITEM DESCRIPTION
disconnect cfg socket Disconnect from a socket.
FD CLR C library macro which clears a given file descriptor in a file descriptor set.
sock close MDI Socket routine used to close the specified socket connection.

4.2.3.2.35 lookup port by site num

This function uses the passed site number and looks for a corresponding port on which data is
arriving for that port. The indexed port number is returned or -1 if no port was found. Neither a
structure chart nor a description of routines called table is provided as lookup port by site num
calls no subroutines.

4.2.3.2.36 update status data

This function updates the DCM global status information. It first marks all sites as not connected.
Next, it updates the connected status for each port with a defined site. If all sites are okay, then
overall status is refreshed to be okay. The status is set no okay elsewhere. Finally, the status is
cleared for all sites that are not connected. update status data calls only process status set status
type value, so no structure chart is provided. Descriptions of the routines called by update status
data are provided in Table 59.

disconnect
cfg socket

FD
CLR sock_close

Figure 49. disconnect cfg socket
structure chart

 71

Table 59. Routines called by update status data

ITEM DESCRIPTION
process status set status ... This function is used to set the value associated with the specified

process status status type.
update status data Update global site status information.

4.2.3.3 Data Processing and Filtering (DPF)

The Data Processing and Filtering (DPF) process receives tag reads from DCM, archives them to
disk, and stores them in a local hash table. Periodically, it updates the speed, time and status of the
AVI links for the Data Server. It also archives read quantities and speed and time averages. Tag
data is purged when it has aged and is no longer useful. The following sections describe the major
DPF data structures and the functions that are called by DPF, which are listed in depth-first order
beginning with the main entry point.

4.2.3.3.1 Data Structures

This section describes the major data
structures used by DPF. The major data
structures include the tag data hash table,
the site link table, and the link data table.

4.2.3.3.1.1 Tag Data Hash Table

A diagram of the tag data hash table is
presented in Figure 50. This hash table is
used to store the tag read data in an
organized fashion so that it can be
efficiently located and maintained.

The tag data is organized by site and
there is one entry for each site in the
system. Each site entry includes a pointer
to a hash table and to an overflow table,
for a total of one hash table and one
overflow table per site.

The number of entries in each hash table
is configurable at runtime. Each entry in
the hash table has a pointer to a tag data
group, which is a table of tag data. Each
tag data structure contains the
unscrambled tag identifier and the time at
which the tag was read. The number of
entries in the tag group is configurable at
runtime.

The overflow table is used to store tag
reads when the tag hash table is full. The size of the overflow table is configurable at runtime.

Tag data can be located for a particular site by computing an index into the has table for that site.
This computation is based on the tag identifier and is designed to evenly distribute the tag

Figure 50. Tag Data Hash Table Data Structure

 72

identifiers across each of the entries in the hash table. Once the correct hash entry is located, the
corresponding tag group is sequentially searched. If the tag is not located, the overflow table is then
searched.

4.2.3.3.1.2 Site Link Table

The site link table is shown graphically in Figure 51. This table is an M × M matrix where M is the
number of sites in the system. The matrix serves as a cross reference between source-destination
pairs. If two sites form a source-destination pair in the site network, the corresponding entry in the
site link table will indicate the relationship. For example, if site 1 is a source site to site 2, then
entry [1,2] in the matrix will contain an entry containing data related to source-destination pair
[1,2].

Each entry in the matrix includes generic data about the site-destination pair such as the distance,
nominal speed, and current average speed of the links between the sites. Each entry also contains
pointers to linked lists that contain the tag matches and the links that connect the two sites.

The linked list of links contains a list of all of the TransGuide AVI Link Identifiers that connect the
two sites. The list of matches contains each of the matches that are currently active for the given
source-destination pair.

4.2.3.3.1.3 Link Data Table

A link data table is also maintained by the DPF process and is depicted in. This table contains one
entry for each link in the AVI System. The data structures stored in this table contain the current
average travel time and average speed associated with each link.

Figure 51. Site Link Table Data Structure

Figure 52. Link Data Table Data Structure

 73

4.2.3.3.2 main

The main routine is responsible for setting up the clean up routines, configuring the appropriate
signals to catch and ignore, etc. Virtually all the actual initialization operations occur in
subroutines that are detailed later in the document. The structure chart for the main routine is
shown in Figure 53. Descriptions of the routines called by the main routine of DPF are provided
in Table 60.

Table 60. Routines called by DPF main

ITEM DESCRIPTION
atexit C Library Function used to register routines to be called on normal

termination of a program.
avi dpf cfg Load configuration data and AVI specific data (from data files) and

allocate speed and time data arrays based on the number of links.
avi dpf init archive Open DPF archive files.
avi dpf init log Initialize status logging for DPF.

main
(DPF)

process
status
message

sock
listen
with
reuse

avi
dpf
cfg

avi
dpf
init
log

atexit

avi
dpf
init
archive

init
dpf
sites

init
dpf
links

avi
dpf
init
shm

signal
setup

dpf
main
loop

exit
handler

Figure 53. AVI DPF main structure chart

 74

ITEM DESCRIPTION
avi dpf init shm Attach/create shared memory used by DPF.
dpf main loop This is the main loop for DPF. It alternates between waiting for new tag

data to arrive from DCM and performing the periodic tasks: sending
heartbeats, calculating new averages and sending them to Data Server,
and archiving long term averages to file.

exit handler Perform exit operations.
init dpf links Initialize static data structures for DPF link information.
init dpf sites Initialize static data structures for DPF site information. Allocate

hashing table for tag data. Initialize encryption for tag scrambling.
main (DPF) This is the main entry point for the Data Processing and Filtering process.
process status message MDI Process Status routine used to log a status message for the specified

status type. If the process status library was configured to use a status
logger then the message is forwarded to the status logger. Otherwise the
message is written to the configured status log file.

signal setup This function sets up the signal handler for all signals that are not
currently handled within the calling process.

sock listen with reuse MDI Common Socket routine used to set up a socket to listen for
connections and to make the socket address reusable.

4.2.3.3.3 avi dpf cfg

avi dpf cfg loads the AVI configuration data and AVI specific data files. It is passed the MDI and
AVI configuration pathnames which are passed to the AVI configuration utility function load cfg
data. The AVI site data and site/link cross-reference data files are loaded using the avi get avi
data AVI file utility. This routine also allocates global time and speed data structures for the AVI
links. The structure chart for avi dpf cfg is shown in Figure 54. Descriptions of the routines called
by avi dcm cfg are provided in Table 61.

 75

Table 61. Routines called by avi dpf cfg

ITEM DESCRIPTION
avi dpf cfg Load configuration data and AVI specific data (from data files) and allocate

speed and time data arrays based on the number of links.
avi get avi data This function loads the AVI link and site data from files into dynamically

allocated data structures.
load cfg data This function loads the MDI and AVI configuration data. Data is obtained from

configuration files and system function calls.
malloc C library function to allocate memory on the heap.

4.2.3.3.4 avi dpf init log

This routine determines on which host the AVI status logger is running. The AVI status logging
host is determined from the configuration data or assumed to be the same as this program’s host if
not defined in the configuration data. Once the hostname is determined, the routine connects to the
AVI status logger process. The structure chart for avi dpf init log is shown in Figure 55.
Descriptions of the routines called by avi dpf init log are provided in Table 62.

avi
dpf
cfg

load
cfg
data

avi
get
avi data

malloc

Figure 54. avi dpf cfg structure chart

avi
dpf
init log

gethostname strdup strncpy
process
status config
with logr

Figure 55. avi dpf init log structure chart

 76

Table 62. Routines called by avi dpf init log

ITEM DESCRIPTION
avi dpf init log Initialize status logging for DPF.
gethostname C library function to get the hostname on which the calling

process is running.
process status config with logr This routine is sets up the connection to the status logger used by

the calling program.
strdup C library function to allocate memory for and make a copy of a

string.
strncpy C Library Function to copy a specified number of characters from

a source string to a destination string.

4.2.3.3.5 exit handler

This routine performs exit functions for DPF. It is registered with the system using the system
atexit function and is called automatically when a program exit condition occurs. The function
logs a message to the status log indicating that DPF exited. exit handler calls only process status
message so no structure chart is provided. Descriptions of the routines called by exit handler are
provided in Table 63.

Table 63. Routines called by exit handler

ITEM DESCRIPTION
exit handler Perform exit operations.
process status message MDI Process Status routine used to log a status message for the specified

status type. If the process status library was configured to use a status
logger then the message is forwarded to the status logger. Otherwise the
message is written to the configured status log file.

4.2.3.3.6 avi dpf init archive

This function creates the archive files for DPF. The archives are: tag data, speed data, and
quantity data. All files are configured without time stamps. The structure chart for avi dpf init
archive is shown in Figure 56. Descriptions of the routines called by avi dpf init archive are
provided in Table 64.

avi dpf
init
archive

sl
new

sl set
timestamping

process
status
message

Figure 56. avi dpf init archive structure chart

 77

Table 64. Routines called by avi dpf init archive

ITEM DESCRIPTION
avi dpf init archive Open DPF archive files.
process status message MDI Process Status routine used to log a status message for the specified

status type. If the process status library was configured to use a status
logger then the message is forwarded to the status logger. Otherwise the
message is written to the configured status log file.

sl new This function establishes a new archive file using the passed name and
path.

sl set timestamping This function enables/disables the timestamping feature for a log file.

4.2.3.3.7 init dpf sites

This function initializes the hash tables by calling hash init. Next, it allocates the space used for
tag data updates to the status GUI. Finally, it initializes the encryption mechanism used to
scramble the tag ids. The structure chart for init dpf sites is shown in Figure 57. Descriptions of
the routines called by init dpf sites are provided in Table 65.

Table 65. Routines called by init dpf sites

ITEM DESCRIPTION
dpf crypt init Initialize encryption algorithm so it varies with each execution of the program.
hash init Allocate and initialize DPF tag data hash table.
init dpf sites Initialize static data structures for DPF site information. Allocate hashing table for

tag data. Initialize encryption for tag scrambling.
malloc C library function to allocate memory on the heap.

init
dpf
sites

hash
init

dpf
crypt
init

malloc

Figure 57. init dpf sites structure chart

 78

4.2.3.3.8 hash init

This function initializes the hash tables used by DPF to store
tag reads. The organization of the hash tables is described in
Appendix TBD. The array of pointers to hash tables is
allocated first with one entry per site. Next, the code loops to
create the hash structure for each site. If any errors occur
during the allocation of this data, a special free function is
called to free all the constituent parts. The structure chart
for hash init is shown in Figure 58. Descriptions of the
routines called by hash init are provided in

Table 66.

Table 66. Routines called by hash init

ITEM DESCRIPTION
calloc C Library Function to allocate the specified amount of space and fill it with zeros.
hash free Free the DPF global tag data hash table. The table may be incomplete when this

function is called.
hash init Allocate and initialize DPF tag data hash table.

4.2.3.3.9 hash free

This function frees the hash structure used by DPF to organize tag reads. It consists of a pair of
loops to free the structures on a site and group basis. hash free calls only free so no structure
chart is provided. Descriptions of the routines called by hash free are provided in Table 67.

Table 67. Routines called by hash free

ITEM DESCRIPTION
free C Library Function used to free previously allocated memory and make it available for

further allocation.
hash free Free the DPF global tag data hash table. The table may be incomplete when this

function is called.

4.2.3.3.10 dpf crypt init

This function uses the current time to initialize the encryption of tag id data. The resulting key is
stored globally. dpf crypt init calls only time so no structure chart is provided. Descriptions of the
routines called by dpf crypt init are provided in Table 68.

hash
init

calloc
hash
free

Figure 58. hash init structure
chart

 79

Table 68. Routines called by dpf crypt init

ITEM DESCRIPTION
dpf crypt init Initialize encryption algorithm so it varies with each execution of the program.
time C library function to get the current system time in Unix format.

4.2.3.3.11 init dpf links

This function allocates and initializes the link network table and link status tables. The
organization of the link network table is contained in Appendix TBD. The link/site cross-reference
data file is read and used to initialize the network table. The structure chart for init dpf links is
shown in Figure 59. Descriptions of the routines called by init dpf links are provided in Table 69.

Table 69. Routines called by init dpf links

ITEM DESCRIPTION
calloc C Library Function to allocate the specified amount of space and fill it

with zeros.
init dpf links Initialize static data structures for DPF link information.
process status message MDI Process Status routine used to log a status message for the specified

status type. If the process status library was configured to use a status
logger then the message is forwarded to the status logger. Otherwise the
message is written to the configured status log file.

read xref data Read the site/link cross reference data from file allocating the network
structure, storing the read data and performing other initializations as
appropriate.

4.2.3.3.12 read xref data

This function reads the link/site cross-reference data file and uses it to initialize the network table.
It reads the number of entries in the file then enters a loop to read the link data. Each line is read

init
dpf
links

calloc
read
xref
data

process
 status
message

Figure 59. init dpf links structure chart

 80

then processed. Lines may be commented out with a “#” in the first column. Each line contains
the source and destination site names and the threshold percentage. This is followed by one or
more triples that contain the TransGuide link ID, distance over the link, and nominal speed. Each
triple is read and inserted in the list of TransGuide links for this AVI link. Once all of the
TransGuide links have been read, the links are traversed to calculate a weighted nominal speed for
the corresponding AVI link. The structure chart for read xref data is shown in Figure 60.
Descriptions of the routines called by read xref data are provided in Table 70.

Table 70. Routines called by read xref data

ITEM DESCRIPTION
avi file fopen file Open file identified by passed filename and path with error checking.
fclose C library function to close a stream.
fgets C library function to read a string from an input stream.
fscanf C library function to scan an input stream into the referenced variables

according to the specified format string.

read
xref
data

avi
file
fopen
file

fscanf

fclose

fgets

sscanf

strtok

lookup
site
by
name

NET
THRESH

NET
DIST

insert
TGLinkID
node

NET
LINK

NET
NOM

process
status
message

Figure 60. read xref data structure chart

 81

ITEM DESCRIPTION
insert TGLinkID node Determine the site indices in the link network, and allocate and store the

link data.
lookup site by name Lookup the site index for a site using its name.
NET DIST Macro to ease references to the distance field of the "two-dimensional"

network structure which was dynamically allocated as a "one-
dimensional" array of structures.

NET LINK Macro to ease references to the link field of the "two-dimensional"
network structure which was dynamically allocated as a "one-
dimensional" array of structures.

NET NOM Macro to ease references to the nominal speed field of the "two-
dimensional" network structure which was dynamically allocated as a
"one-dimensional" array of structures.

NET THRESH Macro to ease references to the threshold field of the "two-dimensional"
network structure which was dynamically allocated as a "one-
dimensional" array of structures.

process status message MDI Process Status routine used to log a status message for the specified
status type. If the process status library was configured to use a status
logger then the message is forwarded to the status logger. Otherwise the
message is written to the configured status log file.

read xref data Read the site/link cross reference data from file allocating the network
structure, storing the read data and performing other initializations as
appropriate.

sscanf C library function to scan a string into the referenced variables according
to the specified format string.

strtok C Library Function used to break the specified string into a sequence of
tokens.

4.2.3.3.13 insert TGLinkID node

This function inserts the TransGuide link data at the appropriate index in the network (AVI link).
First it uses the passed source and destination AVI link identifiers to get their corresponding site
index. Next, it allocates a new node for the link id data and assigns the index corresponding to the
TransGuide link id, link distance and nominal speed. Last, it inserts the new record into the list of
TransGuide link ids for this AVI link. The structure chart for insert TGLinkID nodes is shown in
Figure 61. Descriptions of the routines called by insert TGLinkID node are provided in Table 71.

 82

Table 71. Routines called by insert TGLinkID node

ITEM DESCRIPTION
atof C Library Function to convert an ASCII string to an float value.
calloc C Library Function to allocate the specified amount of space and fill it

with zeros.
free C Library Function used to free previously allocated memory and make

it available for further allocation.
insert TGLinkID node Determine the site indices in the link network, and allocate and store the

link data.
lookup site by name Lookup the site index for a site using its name.
lookup TGLinkID idx Look up the TransGuide link id index using its identifier.
NET LINK Macro to ease references to the link field of the "two-dimensional"

network structure which was dynamically allocated as a "one-
dimensional" array of structures.

process status message MDI Process Status routine used to log a status message for the
specified status type. If the process status library was configured to use
a status logger then the message is forwarded to the status logger.
Otherwise the message is written to the configured status log file.

4.2.3.3.14 avi dpf init shm

DCM maintains the status data in shared memory for DPF and AVI GUI. DPF uses the
information to mark link status in the link speed and time messages sent to Data Server. AVI GUI
uses the information to update the user on the state of the system. This function first creates or

insert
TGLinkID
node

lookup
site by
name

process
status
message

free

calloc

lookup
TGLinkID
idx

atof

NET
LINK

Figure 61. insert TGLinkID node structure chart

 83

attaches to the shared memory depending on whether it already exists. Next, it allocates a
temporary copy of the status data that is used for initialization. The initialization data is written to
make sure later reads do not get garbage. The structure chart for avi dcm init shm is shown in
Figure 62. Descriptions of the routines called by avi dcm init shm are provided in Table 72.

Table 72. Routines called by avi dpf init shm

ITEM DESCRIPTION
avi create segment This function connects to or creates a shared memory segment with error

checking.
avi dpf init shm Attach/create shared memory used by DPF.
config shm mgr MDI Shared Memory Manager routine used to initialize and configure the

shared memory manager library routines for the calling program.
free C Library Function used to free previously allocated memory and make it

available for further allocation.
init dcm status Initialize the passed DCM status structure.
malloc C library function to allocate memory on the heap.
process status message MDI Process Status routine used to log a status message for the specified

status type. If the process status library was configured to use a status
logger then the message is forwarded to the status logger. Otherwise the
message is written to the configured status log file.

write segment This function writes the passed data into the identified shared memory
segment.

avi
dpf
init shm

init
dcm
status

config
shm
mgr

avi
create
segment

process
status
message

malloc

write
segment

free

Figure 62. avi dpf init shm structure chart

 84

4.2.3.3.15 dpf main loop

This function performs the main processing for DPF. It alternates between waiting for new tag
data to arrive from DCM and performing the periodic tasks: send heartbeat, calculate new averages
and send them to Data Server, and archive long term averages to file. The structure chart for dpf
main loop is shown in Figure 63. Descriptions of the routines called by dpf main loop are
provided in Table 73.

Table 73. Routines called by dpf main loop

ITEM DESCRIPTION
dpf main loop This is the main loop for DPF. It alternates between waiting for

new tag data to arrive from DCM and performing the periodic
tasks: sending heartbeats, calculating new averages and sending
them to Data Server, and archiving long term averages to file.

FD SET C library macro to set a file descriptor in a file descriptor set.
FD ZERO C library macro to zero a file selector set used with select().
getrlimit C library function to get the specified system limit from the system.
min Macro to return the minimum of two like atomic values.
perform periodic updates Perform DPF update operations which occur on a periodic basis:

heartbeat, update speed/time data, archive data, and purge old data.

dpf
main
loop

FD
ZERO

FD
SET

min

getrlimit

select

process
status
set
status
...

process
status
message

receive
tag

process
tag

perform
periodic
updates

time

Figure 63. dpf main loop structure chart

 85

ITEM DESCRIPTION
process status message MDI Process Status routine used to log a status message for the

specified status type. If the process status library was configured to
use a status logger then the message is forwarded to the status
logger. Otherwise the message is written to the configured status
log file.

process status set status ... This function is used to set the value associated with the specified
process status status type.

process tag This function takes the passed tag read data and performs
processing on it: store it in the hash table, look for matches, etc.

receive tag This function accepts connections from DCM for the tag data. It
reads the tag data from the socket, and return it to the caller for
further processing.

select C Library Function used to multiplex synchronous I/O. The list of
file descriptors for reading, writing, and receiving exceptions are
examined and any file descriptors that are ready for reading,
writing, or have an exceptional condition pending are identified.

time C library function to get the current system time in Unix format.

4.2.3.3.16 receive tag

This function is called by dpf main loop when its select call indicates that a request is arriving on
one of its sockets. This function checks the request to see if it is on the listen socket. If it is, it
accepts the connection and sets the socket to be non-blocking. Otherwise, the activity must be the
arrival of tag data. The tag data is read from the socket and returned to the caller. If an error
occurs, this routine may disconnect the socket. The structure chart for receive tag is shown in
Figure 64. Descriptions of the routines called by receive tag are provided in Table 74.

 86

Table 74. Routines called by receive tag

ITEM DESCRIPTION
disconnect socket Disconnect from a socket.
FD ISSET C library macro to check to see if a given socket descriptor in a set is

set (requires processing).
FD SET C library macro to set a file descriptor in a file descriptor set.
process status message MDI Process Status routine used to log a status message for the

specified status type. If the process status library was configured to use
a status logger then the message is forwarded to the status logger.
Otherwise the message is written to the configured status log file.

receive tag This function accepts connections from DCM for the tag data. It reads
the tag data from the socket, and return it to the caller for further
processing.

sock accept MDI Socket routine that accepts connections on the specified listen
socket.

sock readn MDI Socket routine that reads a specified number of bytes from the
specified socket.

sock set nonblocking MDI Socket routine that sets the specified socket to be a non-blocking
socket.

receive
tag

FD
ISSET

FD
SET

sock
accept

process
status
message

sock
set
nonblocking

sock
readn

disconnect
socket

Figure 64. receive tag structure chart

 87

4.2.3.3.17 disconnect socket

This function clears the a socket descriptor from a descriptor set and closes the socket. The
structure chart for disconnect socket is shown in Figure 65. Descriptions of the routines called by
disconnect socket are provided in Table 75.

Table 75. Routines called by disconnect socket

ITEM DESCRIPTION
disconnect socket Disconnect from a socket.
FD CLR C library macro which clears a given file descriptor in a file descriptor set.
sock close MDI Socket routine used to close the specified socket connection.

4.2.3.3.18 process tag

This function takes a new tag read and performs processing on it. First it adds the tag to the
appropriate hash table and logs it in the tag archive. Next, it enters a loop that searches through
the sites that are potential sources for this tag. If a match is found, and the time delta is positive,
then the match is inserted with the computed travel time and speed and the source tag is deleted
from the hash table. The structure chart for process tag is shown in Figure 66. Descriptions of
the routines called by process tag are provided in Table 76.

disconnect
socket

FD
CLR

sock
close

Figure 65. disconnect socket
structure chart

 88

Table 76. Routines called by process tag

ITEM DESCRIPTION
add tag Take the passed tag id. Store it in the hash table, scramble it, and archive it to the

tag data archive file.
hash remove Remove the tag record indicated by the passed tag id and site index from the global

tag data hash table.
insert match Insert a tag match record (match time and speed) for the link specified by the source

and destination site.
match tag Use the passed tag id and search for matching tags in associated sites.
NET DIST Macro to ease references to the distance field of the "two-dimensional" network

structure which was dynamically allocated as a "one-dimensional" array of
structures.

process tag This function takes the passed tag read data and performs processing on it: store it
in the hash table, look for matches, etc.

4.2.3.3.19 add tag

This function takes a tag read and stores it in the hash table, scrambles the tag id, and archives it to
the tag archive file. First, it looks up the site index using the RFS source number. Next, it
converts the time of the tag read into a Unix format time and inserts the tag data into the hash
table. Then, it updates the tag data for the status GUI. Finally, it encrypts the tag id and writes
the tag data to the tag archive file. The structure chart for add tag is shown in Figure 67.
Descriptions of the routines called by add tag are provided in Table 77.

process
tag

add
tag

match
tag

insert
match

hash
remove

NET
DIST

Figure 66. process tag structure chart

 89

Table 77. Routines called by add tag

ITEM DESCRIPTION
add tag Take the passed tag id. Store it in the hash table, scramble it, and

archive it to the tag data archive file.
conv to unix time Convert time data in raw format into a Unix style time value.
dpf crypt Encrypt the passed tag id data replacing the plaintext tag id with the

encrypted tag id.
hash insert Take the tag data that was passed into update segment and update the

passed copy of the shared memory segment.
lookup site by num Lookup the site index for a site using its hardware "source number".
process status message MDI Process Status routine used to log a status message for the

specified status type. If the process status library was configured to use
a status logger then the message is forwarded to the status logger.
Otherwise the message is written to the configured status log file.

sl write This function writes the passed data to the specified archive file.
update segment MDI library routine to update the identified shared memory.

add
tag

update
tag
shm

lookup
site by
num

conv
to unix
time

hash
insert

sl
write

process
status
message

update
segment

dpf
crypt

Figure 67. add tag structure chart

 90

ITEM DESCRIPTION
update tag shm Take the new passed tag data and update the buffer which is passed to

this function. This function is called indirectly through the update
segment library function.

4.2.3.3.20 conv to unix time

This function takes the time fields from the tag data and stores them into a Unix broken down time
structure. The broken down time structure is then converted to a standard Unix time using mktime.
The structure chart for conv to unix time is shown in Figure 68. Descriptions of the routines called
by conv to unix time are provided in Table 78.

Table 78. Routines called by conv to unix time

ITEM DESCRIPTION
atoi C Library Function to convert an ASCII string to an integer value.
conv to unix time Convert time data in raw format into a Unix style time value.
mktime C library function to convert a Unix broken down time structure into a normal

Unix time value.
strncpy C Library Function to copy a specified number of characters from a source

string to a destination string.

4.2.3.3.21 hash insert

This function takes the tag id and calculates a hash value for the record. The record is then
inserted in the indexed group for that site’s hash table or in the overflow group for that hash site.
hash insert calls only hash calc so no structure chart is provided. Descriptions of the routines
called by hash insert are provided in Table 79.

conv
to unix
time

strncpy atoi mktime

Figure 68. conv to unix time structure chart

 91

Table 79. Routines called by hash insert

ITEM DESCRIPTION
hash calc Calculate the hash value for an AVI tag.
hash insert Take the tag data that was passed into update segment and update the passed copy of

the shared memory segment.

4.2.3.3.22 hash calc

This function returns the result of performing hash fold on the key and dividing to generate the
final hash index. hash calc calls only hash fold so no structure chart is provided. Descriptions of
the routines called by hash calc are provided in Table 80.

Table 80. Routines called by hash calc

ITEM DESCRIPTION
hash calc Calculate the hash value for an AVI tag.
hash fold Perform key folding for an AVI tag id (the key).

4.2.3.3.23 hash fold

This function performs key folding on the AVI tag id (the key). The folding consists of adding up
the key broken up into integer chunks without overflow. The key must be an integral number of
integer chunks for this to work. Neither a structure chart nor a description of routines called table
is provided as hash fold calls no subroutines.

4.2.3.3.24 update tag shm

Take the tag data that was passed into update segment and update the passed copy of the shared
memory segment. Neither a structure chart nor a description of routines called table is provided as
update tag shm calls no subroutines.

4.2.3.3.25 dpf crypt

This routine uses the Unix crypt utility to encrypt the tag id in 8 character chunks. The key used
by crypt is set when dpf crypt init is called. dpf crypt calls only crypt so no structure chart is
provided. Descriptions of the routines called by dpf crypt are provided in Table 81.

Table 81. Routines called by dpf crypt

ITEM DESCRIPTION
crypt C library function used to encrypt Unix passwords. The function operates on up to

eight characters at a time.
dpf crypt Encrypt the passed tag id data replacing the plaintext tag id with the encrypted tag id.

4.2.3.3.26 match tag

This routine takes the source and destination site and a tag id and searches for entries. If both are
found, the delta between them is computed and the resulting travel time is returned. match tag

 92

calls only hash find so no structure chart is provided. Descriptions of the routines called by match
tag are provided in Table 82.

Table 82. Routines called by match tag

ITEM DESCRIPTION
hash find Locate a tag record in the global tag data hash table returning only the tag data.
match tag Use the passed tag id and search for matching tags in associated sites.

4.2.3.3.27 hash find

This function searches in the specified site for a tag using its id. The function returns success or
failure and passes back a pointer to the tag data (if found) but not the indexing information for the
tag data. hash find calls only hash find idx so no structure chart is provided. Descriptions of the
routines called by hash find are provided in Table 83.

Table 83. Routines called by hash find

ITEM DESCRIPTION
hash find Locate a tag record in the global tag data hash table returning only the tag data.
hash find idx Locate a tag record in the global hash table, and return its indexing information and

the tag record.

4.2.3.3.28 hash find idx

This function searches in the specified site for the specified tag using its id. The function
calculates the has entry within the site for this tag, then loops through the indexed group, and, if
necessary, the overflow group looking for the tag. The function returns success or failure and
passes back a pointer to the tag data (if found) along with the indexing information for the tag data.
hash find idx calls only hash calc so no structure chart is provided. Descriptions of the routines
called by hash find idx are provided in Table 84.

Table 84. Routines called by hash find idx

ITEM DESCRIPTION
hash calc Calculate the hash value for an AVI tag.
hash find idx Locate a tag record in the global hash table, and return its indexing information and

the tag record.

4.2.3.3.29 insert match

This function is passed the source and destination site, travel time, and match time for a tag match.
A match record is allocated and loaded and placed at the head of the match list for the specified
source and destination site. The structure chart for insert match is shown in Figure 69.
Descriptions of the routines called by insert match are provided in Table 85.

 93

Table 85. Routines called by insert match

ITEM DESCRIPTION
calloc C Library Function to allocate the specified amount of space and fill it

with zeros.
insert match Insert a tag match record (match time and speed) for the link specified by

the source and destination site.
NET DIST Macro to ease references to the distance field of the "two-dimensional"

network structure which was dynamically allocated as a "one-
dimensional" array of structures.

NET MATCH Macro to ease references to the match field of the "two-dimensional"
network structure which was dynamically allocated as a "one-
dimensional" array of structures.

process status message MDI Process Status routine used to log a status message for the specified
status type. If the process status library was configured to use a status
logger then the message is forwarded to the status logger. Otherwise the
message is written to the configured status log file.

insert
match

calloc
NET
DIST

NET
MATCH

process
status
message

Figure 69. insert match structure chart

 94

4.2.3.3.30 hash remove

This function removes a tag record from the hash table for
the indexed site. First, the indexing information for this tag
is determined. If this fails, the function returns. If the entry
is found in the main group, then it is removed from that
group, and the first tag with the same hash index in the
overflow group is copied into its place. If no tag was
removed then the group is compressed. Next, if the entry
was not found in the main group or an entry was copied from
the overflow group, then the overflow group must be
compressed. The structure chart for hash remove is shown
in Figure 70. Descriptions of the routines called by hash
remove are provided in Table 86.

Table 86. Routines called by hash remove

ITEM DESCRIPTION
hash calc Calculate the hash value for an AVI tag.
hash find idx Locate a tag record in the global hash table, and return its indexing information and

the tag record.
hash remove Remove the tag record indicated by the passed tag id and site index from the global

tag data hash table.

4.2.3.3.31 perform periodic updates

This function performs the periodic operations for DPF. It maintains the last time each operation
was performed, and checks the current time minus the last time and compares it to the time limit to
see if it is time to do that operation. The operations performed are: send heartbeat, update speed
and time averages and status data and send them to the DSIF process, archive the link time/speed
data, archive the read quantity data, and purge old link time/speed data. The structure chart for
perform periodic updates is shown in Figure 71. Descriptions of the routines called by perform
periodic updates are provided in Table 87.

hash
remove

hash
find
idx

hash
calc

Figure 70. hash remove structure chart

 95

Table 87. Routines called by perform periodic updates

ITEM DESCRIPTION
archive quantity data Write the current read quantity values to the archive file.
archive speed data Write the current archive travel time and speed values to the

archive file.
avi dsif send link write request Package the AVI link speed or time data into the correct format

and send it to the Data Server.
avi send heartbeat This function sends the heartbeat to the AVI heartbeat process

with automatic reconnection and error checking.
perform periodic updates Perform DPF update operations which occur on a periodic

basis: heartbeat, update speed/time data, archive data, and purge
old data.

perform
periodic
updates

avi
send
heartbeat

process
status
message

process
status
set
status
...

update
averages

update
link
status

update
speed
data

avi dsif
send
link
write
request

update
archive
averages

archive
speed
data

archive
quantity
data

purge
data

Figure 71. perform periodic updates structure chart

 96

ITEM DESCRIPTION
process status message MDI Process Status routine used to log a status message for the

specified status type. If the process status library was
configured to use a status logger then the message is forwarded
to the status logger. Otherwise the message is written to the
configured status log file.

process status set status ... This function is used to set the value associated with the
specified process status status type.

purge data Purge obsolete data from the global match and tag data
structures.

update archive averages This function updates the current average archive travel speeds
in the DPF global link network.

update averages This function updates the current average travel speeds in the
DPF global link network.

update link status Update the status values in the global speed and time arrays that
are organized by TransGuide link id.

update speed data Update the data values in the global speed and time arrays that
are organized by TransGuide link id.

4.2.3.3.32 update averages

This function loops through all sites and destinations to update the average speeds for each defined
link. If the previous speed is valid, then new average is used by calculating a threshold; otherwise,
the default limits are used. The average speed is calculated using the newly calculated limits.
Finally, if the resulting calculation used values, then the speed and time are updated; otherwise, if
no values were used in the calculation, then the current value is retained, unless the nominal data
time-out has expired. In that case, the nominal speed is reported See Appendix TBD for more
details on how the speed values are calculated. The structure chart for update averages is shown
in Figure 72. Descriptions of the routines called by update averages are provided in Table 88.

 97

Table 88. Routines called by update averages

ITEM DESCRIPTION
calc avg speed Calculate the average speed over a link using matches which have not aged

beyond their usefulness.
NET DIST Macro to ease references to the distance field of the "two-dimensional" network

structure which was dynamically allocated as a "one-dimensional" array of
structures.

NET SPEED Macro to ease references to the speed field of the "two-dimensional" network
structure which was dynamically allocated as a "one-dimensional" array of
structures.

NET THRESH Macro to ease references to the threshold field of the "two-dimensional" network
structure which was dynamically allocated as a "one-dimensional" array of
structures.

NET TIME Macro to ease references to the time field of the "two-dimensional" network
structure which was dynamically allocated as a "one-dimensional" array of
structures.

time C library function to get the current system time in Unix format.
update averages This function updates the current average travel speeds in the DPF global link

network.

4.2.3.3.33 calc avg speed

This function calculates the average speed for one site. The function loops through the match
nodes associated with the site. Each match in the list is included in the averages until the cutoff
time is reached (matches are too old). Then walking the match list ends since the matches are

update
averages

NET
DIST

NET
SPEED

NET
THRESH

NET
TIME

time
calc
avg
speed

Figure 72. update averages structure chart

 98

included in reverse chronological order. The average is
calculated and returned. If no matches were found, then the
negative of the nominal value is returned. The structure
chart for calc avg speed is shown in Figure 73.
Descriptions of the routines called by calc avg speed are
provided in

Table 89.

Table 89. Routines called by calc avg speed

ITEM DESCRIPTION
calc avg speed Calculate the average speed over a link using matches which have not aged

beyond their usefulness.
NET MATCH Macro to ease references to the match field of the "two-dimensional" network

structure which was dynamically allocated as a "one-dimensional" array of
structures.

NET NOM Macro to ease references to the nominal speed field of the "two-dimensional"
network structure which was dynamically allocated as a "one-dimensional" array
of structures.

4.2.3.3.34 update link status

This function updates the status for the TransGuide links based on the associated physical links. A
local copy of the DCM site status is allocated. Next, the data is read from shared memory. A loop
is executed once for each physical site. This site is used first as a source and then as a destination
within two inner loops. The inner loops sweep through the sites as well. Sites default to
LINKACTIVE. In each loop, if any of the physical sites which map to a TransGuide link is not
connected, then the status is set to LINKINACTIVE. The local memory is freed upon completion.
The structure chart for update link status is shown in Figure 74. Descriptions of the routines
called by update link status are provided in Table 90.

calc
avg
speed

NET
MATCH

NET
NOM

Figure 73. calc avg speed structure
chart

 99

Table 90. Routines called by update link status

ITEM DESCRIPTION
calloc C Library Function to allocate the specified amount of space and

fill it with zeros.
free C Library Function used to free previously allocated memory and

make it available for further allocation.
NET SPEED Macro to ease references to the speed field of the "two-dimensional"

network structure which was dynamically allocated as a "one-
dimensional" array of structures.

NET STAT Macro to ease references to the status field of the "two-
dimensional" network structure which was dynamically allocated as
a "one-dimensional" array of structures.

process status message MDI Process Status routine used to log a status message for the
specified status type. If the process status library was configured to
use a status logger then the message is forwarded to the status
logger. Otherwise the message is written to the configured status
log file.

process status set status ... This function is used to set the value associated with the specified
process status status type.

read segment MDI library routine to read the identified shared memory segment.
update link status Update the status values in the global speed and time arrays that are

organized by TransGuide link id.

update
link
status

calloc

process
status
message

read
segment

process
status set
status ...

free

NET
STAT

NET
SPEED

Figure 74. update link status structure chart

 100

4.2.3.3.35 update speed data

This function loops through the entire link network looking for valid links. For each valid link, the
list of TransGuide links is walked. Each TransGuide link is indexed in the speed and time arrays
which are sent to Data Server and the corresponding status, time and speed values are updated.
The structure chart for update speed data is shown in Figure 75. Descriptions of the routines
called by update speed data are provided in Table 91.

Table 91. Routines called by update speed data

ITEM DESCRIPTION
NET DIST Macro to ease references to the distance field of the "two-dimensional" network

structure which was dynamically allocated as a "one-dimensional" array of
structures.

NET LINK Macro to ease references to the link field of the "two-dimensional" network
structure which was dynamically allocated as a "one-dimensional" array of
structures.

NET SPEED Macro to ease references to the speed field of the "two-dimensional" network
structure which was dynamically allocated as a "one-dimensional" array of
structures.

NET STAT Macro to ease references to the status field of the "two-dimensional" network
structure which was dynamically allocated as a "one-dimensional" array of
structures.

update speed data Update the data values in the global speed and time arrays that are organized
by TransGuide link id.

4.2.3.3.36 update archive averages

This function loops through all sites and destinations to update the archive average speeds for each
defined link. If the previous speed is valid, then new average is used by calculating a threshold;
otherwise, the default limits are used. The average speed is calculated using the newly calculated
limits. Finally, if the resulting calculation used values, then the speed and time are updated;

update
speed
data

NET
DIST

NET
LINK

NET
STAT

NET
SPEED

Figure 75. update speed data structure chart

 101

otherwise, if no values were used in the calculation, then the current value is retained, unless the
nominal data time-out has expired. In that case, the nominal speed is reported See Appendix TBD
for more details on how the speed values are calculated. The structure chart for update archive
averages is shown in Figure 76. Descriptions of the routines called by update archive averages
are provided in Table 92.

Table 92. Routines called by update archive averages

ITEM DESCRIPTION
calc avg speed Calculate the average speed over a link using matches which have not

aged beyond their usefulness.
NET ASPEED Macro to ease references to the archive speed field of the "two-

dimensional" network structure which was dynamically allocated as a
"one-dimensional" array of structures.

NET THRESH Macro to ease references to the threshold field of the "two-dimensional"
network structure which was dynamically allocated as a "one-
dimensional" array of structures.

NET TIME Macro to ease references to the time field of the "two-dimensional"
network structure which was dynamically allocated as a "one-
dimensional" array of structures.

time C library function to get the current system time in Unix format.
update archive averages This function updates the current average archive travel speeds in the

DPF global link network.

update
archive
averages

time
NET
ASPEED

NET
THRESH

NET
TIME

calc
avg
speed

Figure 76. update archive averages structure chart

 102

4.2.3.3.37 archive speed data

This function loops through the entire network and writes the AVI link identifier, archive average
speed, and average time to the file. The structure chart for archive speed data is shown in

archive
speed
data

NET
DIST

NET
LINK

NET
ASPEED

sl
write

Figure 77. Descriptions of the routines called by archive speed data are provided in Table 93.

Table 93. Routines called by archive speed data

ITEM DESCRIPTION
archive speed data Write the current archive travel time and speed values to the archive file.
NET ASPEED Macro to ease references to the archive speed field of the "two-dimensional"

network structure which was dynamically allocated as a "one-dimensional"
array of structures.

NET DIST Macro to ease references to the distance field of the "two-dimensional" network
structure which was dynamically allocated as a "one-dimensional" array of
structures.

archive
speed
data

NET
DIST

NET
LINK

NET
ASPEED

sl
write

Figure 77. archive speed data structure chart

 103

ITEM DESCRIPTION
NET LINK Macro to ease references to the link field of the "two-dimensional" network

structure which was dynamically allocated as a "one-dimensional" array of
structures.

sl write This function writes the passed data to the specified archive file.

4.2.3.3.38 archive quantity data

This function loops through the entire network and writes the AVI link identifier and read count for
that link to the read quantity archive file. The structure chart for archive quantity data is shown in
Figure 78. Descriptions of the routines called by archive quantity data are provided in Table 94.

Table 94. Routines called by archive quantity data

ITEM DESCRIPTION
archive quantity data Write the current read quantity values to the archive file.
NET COUNT Macro to ease references to the count field of the "two-dimensional"

network structure which was dynamically allocated as a "one-dimensional"
array of structures.

NET DIST Macro to ease references to the distance field of the "two-dimensional"
network structure which was dynamically allocated as a "one-dimensional"
array of structures.

NET LINK Macro to ease references to the link field of the "two-dimensional" network
structure which was dynamically allocated as a "one-dimensional" array of
structures.

sl write This function writes the passed data to the specified archive file.

archive
quantity
data

NET
DIST

NET
LINK

NET
COUNT

sl
write

Figure 78. archive quantity data structure chart

 104

4.2.3.3.39 purge data

This function purges obsolete data from the hash tables. Then it loops through the entire network
and purges old matches from the match list for each link. The structure chart for purge data is
shown in Figure 79. Descriptions of the routines called by purge data are provided in Table 95.

Table 95. Routines called by purge data

ITEM DESCRIPTION
hash purge Purge from the global hash table tag records older than the passed number of

seconds.
purge data Purge obsolete data from the global match and tag data structures.
purge match Purge tag matches for a given link which have aged beyond their usefulness.
time C library function to get the current system time in Unix format.

4.2.3.3.40 hash purge

This function purges from the global hash table tag
records older than the passed number of seconds. The
function loops for each site. Within each site it loops
through the overflow group and removes all obsolete
records. Then, it loops through each site table and group
within the table and removes the old entries. The structure
chart for hash purge is shown in Figure 80. Descriptions
of the routines called by hash purge are provided in Table
96.

purge
data

hash
purge

purge
matchtime

Figure 79. purge data structure chart

hash
purge

time
hash
remove

Figure 80. hash purge structure chart

 105

Table 96. Routines called by hash purge

ITEM DESCRIPTION
hash purge Purge from the global hash table tag records older than the passed number of

seconds.
hash remove Remove the tag record indicated by the passed tag id and site index from the global

tag data hash table.
time C library function to get the current system time in Unix format.

4.2.3.3.41 purge match

This function loops through the match list for the passed
site until no matches remain or some matches must be
purged. Since the matches are in reverse chronological
order, once one old match is found, all matches remaining
in the list must also be removed. The list of valid matches
is set to end with the last valid one and the obsolete match
records are freed back to the system. The structure chart
for purge match is shown in Figure 81. Descriptions of the
routines called by purge match are provided in

Table 97.

Table 97. Routines called by purge match

ITEM DESCRIPTION
free C Library Function used to free previously allocated memory and make it available

for further allocation.
NET MATCH Macro to ease references to the match field of the "two-dimensional" network

structure which was dynamically allocated as a "one-dimensional" array of
structures.

purge match Purge tag matches for a given link which have aged beyond their usefulness.

4.2.3.4 Data Server Interface (AVI DSIF)

The AVI DSIF process provides the single point of interface between the AVI system and the Data
Server. AVI DSIF is responsible for receiving messages from the other processes in the AVI
system and directing them to the Data Server.

4.2.3.4.1 main

The AVI DSIF main routine is responsible for setting up the clean up routines, configuring the
appropriate signals to catch and ignore, initializing the status logging and configuration data,
setting up the crossing and sensor shared memory segments, connecting to the heartbeat process
and the Data Server, sending periodic heartbeats to the “internal” heartbeat process, and
responding to requests made by other processes within the AVI system. The structure chart for the

purge
match

NET
MATCH

free

Figure 81. purge match structure
chart

 106

AVI DSIF main routine is shown in Figure 82. Descriptions of the routines called by AVI DSIF
main are provided in Table 98.

Table 98. Routines called by AVI DSIF main

ITEM DESCRIPTION
alarm System Call used to set the alarm clock of the calling process to

send a SIGALRM signal after the specified number of seconds
have elapsed.

atexit C Library Function used to register routines to be called on
normal termination of a program.

main
(AVI
DSIF)

select

process
status
message

respond
to read
sockets

process
status
set status
...

process
status
get
status

atexit

avi
dsif
cleanup

signal
setup

sigset

sigalrm
handler

gethostname

initialize
avi
dsif

process
status
config
with logr

status
logger
connect

ph
connect

sock
listen
with
reuse

ds
init

FD
ZERO

FD
SET

getrlimit

alarm

send
heartbeat
pulse

Figure 82. AVI DSIF main structure chart

 107

ITEM DESCRIPTION
avi dsif cleanup This function is called on exit to do a graceful shutdown of the

AVI DSIF process.
ds init MDI Data Server library routine used to initialize the connection

to the Data Server.
FD SET C library macro to set a file descriptor in a file descriptor set.
FD ZERO C library macro to zero a file selector set used with select().
gethostname C library function to get the hostname on which the calling

process is running.
getrlimit C library function to get the specified system limit from the

system.
initialize avi dsif The specified configuration file is read to obtain the values to be

used for the configurable items of the AVI DSIF process.
main (AVI DSIF) This is the main routine for the AVI Data Server Interface

Program (DSIF).
ph connect MDI Process Heartbeat routine used to connect to the specified

process-level heartbeat service. The host name and service name
are used to make the connection.

process status config with logr This routine is sets up the connection to the status logger used by
the calling program.

process status get status MDI Process Status routine used to obtain the most severe
process-level status. This is an aggregation of the status for each
of the status types defined for the process.

process status message MDI Process Status routine used to log a status message for the
specified status type. If the process status library was configured
to use a status logger then the message is forwarded to the status
logger. Otherwise the message is written to the configured status
log file.

process status set status ... This function is used to set the value associated with the specified
process status status type.

respond to read sockets This function loops through the ready sockets accepting connect
requests and receiving status messages as appropriate.

select C Library Function used to multiplex synchronous I/O. The list
of file descriptors for reading, writing, and receiving exceptions
are examined and any file descriptors that are ready for reading,
writing, or have an exceptional condition pending are identified.

send heartbeat pulse Sends the heartbeat pulse message to the AVI project heartbeat
process.

sigalrm handler This is the signal handler for the SIGALRM signal. The signal is
used to indicate when the process level heartbeat should be sent to
the AVI HEARTBEAT process.

signal setup This function sets up the signal handler for all signals that are not
currently handled within the calling process.

sigset C Library Function used to modify the disposition of a signal.
The signal can be caught, ignored, or returned to the default
disposition.

 108

ITEM DESCRIPTION
sock listen with reuse MDI Common Socket routine used to set up a socket to listen for

connections and to make the socket address reusable.
status logger connect This function connects to the status logger.

4.2.3.4.2 avi dsif cleanup

 This routine is called when the AVI DSIF process performs a normal termination. This routine
performs the necessary housekeeping chores to cause a graceful exit of the AVI DSIF process.
The structure chart for the avi dsif cleanup routine is shown in Figure 83. A description of the
routines called by avi dsif cleanup is provided in Table 99.

Table 99. Routines called by avi dsif cleanup

ITEM DESCRIPTION
avi dsif cleanup This function is called on exit to do a graceful shutdown of the AVI

DSIF process.
ds close MDI Data Server routine used to close the connection to the Data

Server.
FD ISSET C library macro to check to see if a given socket descriptor in a set is set

(requires processing).
getrlimit C library function to get the specified system limit from the system.

avi
dsif
cleanup

process
status
message

process
status
get status

send
heartbeat
pulse

ph
disconnect

status
logger
disconnect

ds
close

getrlimit

sock
close

FD
ISSET

Figure 83. avi dsif cleanup structure chart

 109

ITEM DESCRIPTION
ph disconnect MDI Process Heartbeat routine used to disconnect from the process-

level heartbeat service.
process status get status MDI Process Status routine used to obtain the most severe process-level

status. This is an aggregation of the status for each of the status types
defined for the process.

process status message MDI Process Status routine used to log a status message for the
specified status type. If the process status library was configured to use
a status logger then the message is forwarded to the status logger.
Otherwise the message is written to the configured status log file.

send heartbeat pulse Sends the heartbeat pulse message to the AVI project heartbeat process.
sock close MDI Socket routine used to close the specified socket connection.
status logger disconnect This function disconnects from the status logger.

4.2.3.4.3 send heartbeat pulse

This routine is invoked periodically whenever the socket selection is interrupted by an alarm signal.
This routine is responsible for sending the process-level heartbeat message to the project-level
heartbeat process. The structure chart for send heartbeat pulse is shown in Figure 84. The

descriptions of the routines called by send heartbeat pulse are contained in Table 100.

Table 100. Routines called by send heartbeat pulse

ITEM DESCRIPTION
gethostname C library function to get the hostname on which the calling process is

running.

send
heartbeat
pulse

ph send
heartbeat

ph
disconnect

gethostname
process
status
message

strncpy

ph
connect

Figure 84. send heartbeat pulse structure chart

 110

ITEM DESCRIPTION
ph connect MDI Process Heartbeat routine used to connect to the specified process-

level heartbeat service. The host name and service name are used to make
the connection.

ph disconnect MDI Process Heartbeat routine used to disconnect from the process-level
heartbeat service.

ph send heartbeat MDI Process Heartbeat routine used to send the specified status value to
the heartbeat service configured by the ph connect call.

process status message MDI Process Status routine used to log a status message for the specified
status type. If the process status library was configured to use a status
logger then the message is forwarded to the status logger. Otherwise the
message is written to the configured status log file.

send heartbeat pulse Sends the heartbeat pulse message to the AVI project heartbeat process.
strncpy C Library Function to copy a specified number of characters from a

source string to a destination string.

4.2.3.4.4 sigalrm handler

 The sigalrm handler routine is invoked whenever the AVI DSIF process receives an alarm signal
from the process alarm clock. The routine sets a flag indicating a heartbeat message needs to be
sent to the Data Server and then sets the alarm clock again so the routine will be invoked. sigalrm
handler calls only alarm so no structure chart is provided.. A description of the routines called by
sigalrm handler is provided in Table 101.

Table 101. Routines called by sigalrm handler

ITEM DESCRIPTION
alarm System Call used to set the alarm clock of the calling process to send a SIGALRM

signal after the specified number of seconds have elapsed.
sigalrm
handler

This is the signal handler for the SIGALRM signal. The signal is used to indicate
when the process level heartbeat should be sent to the AVI HEARTBEAT process.

4.2.3.4.5 initialize avi dsif

 This routine is called to read the AVI DSIF configuration file and set up configuration information
for the entire process. initialize avi dsif calls only load cfg data so no structure chart is provided.
Descriptions of the routines called by initialize avi dsif are contained in Table 102. Configurable
items for the AVI DSIF process are described in Table 103.

Table 102. Routines called by initialize avi dsif

ITEM DESCRIPTION
initialize avi dsif The specified configuration file is read to obtain the values to be used for the

configurable items of the AVI DSIF process.
load cfg data This function loads the MDI and AVI configuration data. Data is obtained

from configuration files and system function calls.

 111

Table 103. AVI DSIF configuration items

 CONFIGURATION ITEM DESCRIPTION OPT
 AVI_SHM_BASE The name of the constant or an integer value

indicating the starting base for the AVI shared
memory segments.

 N

 DATASERVER_HOST_NAME The host name where the Data Server process
resides.

 Y

 DATASERVER_SERVICE_NAME The name of the service provided by the Data
Server process.

 N

 HEARTBEAT_HOST_NAME The host name where the AVI project-level
heartbeat process resides.

 Y

 HEARTBEAT_PULSE The periodic time value for sending the
heartbeat to the AVI project-level heartbeat
process. This is specified in seconds.

 Y

 HEARTBEAT_SERVICE_NAME The name of the service provided by the AVI
project-level heartbeat process.

 N

 NUM_SHMEM_SEGMENTS The total number of shared memory segments
used by the AVI subsystem.

 N

 SERVICE_NAME The name of the service provided by the AVI
DSIF process.

 N

 STATUS_LOGGER_HOST_NAME The host name where the AVI subsystem
status logger process resides

 Y

 STATUS_LOGGER_SERVICE_NAME The name of the service provided by the AVI
subsystem status logger process.

 N

4.2.3.4.6 respond to read sockets

 The respond to read sockets routine is heart of the AVI DSIF process. This routine is called when
there is data pending on any of the sockets that are connected to the process. This data could be a
connection request to the AVI DSIF process, a message being sent to the AVI DSIF process by
another process already connected, or it could be an indication of a process that has disconnected
from the AVI DSIF process. When a connection request is received, the process immediately
accepts the connection. If a message is being sent then the message is read from the active socket
and is then dispatch to the Data Server according the type of message received. If a connected
process disconnects from the AVI DSIF process the socket connection from the AVI DSIF process
to the disconnected process is closed and removed from the list of active sockets. Errors that occur
are logged to the AVI subsystem status log. The structure chart for the respond to read sockets is
shown in Figure 85. A description of the routines called by respond to read sockets is provided in
Table 104.

 112

Table 104. Routines called by respond to read sockets

ITEM DESCRIPTION
disconnect receive socket On success the connection to the specified socket is shutdown and

closed and the select set is modified to have the specified socket
descriptor cleared from the set.

FD ISSET C library macro to check to see if a given socket descriptor in a set
is set (requires processing).

FD SET C library macro to set a file descriptor in a file descriptor set.
process Data Server message This function extracts the data from the DSIF message, reads any

additional data that may have been sent by the client, and sends this
data to the Data Server.

process status message MDI Process Status routine used to log a status message for the
specified status type. If the process status library was configured
to use a status logger then the message is forwarded to the status
logger. Otherwise the message is written to the configured status
log file.

receive dsif message This routine reads an AVI DSIF message from the specified socket.
respond to read sockets This function loops through the ready sockets accepting connect

requests and receiving status messages as appropriate.
sock accept MDI Socket routine that accepts connections on the specified listen

socket.

respond
to read
sockets

FD
ISSET

sock
accept

process
status
message

FD
SET

sock
set
nonblocking

disconnect
receive
socket

receive
dsif
message

process
data server
message

Figure 85. respond to read sockets structure chart

 113

ITEM DESCRIPTION
sock set nonblocking MDI Socket routine that sets the specified socket to be a non-

blocking socket.

4.2.3.4.7 disconnect receive socket

 The disconnect receive socket routine shuts down the
active socket and removes the socket from the list of
sockets the AVI DSIF process listens to for data. The
structure chart for disconnect receive socket is shown in
Figure 86. The descriptions of the routines called by
disconnect receive socket are contained in

 Table 105.

Table 105. Routines called by disconnect receive socket

ITEM DESCRIPTION
disconnect receive socket On success the connection to the specified socket is shutdown and

closed and the select set is modified to have the specified socket
descriptor cleared from the set.

FD ISSET C library macro to check to see if a given socket descriptor in a set
is set (requires processing).

FD SET C library macro to set a file descriptor in a file descriptor set.
process Data Server message This function extracts the data from the DSIF message, reads any

additional data that may have been sent by the client, and sends this
data to the Data Server.

process status message MDI Process Status routine used to log a status message for the
specified status type. If the process status library was configured
to use a status logger then the message is forwarded to the status
logger. Otherwise the message is written to the configured status
log file.

receive dsif message This routine reads an AVI DSIF message from the specified socket.
respond to read sockets This function loops through the ready sockets accepting connect

requests and receiving status messages as appropriate.
sock accept MDI Socket routine that accepts connections on the specified listen

socket.

disconnect
receive
socket

FD
CLR

sock
close

Figure 86. disconnect receive socket
structure chart

 114

ITEM DESCRIPTION
sock set nonblocking MDI Socket routine that sets the specified socket to be a non-

blocking socket.

4.2.3.4.8 receive dsif message

 The receive dsif message routine reads the message from the active socket and places in the
received message buffer. receive dsif message calls only sock readn so no structure chart is
provided. The descriptions of the routines called by receive dsif message are contained in Table
106.

Table 106. Routines called by receive dsif message

ITEM DESCRIPTION
receive dsif message This routine reads an AVI DSIF message from the specified socket.
sock readn MDI Socket routine that reads a specified number of bytes from the

specified socket.

4.2.3.4.9 process Data Server message

 This function extracts the data received from another AVI process and processes it based on the
type. The message may be a heartbeat or link data and these are sent by calling ds send heartbeat
or send write link message, respectively. Any other code is ignored and a warning is logged. If an
error occurs during processing, then the socket to Data Server is closed and reinitialized. The
structure chart for process Data Server message is shown in Figure 87. The descriptions of the
routines called by process Data Server message are contained in Table 107.

process
data server
message

ntohl

ds send
heartbeat

send
write
link message

process
status
message

process
status set
status ...

ds
close

Figure 87. process Data Server message structure chart

 115

Table 107. Routines called by process Data Server message

ITEM DESCRIPTION
ds close MDI Data Server routine used to close the connection to the Data

Server.
ds send heartbeat MDI Data Server routine used to send the subsystem-level heartbeat

message to the Data Server. The heartbeat status is the overall
status for the subsystem.

ntohl Network Function used to convert between network and host byte
order.

process Data Server message This function extracts the data from the DSIF message, reads any
additional data that may have been sent by the client, and sends this
data to the Data Server.

process status message MDI Process Status routine used to log a status message for the
specified status type. If the process status library was configured to
use a status logger then the message is forwarded to the status
logger. Otherwise the message is written to the configured status log
file.

process status set status ... This function is used to set the value associated with the specified
process status status type.

send write link message This function extracts the specific information from the received
message and calls the Data Server write link routine.

4.2.3.4.10 send write link message

 This function takes the passed message data and resizes the working data structure to
accommodate the message data size. It then reads the data from the client socket. Next, it calls the
Data Server library routine ds write lane data to write the lane data message to Data Server.
Finally, it reads the return status from the Data Server socket. The structure chart for send write
link message is shown in Figure 88. The descriptions of the routines called by send write link
message are contained in Table 108.

 116

Table 108. Routines called by send write link message

ITEM DESCRIPTION
ds write lane data This function writes the lane data message to the Data Server.
process status message MDI Process Status routine used to log a status message for the

specified status type. If the process status library was configured to use
a status logger then the message is forwarded to the status logger.
Otherwise the message is written to the configured status log file.

realloc C Library Function to reallocate a memory block. The reallocation
leaves the memory which is not affected by the size change unmodified.

send ds return status This function sends the return status to the specified socket descriptor
which should be the same one on which the request was made.

send write link message This function extracts the specific information from the received
message and calls the Data Server write link routine.

sock readn MDI Socket routine that reads a specified number of bytes from the
specified socket.

send
write
link message

realloc

process
status
message

ds write
lane
data

send ds
return
status

sock
readn

Figure 88. send write link message structure chart

 117

4.2.3.4.11 send ds return status

 This function sends the return status to the specified
socket descriptor. This socket descriptor should be the
same socket on which the request was made. It builds the
message and calls send ds return message to actually
send the data out on the socket. The structure chart for
send ds return status is shown in Figure 89. The
descriptions of the routines called by send ds return
status are contained in

 Table 109.

Table 109. Routines called by send ds return status

ITEM DESCRIPTION
htonl Network function used to convert from host to network byte formats.
send ds return message This function sends the return message to the specified socket descriptor

which should be the same one on which the request was made.
send ds return status This function sends the return status to the specified socket descriptor

which should be the same one on which the request was made.

4.2.3.4.12 send ds return message

This function sends the return message to the specified socket descriptor, which should be the same
one on which the request was made. send ds return message calls only sock writen, so no
structure chart is provided. Descriptions of the routines called by send ds return message are
provided in Table 110.

Table 110. Routines called by send ds return message

ITEM DESCRIPTION
send ds return message This function sends the return message to the specified socket descriptor

which should be the same one on which the request was made.
sock writen MDI Socket routine used to write a specified number of bytes to a

specified socket.

4.2.3.5 AVI DSIF Library Routines

 Processes communicate to using the routines in this library and the MDI common heartbeat
routines. The routines needed to send heartbeats to AVI DSIF are described in MDI Common Code

send ds
return
status

htonl
send ds
return
message

Figure 89. send ds return status
structure chart

 118

Software Design Document and are not a part of this library. The AVI DSIF library contains
routines that are used to interact with the AVI DSIF process for operations other than heartbeating.
This library includes a function to send link data to and receive status from the AVI DSIF process.
These routines are discussed in more detail in the following subsections.

4.2.3.5.1 avi dsif send link write request

 This function packages the passed link data into the correct format and sends it to the AVI DSIF
process. First, it verifies the socket connection and reestablishes it if not connected. Next, the
message data is formatted before sending to AVI DSIF. Next, the data is send to AVI DSIF.
Finally, the code waits for the status from the send. The structure chart for avi dsif send link write
request is shown in Figure 90. The descriptions of the routines called by avi dsif send link write
request are contained in Table 111.

Table 111. Routines called by avi dsif send link write request

ITEM DESCRIPTION
avi dsif connect This function is used to connect to the AVI Data Server Interface

(DSIF) process specified by the service name passed to this
routine.

avi dsif disconnect Close the socket connection to AVI DSIF.
avi dsif is socket connected This function is used to determine if there is a valid socket

connection with the DSIF process.
avi dsif send link write request Package the AVI link speed or time data into the correct format

and send it to the Data Server.
htonl Network function used to convert from host to network byte

formats.

avi dsif
send link
write request

avi dsif
is socket
connected

avi dsif
disconnect

avi
dsif
connect

htonl

sock
writen

Figure 90. avi dsif send link write request structure chart

 119

ITEM DESCRIPTION
sock writen MDI Socket routine used to write a specified number of bytes to

a specified socket.

4.2.3.5.2 avi dsif is socket connected

 This function determines if there is a valid socket connection to the AVI DSIF process. The
function sets the socket descriptor in a read descriptor set. The socket is supposed to be write only
and should not be set after the select. If it is, then the socket is not connected. The structure chart
for avi dsif is socket connected is shown in Figure 91. The descriptions of the routines called by
avi dsif is socket connected are contained in Table 112.

Table 112. Routines called by avi dsif is socket connected

ITEM DESCRIPTION
avi dsif is socket connected This function is used to determine if there is a valid socket

connection with the DSIF process.
FD ISSET C library macro to check to see if a given socket descriptor in a set

is set (requires processing).
FD SET C library macro to set a file descriptor in a file descriptor set.
FD ZERO C library macro to zero a file selector set used with select().
select C Library Function used to multiplex synchronous I/O. The list of

file descriptors for reading, writing, and receiving exceptions are
examined and any file descriptors that are ready for reading, writing,
or have an exceptional condition pending are identified.

4.2.3.5.3 avi dsif disconnect

This function disconnects from the AVI DSIF socket. avi dsif disconnect calls only sock close so
no structure chart is provided. Descriptions of the routines called by avi dsif disconnect are
provided in Table 113.

avi dsif
is socket
connected

FD
ZERO

FD
SET

FD
ISSET

select

Figure 91. avi dsif is socket connected structure chart

 120

Table 113. Routines called by avi dsif disconnect

ITEM DESCRIPTION
avi dsif disconnect Close the socket connection to AVI DSIF.
sock close MDI Socket routine used to close the specified socket connection.

4.2.3.5.4 avi dsif connect

 This routine is responsible for establishing the
communications path to the Data Server from the
calling process. This is accomplished by obtaining the
port number associated with the specified service and
then connecting a socket to the port on the specified host
computer. The structure chart for avi dsif connect is
shown in Figure 92. The descriptions of the routines
called by avi dsif connect are contained in

 Table 114.

Table 114. Routines called by avi dsif connect

ITEM DESCRIPTION
avi dsif connect This function is used to connect to the AVI Data Server Interface (DSIF)

process specified by the service name passed to this routine.
sock connect MDI Socket routine used to create a socket connection to the specified host

and port.
sock get service port MDI Socket routine that returns the port number associated with the

specified service name.

avi
dsif
connect

sock get
service
port

sock
connect

Figure 92. avi dsif connect structure
chart

 121

4.2.3.5.5 avi dsif read status

 This function reads the return status from a Data
Server request (write link data). The code loops
waiting for a successful read. Once received, the
data is converted from network order to the usual
byte ordering. The structure chart for avi dsif read
status is shown in Figure 93. The descriptions of the
routines called by avi dsif read status are contained
in

 Table 115.

Table 115. Routines called by avi dsif read status

ITEM DESCRIPTION
avi dsif read status This function reads the return status from the Data Server request.
ntohl Network Function used to convert between network and host byte order.
sock readn MDI Socket routine that reads a specified number of bytes from the

specified socket.

4.2.3.6 AVI GUI

4.2.3.7 AVI Common Libraries

This section contains descriptions of the utility functions contained in the AVI unique libraries that
are part of AVI.

4.2.3.8 AVI Interface

The AVI interface routines provide access to the AVI shared memory and send configuration
change messages to DCM for the AVI GUI.

4.2.3.8.1 avi alloc site status

This function allocates a site status structure for the GUI. The allocated memory includes space
for both the detailed status data and the tag data. The structure chart for avi alloc site status is
shown in Figure 94. Descriptions of the routines called by avi alloc site status are provided in
Table 116.

avi dsif
read
status

sock
readn ntohl

Figure 93. avi dsif read status structure
chart

 122

Table 116. Routines called by avi alloc site status

ITEM DESCRIPTION
avi alloc site status Allocate a site status structure for the GUI including both status and tag

data.
calloc C Library Function to allocate the specified amount of space and fill it with

zeros.
free C Library Function used to free previously allocated memory and make it

available for further allocation.

4.2.3.8.2 avi dealloc site status

This function deallocates a site's status structure for the GUI including both the detailed site status
data and tag data. avi dealloc site status calls only free, so no structure chart is provided.
Descriptions of the routines called by avi dealloc site status are provided in Table 117.

Table 117. Routines called by avi dealloc site status

ITEM DESCRIPTION
avi dealloc site status Deallocate a site status structure for the GUI including both the detailed

site status and tag data.
free C Library Function used to free previously allocated memory and make it

available for further allocation.

4.2.3.8.3 avi get detailed site status

This function reads the global site status and tag data from shared memory and stores it in the
passed structure. avi get detailed site status calls only read segment element so no structure chart
is provided. Descriptions of the routines called by avi get detailed site status are provided in
Table 118.

avi alloc
site
status

calloc free

Figure 94. avi alloc site status
structure chart

 123

Table 118. Routines called by avi get detailed site status

ITEM DESCRIPTION
avi get detailed site status Read the global site status and tag data from shared memory for the

GUI.
read segment element MDI Shared Memory Manager routine to read the contents of one

element of the specified shared memory segment. The contents are
stored in a memory area allocated by the caller.

4.2.3.8.4 avi get site status

This function reads the global site status for the indexed site from shared memory and sets the site
status into the passed variable. avi get site status calls only read segment element so no structure
chart is provided. Descriptions of the routines called by avi get site status are provided in Table
119.

Table 119. Routines called by avi get site status

ITEM DESCRIPTION
avi get site status Read the global site status for the indexed site from shared memory.
read segment element MDI Shared Memory Manager routine to read the contents of one element

of the specified shared memory segment. The contents are stored in a
memory area allocated by the caller.

4.2.3.8.5 send dcm command

This function sends a 4-byte configuration change command to DCM. First, the data is written to
the socket using avi sock write which will automatically open the socket if necessary. Next, the
socket is set non-blocking so that the result may be read without locking up. The status is read
from the socket. This is repeated at one second intervals for up to ten tries, if necessary. The
status of the command is returned. The structure chart for send dcm command is shown in Figure
95. Descriptions of the routines called by send dcm command are provided in Table 120.

send
dcm
command

avi
sock
write

sock
set
nonblocking

sleep
sock
readn

Figure 95. send dcm command structure chart

 124

Table 120. Routines called by send dcm command

ITEM DESCRIPTION
avi sock write Write to a socket with retry.
send dcm command Send a configuration change command to DCM.
sleep C library function to suspend a process for the specified number of

seconds.
sock readn MDI Socket routine that reads a specified number of bytes from the

specified socket.
sock set nonblocking MDI Socket routine that sets the specified socket to be a non-blocking

socket.

4.2.3.9 AVI Configuration

The AVI Configuration library provides a common routine for reading AVI and MDI configuration
data for the AVI processes.

4.2.3.9.1 load cfg data

This function loads the configuration data. The configuration data is obtained from configuration
files and system function calls. The data is returned to the caller in a structure that is passed as a
parameter. The data in the structure is only valid if the function returns a successful condition.

The function calls init cfg data to initialize the fields of the structure. Next, the configuration data
is loaded from the MDI configuration file and the AVI configuration file. Once these values are
obtained, the cfg get value routine is used to get the specific values and place them into the AVI
configuration structure. Port numbers are determined by using the Unix getservbyname utility.
The structure chart for load cfg data is shown in Figure 96. Descriptions of the routines called by
load cfg data are provided in Table 121.

load
cfg
data

init
cfg
data

cfg load
configuration
data

cfg
get
value

atoi

getservbyname

Figure 96. load cfg data structure chart

 125

Table 121. Routines called by load cfg data

ITEM DESCRIPTION
atoi C Library Function to convert an ASCII string to an integer value.
cfg get value MDI Configuration File routine used to return the value of the

specified configuration name.
cfg load configuration data MDI Configuration File routine used to read the configuration name-

value pairs from the specified configuration file. These name-value
pairs are loaded into memory so they can be accessed on demand by
the calling program.

getservbyname C library function which searches the system for an entry which
matches the passed name returning the structure associated with the
entry.

init cfg data This function initializes the passed configuration data structure.
load cfg data This function loads the MDI and AVI configuration data. Data is

obtained from configuration files and system function calls.

4.2.3.9.2 init cfg data

This function initializes the fields of the passed AVI configuration structure to default values.
Neither a structure chart nor a description of routines called table is provided as init cfg data calls
no subroutines.

4.2.3.10 AVI Heartbeat

The AVI Heartbeat library provides a routine to send the “internal” heartbeat to the AVI heartbeat
process. The AVI heartbeat process sends the summary heartbeat to DSIF which in turn sends it
to Data Server.

4.2.3.10.1 avi send heartbeat

This function sends an “internal” heartbeat to the AVI heartbeat process. The routine first tries to
send the heartbeat; if it fails, it tries to disconnect, reconnect and retransmit the heartbeat. The
structure chart for avi send heartbeat is shown in Figure 97. Descriptions of the routines called by
avi send heartbeat are provided in Table 122.

avi send
heartbeat

ph send
heartbeat

ph
disconnect gethostname

ph
connect

Figure 97. avi send heartbeat structure chart

 126

Table 122. Routines called by avi send heartbeat

ITEM DESCRIPTION
avi send heartbeat This function sends the heartbeat to the AVI heartbeat process with automatic

reconnection and error checking.
gethostname C library function to get the hostname on which the calling process is running.
ph connect MDI Process Heartbeat routine used to connect to the specified process-level

heartbeat service. The host name and service name are used to make the
connection.

ph disconnect MDI Process Heartbeat routine used to disconnect from the process-level
heartbeat service.

ph send heartbeat MDI Process Heartbeat routine used to send the specified status value to the
heartbeat service configured by the ph connect call.

4.2.3.11 AVI Data

The AVI Data library provides routines to load the data files that are used by AVI. This includes
getting the AVI link identifiers from the common set for MDI, reading the AVI site data file, and
functions to look up site/link information.

4.2.3.11.1 avi get avi data

This function loads the AVI data from the data files into the AVI data data structure passed by the
caller. File access and memory allocations are performed by this function The structure chart for
avi get avi data is shown in Figure 98. Descriptions of the routines called by avi get avi data are
provided in Table 123.

Table 123. Routines called by avi get avi data

ITEM DESCRIPTION

avi
get
avi data

avi get
link
identifiers

avi
get
site data

Figure 98. avi get avi data structure
chart

 127

ITEM DESCRIPTION
avi get avi data This function loads the AVI link and site data from files into dynamically

allocated data structures.
avi get link identifiers This function obtains the AVI link identifiers and returns an array which

contains them.
avi get site data Read the site data file and store the data into dynamically allocated

memory.

4.2.3.11.2 avi get link identifiers

This function uses MDI common library routines to load
the AVI link identifiers from the MDI database returning
the data in an array allocated by the common routines.
The structure chart for avi get link identifiers is shown in
Figure 99. Descriptions of the routines called by avi get
link identifiers are provided in Table 124.

Table 124. Routines called by avi get link identifiers

ITEM DESCRIPTION
avi get link identifiers This function obtains the AVI link identifiers and returns an array which

contains them.
LinkIDCount Get the number of TransGuide link IDs which are used by the passed link

type (e.g., AVI).
LinkIDData Get the TransGuide link ID data for the passed link type (e.g., AVI).

4.2.3.11.3 avi get site data

This function opens the site data file, reads the record count, allocates the memory for the AVI site
data, and calls avi read site data file to load the site data from the file and store it in the allocated
memory. The structure chart for avi get site data is shown in Figure 100. Descriptions of the
routines called by avi get site data are provided in Table 125.

avi get
link
identifiers

LinkIDCount LinkIDData

Figure 99. avi get link identifiers
structure chart

 128

Table 125. Routines called by avi get site data

ITEM DESCRIPTION
avi file fopen file Open file identified by passed filename and path with error checking.
avi get site data Read the site data file and store the data into dynamically allocated

memory.
avi read site data file This function reads the site data file into the passed array of site data

structures.
fscanf C library function to scan an input stream into the referenced variables

according to the specified format string.

4.2.3.11.4 avi read site data file

This function reads the records from the site data file
into an array of site data data structures. The data
read is the site (source) number, site identifier, and
enable flag. Records are read until the count of sites
is reached. The structure chart for avi read site data
file is shown in Figure 101. Descriptions of the
routines called by avi read site data file are provided
in

Table 126.

avi
get
site data

avi file
fopen
file

fscanf
avi read
site data
file

Figure 100. avi get site data structure chart

avi read
site data
file

fscanf strcasecmp

Figure 101. avi read site data file structure
chart

 129

Table 126. Routines called by avi read site data file

ITEM DESCRIPTION
avi read site data file This function reads the site data file into the passed array of site data

structures.
fscanf C library function to scan an input stream into the referenced variables

according to the specified format string.
strcasecmp C library to do a case insensitive compare between two strings.

4.2.3.11.5 lookup TGLinkID idx

This function looks up the index of a TransGuide link id using the passed list of link identifiers. It
returns the located index or -1 if it is not found. lookup TGLinkID idx calls only strcmp so no
structure chart is provided. Descriptions of the routines called by lookup TGLinkID idx are
provided in Table 127.

Table 127. Routines called by lookup TGLinkID idx

ITEM DESCRIPTION
lookup TGLinkID idx Look up the TransGuide link id index using its identifier.
strcmp C library to do a case sensitive compare between two strings.

4.2.3.11.6 lookup site by name

This function looks up the index of the AVI site using the passed site name and site data. It returns
the located index or -1 if it is not found. lookup site by name calls only strcmp so no structure
chart is provided. Descriptions of the routines called by lookup site by name are provided in Table
128.

Table 128. Routines called by lookup site by name

ITEM DESCRIPTION
lookup site by name Look up the index for an AVI site using the site’s name.
strcmp C library to do a case sensitive compare between two strings.

4.2.3.11.7 lookup site by num

This function looks up the site index for a field site using it hardware “source number." This is a
number that is arbitrarily assigned during hardware installation. It is mapped through a data file
which is read into the global AVI site data that must be passed in to this routine. Neither a
structure chart nor a description of routines called table is provided as lookup site by num calls no
subroutines.

 130

4.2.3.12 AVI File

The AVI File library provides functions to open a file with pathname assembly and error checking
and to get the number of entries from the first record of an AVI data file.

4.2.3.12.1 avi file fopen file

This function builds a pathname from the passed path and file components, opens the file with the
flags passed by the caller, and obtains information about the file. The file pointer is returned by
the function and the file information is returned in an argument. The structure chart for avi file
fopen file is shown in Figure 102. Descriptions of the routines called by avi file fopen file are
provided in Table 129.

Table 129. Routines called by avi file fopen file

ITEM DESCRIPTION
avi file fopen file Open file identified by passed filename and path with error checking.
fclose C library function to close a stream.
fopen C library function to open a stream file.
stat C library file to obtain information about the specified file.
strcat C library function which concatenates a copy of the second argument to the

first.

avi file
fopen
file

strcat

fopen stat

fclose

Figure 102. avi file fopen file structure chart

 131

4.2.3.12.2 avi file get num entries

This function uses the passed pathname to open an AVI data file and read the first record which by
convention contains the number of entries in the file. The number of entries in the file is returned
or -1 if an error occurred. The structure chart for avi file get num entries is shown in Figure 103.
Descriptions of the routines called by avi file get num entries are provided in Table 130.

Table 130. Routines called by avi file get num entries

ITEM DESCRIPTION
avi file get num entries Get the number of entries in a configuration file from the first record of

the file.
close C library function to close a file or device.
fopen C library function to open a stream file.
fscanf C library function to scan an input stream into the referenced variables

according to the specified format string.

4.2.3.13 AVI Util

The AVI Util library contains routines that provide a variety of useful functions. Functions can
attach to a shared memory segment, write data to a socket with retry, initialize and handle signals,
and initialize a DCM status structure.

avi file
get num
entries

fopen

fscanf

close

Figure 103. avi file get num entries structure chart

 132

4.2.3.13.1 avi create segment

This function checks to see if the shared memory segment exists and is of the correct size. If it
already exists with the correct size, the it attaches to the segment. If it does not exist, then it is
created. If it exists but is not the correct size, then no other action is taken and an error is returned.
The structure chart for avi create segment is shown in Figure 104. Descriptions of the routines
called by avi create segment are provided in Table 131.

Table 131. Routines called by avi create segment

ITEM DESCRIPTION
attach to segment MDI Shared Memory Manager routine used to attach the calling process to

the specified shared memory segment.
avi create segment This function connects to or creates a shared memory segment with error

checking.
create segment MDI Shared Memory Manager routine used to create a shared memory

segment of the specified size. The shared memory segment is automatically
attached to the calling process.

segment exists MDI Shared Memory Manager routine to test for the existence of the
specified shared memory segment.

sizeof segment MDI Shared Memory Manager routine used to obtain the size in bytes of the
specified shared memory segment.

4.2.3.13.2 avi sock write

This function writes to a socket with retries. It checks the socket descriptor on entry, and if it is
invalid, then it connects to the socket using the port and hostname. Next, it sends the message to
the socket. If the send fails, then the socket is closed and reopened. The loop is repeated until the
send succeeds or the retry limit is exceeded. The structure chart for avi sock write is shown in
Figure 105. Descriptions of the routines called by avi sock write are provided in Table 132.

avi
create
segment

segment
exists

create
segment

sizeof
segment

attach
to
segment

Figure 104. avi create segment structure chart

 133

Table 132. Routines called by avi sock write

ITEM DESCRIPTION
avi sock write Write to a socket with retry.
close C library function to close a file or device.
send C library function to send data over a socket.
sock connect MDI Socket routine used to create a socket connection to the specified host and

port.

4.2.3.13.3 catch signal

This function catches signals that can kill this process. Any signal that makes it to this routine
indicates an unhandled, fatal condition. This routine logs a message and performs an error exit for
the process. catch signal calls only process status message so no structure chart is provided.
Descriptions of the routines called by catch signal are provided in Table 133.

Table 133. Routines called by catch signal

ITEM DESCRIPTION
catch signal Catch signals which can kill this process.
process status
message

MDI Process Status routine used to log a status message for the specified status
type. If the process status library was configured to use a status logger then the
message is forwarded to the status logger. Otherwise the message is written to the
configured status log file.

4.2.3.13.4 signal setup

This function sets up the signal handler for all signals that are not currently handled within the
calling process. Set up a signal set and register the action and handler for each one. Some signals
can be ignored and these are set up accordingly. The structure chart for signal setup is shown in
Figure 106. Descriptions of the routines called by signal setup are provided in Table 134.

avi
sock
write

sock
connect

send

close

Figure 105. avi sock write structure chart

 134

Table 134. Routines called by signal setup

ITEM DESCRIPTION
catch signal Catch signals which can kill this process.
sigaction C library function which allows the calling process to examine or specify the action

to be taken on delivery of a specific signal.
sigemptyset C library function that initializes the passed set to exclude all signals defined by the

system.
signal setup This function sets up the signal handler for all signals that are not currently handled

within the calling process.

4.2.3.13.5 init dcm status

This function initializes the passed DCM status structure. The structure contains one entry for
each AVI site. Neither a structure chart nor a description of routines called table is provided as
init dcm status calls no subroutines.

4.2.3.14 CRC

This library contains functions that implement 16-bit CRC routines. The library includes the code
to calculate the following CRCs:

• CCITT
• Reverse CCITT
• CRC-16

signal
setup

sigemptyset sigaction

catch
signal

Figure 106. signal setup structure
chart

 135

• Reverse CRC-16

Additional 16-bit CRCs may be created by using the lower level functions with other generator
polynomials. For a discussion of the CRCs and their implementation see the C Programmer’s
Guide to Serial Communications by Joe Campbell, Chapters 3 and 23.

4.2.3.14.1 crc init

This function builds tables for the CCITT and CRC-16 CRCs and their reverses. The global
tables are initialized and using macros that expand to calls to crc make table with the appropriate
parameters for each CRC. The structure chart for crc init is shown in Figure 107. Descriptions of
the routines called by crc init are provided in Table 135.

Table 135. Routines called by crc init

ITEM DESCRIPTION
crc init This function builds tables for the CCITT and CRC-16

CRCs and their reverses.
CRC MAKE CCITT REV TABLE Macro to make the reverse CCITT CRC lookup table.
CRC MAKE CCITT TABLE Macro to make the CCITT CRC lookup table.
CRC MAKE CRC16 REV TABLE Macro to make the CRC-16 CRC lookup table.
CRC MAKE CRC16 TABLE Macro to make the CRC-16 CRC lookup table.
crc make table This function builds a table of CRC values for 8-bit bytes.

The generator polynomial and CRC function is passed into
the function; thus, it can be used for any 16-bit CRC,
normal or reversed.

crc
init

CRC MAKE
CCITT
TABLE

CRC MAKE
CCITT REV
TABLE

CRC MAKE
CRC16
TABLE

CRC MAKE
CRC16 REV
TABLE

crc
make
table

Figure 107. crc init structure chart

 136

4.2.3.14.2 crc make table

This function builds the CRC lookup table using the passed generator function and polynomial.
Two-hundred fifty-six values (all the values possible for a single byte) are stored into the passed
table. Only the passed function may be called so neither a structure chart nor a table of called
functions is provided.

4.2.3.14.3 crc calc

This function calculates the new value for a 16-bit CRC for byte data. The generator polynomial
is passed into the function; thus, it can be used for any 16-bit CRC. Neither a structure chart nor a
description of routines called table is provided as crc calc calls no subroutines.

4.2.3.14.4 crc calc rev

This function calculates the new value for a reverse 16-bit CRC for byte data. The generator
polynomial is passed into the function; thus, it can be used for any 16-bit CRC. The generator
variable must be reversed before it is passed to this function. Neither a structure chart nor a
description of routines called table is provided as crc calc rev calls no subroutines.

4.2.3.14.5 crc msg ccitt

This function calculates the CCITT CRC on the passed message. It uses a macro that results in a
call to crc calc with the appropriate parameters. crc msg ccitt calls only crc calc so no structure
chart is provided. Descriptions of the routines called by crc msg ccitt are provided in Table 136.

Table 136. Routines called by crc msg ccitt

ITEM DESCRIPTION
crc calc This function calculates the new value for a 16-bit CRC for byte data.
CRC CCITT Macro to do the lookup of one byte using the CCITT CRC.
crc msg ccitt This function calculates the CCITT CRC on the passed message.

4.2.3.14.6 crc msg rev ccitt

This function calculates the reverse CCITT CRC on the passed message. It uses a macro that
results in a call to crc calc rev with the appropriate parameters. crc msg rev ccitt calls only crc
calc rev so no structure chart is provided. Descriptions of the routines called by crc msg rev ccitt
are provided in Table 137.

Table 137. Routines called by crc msg rev ccitt

ITEM DESCRIPTION
crc calc rev This function calculates the new value for a 16-bit reverse CRC for byte

data.
crc msg rev ccitt This function calculates the reverse CCITT CRC on the passed message.
CRC REV CCITT Macro to do the lookup of one byte using the CCITT reverse CRC.

 137

4.2.3.14.7 crc msg crc16

This function calculates the CRC-16 CRC on the passed message. It uses a macro that results in a
call to crc calc with the appropriate parameters. crc msg crc16 calls only crc calc so no structure
chart is provided. Descriptions of the routines called by crc msg crc16 are provided in Table 138.

Table 138. Routines called by crc msg crc16

ITEM DESCRIPTION
crc calc This function calculates the new value for a 16-bit CRC for byte data.
CRC CRC16 Macro to do the lookup of one byte using the CRC-16 CRC.
crc msg crc16 This function calculates the CRC-16 on the passed message.

4.2.3.14.8 crc msg rev crc16

This function calculates the reverse CRC-16 CRC on the passed message. It uses a macro that
results in a call to crc calc rev with the appropriate parameters. crc msg rev crc16 calls only crc
calc rev so no structure chart is provided. Descriptions of the routines called by crc msg rev crc16
are provided in Table 139.

Table 139. Routines called by crc msg rev crc16

ITEM DESCRIPTION
crc calc rev This function calculates the new value for a 16-bit reverse CRC for byte

data.
crc msg rev crc16 This function calculates the reverse CRC-16 CRC on the passed message.
CRC REV CRC16 Macro to do the lookup of one byte using the CRC-16 reverse CRC.

 138

5. TRACEABILITY MATRIX
 The traceability matrix for the AVI Data Processing System is presented in this section. It lists the
requirements of the system that were presented in Section 3 of this document. Along with each
requirement is the source of the requirement, the design element it was assigned to, the level at
which it will be tested, and the method that will be used to verify the requirement.

 This table will be used throughout the design, development, and test of the system to ensure that
the requirements have been met. It will continually be updated as requirements and design elements
are refined. During development of the Acceptance Test Plan (ATP), sections of the test plan will
be referenced in the TEST LEVEL column of this table to cross-reference to the ATP.

 The columns of the traceability table have the following meanings:

• Requirement Number: A unique identifier (with embedded level) assigned to the
requirement

• Requirement: A brief description of the requirement

• Source: A paragraph reference in RFO, proposal or other source for this requirement

• Allocated To: The design element to which the requirement is allocated

• Test Level: The level at which testing of the requirement will take place

• Verify: The verification technique for the requirement

 Automated Vehicle Identification System Design Document 139

 REQUIREMENT
NUMBER

 REQUIREMENT SOURCE ALLOCATED TO

 GENERAL REQUIREMENTS

 AVI-GN-1 The program shall have its developmental progress documented
every four weeks.

 P 2.2.2.4.1 P1 S1 Program

 AVI-GN-2 The program shall have a final report prepared at the end of the
project.

 P 2.2.2.4.1 P1 S1 Program

 AVI-GN-3 The program shall have its status reported in interim reports, as
necessary.

 P 2.2.2.4.1 P1 S1 Program

 AVI-GN-4 The program shall have a Software Development Plan. P 2.2.2.4.2 P1 S1 Program

 AVI-GN-5 The program shall have a Software Requirements Specification. P 2.2.2.4.2 P1 S1 Program

 AVI-GN-6 The program shall have a Software Design Document. P 2.2.2.4.2 P1 S1 Program

 AVI-GN-7 The program shall have a Software Acceptance Test Plan. P 2.2.2.4.2 P1 S1 Program

 AVI-GN-8 The program shall have a Software User Manual. P 2.2.2.4.2 P1 S1 Program

 AVI-GN-9 The program shall have a Software Version Description
Document.

 P 2.2.2.4.2 P1 S1 Program

 AVI-GN-10 The program shall have training provided on AVI Reader Field
Sites.

 P 2.2.2.4.5 P1 S1 Program

 AVI-GN-11 The program shall have training provided on the AVI Data
Processing System.

 P 2.2.2.4.5 P1 S1 Program

 AVI-GN-12 The program shall have a Tag specification developed. R 24 S4 Program

 SYSTEM REQUIREMENTS

 INTERFACE REQUIREMENTS

 AVI-IF-1 The system shall interface to the MDI Data Server. Design AVI Master Computer
System

 AVI-IF-2 The system shall interface to the Reader Field Site. Design AVI Master Computer
System

 Automated Vehicle Identification System Design Document 140

 REQUIREMENT
NUMBER

 REQUIREMENT SOURCE ALLOCATED TO

 AVI-IF-3 The system shall interface with the user. Design AVI Master Computer
System

 FUNCTIONAL REQUIREMENTS

 AVI-FN-1 The AVI Data Processing System shall gather AVI Tag read data
from Reader Field Sites.

 R 24 S8
 P 2.2 P6 S2

 AVI Data Processing
Software

 AVI-FN-2 The AVI Data Processing System shall process AVI Tag read
data.

 R 24 S8
 P 2.2 P6 S2

 AVI Data Processing
Software

 AVI-FN-3 The AVI Data Processing System shall process status data. P 2.2.1 P1 S3 AVI Data Processing
Software

 AVI-FN-4 The AVI Data Processing System shall allow for configuration of
system components.

 P 2.2.1 P1 S6 AVI Data Processing
Software

 AVI-FN-5 The AVI Data Processing System shall handle errors. P 2.2.1 P1 AVI Data Processing
Software

 PHYSICAL CHARACTERISTIC REQUIREMENTS

 AVI-PY-1 The AVI Data Processing System shall have a dedicated master
computer.

 R 25.4.6 S1 AVI Master Computer
System

 AVI-PY-2 The AVI Data Processing System shall have a modem pool. Design AVI Modem Server System

 MISCELLANEOUS REQUIREMENTS

 AVI-MS-1 The AVI Data Processing System shall have software designed
using either structured or object-oriented methodologies.

 P 2.2.2 P1 S2 AVI Data Processing
Software

 AVI-MS-2 The AVI Data Processing System shall have software written in
C or C++.

 P 2.2.2 P1 S3 AVI Data Processing
Software

 AVI-MS-3 The AVI Data Processing System shall have software tested at
the unit and system integration levels, as appropriate.

 P 2.2.2 P1 S3 AVI Data Processing
Software

 SUB-SYSTEM REQUIREMENTS

 MASTER COMPUTER SUBSYSTEM REQUIREMENTS

 Automated Vehicle Identification System Design Document 141

 REQUIREMENT
NUMBER

 REQUIREMENT SOURCE ALLOCATED TO

 INTERFACE REQUIREMENTS

 AVI-IF-1.1 The AVI Master Computer System shall interface with the MDI
Data Server.

 AVI-IF-1 AVI Master Computer
System

 PHYSICAL CHARACTERISTIC REQUIREMENTS

 AVI-PY-1.1 The AVI MC shall be a Sun Microsystems Ultra SPACRStation
or better

 R 25.4.6 S1
 P 2.2.2.3.4 P1 S2
 AVI-PY-1

 AVI Master Computer
System

 AVI-PY-1.2 The AVI MC shall have, at a minimum, the following items:

• 167mhz SPARC CPU
• 4.2 GB Hard Disk
• 128 MB RAM
• Floppy Disk Drive
• Sun CD-ROM drive
• Turbo GX+ Graphics card
• 20” Sun color monitor
• 2 Ethernet cards
• 2 SCSI channels
• 2 RS-232 ports
• Keyboard
• 2-Button mouse
• 96 serial ports (SCSI attached)
• 1 modem/site
• 1 disl-up line/site

R 25.4.7 S1
P 2.2.2.3.4 P1 S2
AVI-PY-1

AVI Master Computer
System

MODEM POOL SUBSYSTEM REQUIREMENTS

INTERFACE REQUIREMENTS

AVI-IF-2.1 The AVI Modem Server System shall interface with the AVI
Reader Field Sites.

AVI-IF-2 AVI Modem Server System

 Automated Vehicle Identification System Design Document 142

 REQUIREMENT
NUMBER

 REQUIREMENT SOURCE ALLOCATED TO

MASTER COMPUTER SOFTWARE SUBSYSTEM
REQUIREMENTS

INTERFACE REQUIREMENTS

AVI-IF-1.2 The AVI Data Processing Software shall interface with the MDI
Data Server using protocol TBD.

AVI-IF-1 AVI Data Processing
Software

AVI-IF-2.2 The AVI Data Processing Software shall interface with the AVI
Reader Field Sites using protocol TBD.

AVI-IF-2 AVI Data Processing
Software

AVI-IF-3.1 The AVI Data Processing Software shall interface with the user. AVI-IF-3 AVI Data Processing
Software

FUNCTIONAL REQUIREMENTS

AVI-FN-1.1 The AVI Data Processing Software shall gather AVI Tag read
data from the AVI Reader Field Site.

P 2.2 P6 S1
P 2.2.2.3
AVI-FN-1

AVI Data Processing
Software

AVI-FN-2.1 The AVI Data Processing Software shall store the AVI Tag read
data collected from the Reader Field Sites .

R 24 S8
R 25.4.2 S1
R 25.4.2 S2
AVI-FN-2

AVI Data Processing
Software

AVI-FN-2.2 The AVI Data Processing Software shall provide the AVI Tag
read data to the MDI Data Server.

R 25.4.2 S1
R 25.4.2 S2
P 2.2 P6 S1
AVI-FN-2

AVI Data Processing
Software

AVI-FN-2.3 The AVI Data Processing Software shall process operational
data gathered from the Reader Field Sites.

R 25.4.2 S1
P 2.2 P6 S1
P 2.2.2.3.1
AVI-FN-2

AVI Data Processing
Software

AVI-FN-3.1 The AVI Data Processing Software shall determine AVI Reader
Field Site status.

P 2.2.1 P1 S7
AVI-FN-3

AVI Data Processing
Software

AVI-FN-3.2 The AVI Data Processing Software shall monitor its own status. P 2.2.1 P1 S3
AVI-FN-3

AVI Data Processing
Software

AVI-FN-4.1 The AVI Data Processing Software shall accept configuration
data.

P 2.2.2.1 P1 S6
AVI-FN-4

AVI Data Processing
Software

 Automated Vehicle Identification System Design Document 143

 REQUIREMENT
NUMBER

 REQUIREMENT SOURCE ALLOCATED TO

AVI-FN-4.2 The AVI Data Processing Software shall store configuration
data.

P 2.2.2.1 P1 S6
AVI-FN-4

AVI Data Processing
Software

AVI-FN-4.3 The AVI Data Processing Software shall perform configuration
operations.

P 2.2.2.1 P1 S6
AVI-FN-4

AVI Data Processing
Software

AVI-FN-5.1 The AVI Data Processing Software shall detect communications
errors between itself and the AVI Reader Field Site.

P 2.2.1 P1 S3
AVI-FN-5

AVI Data Processing
Software

AVI-FN-5.2 The AVI Data Processing Software shall log communications
errors between itself and the AVI Reader Field Site.

P 2.2.1 P1 S3
AVI-FN-5

AVI Data Processing
Software

AVI-FN-5.3 The AVI Data Processing Software shall report communications
errors between itself and the AVI Reader Field Site.

P 2.2.1 P1 S3-4
AVI-FN-5

AVI Data Processing
Software

